
*Corresponding author: Email: Dedykurniawan@ilkom.unsri.ac.id;

J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022

Journal of Engineering Research and Reports

Volume 23, Issue 12, Page 252-271, 2022; Article no.JERR.94880
ISSN: 2582-2926

Towards Migrating from Monolithic-
Based Web Application to Micro

Service: A Case Study of ezScrum
Product Backlog

Dedy Kurniawan

a*

a
 Universitas Sriwijaya, Indonesia.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/JERR/2022/v23i12782

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer
review comments, different versions of the manuscript, comments of the editors, etc are available here:

https://www.sdiarticle5.com/review-history/94880

Received: 17/10/2022
Accepted: 19/12/2022
Published: 21/12/2022

ABSTRACT

The software ezScrum is a legacy web application that has been developed and maintained for more
than ten years. With web technology constantly evolving, the ezScrum development team has found it
increasingly difficult to keep up and many older technologies are still used. A consequence is the
slowdown of release. Examining the issues, we have found the main cause to be the coupling of
ezScrum modules since ezScrum is a monolith. Thus, effort has been taken to convert ezScrum into a
set of microservices so that coupling is reduced. This thesis reports our work on extracting the product
backlog from ezScrum. As demonstrated, the extracted product backlog microservice operates as an
independent web application that collaborates with other extracted microservices from ezScrum
including account management.

Keywords: Monolithic; microservice; migration; ezScrum; product backlog.

Original Research Article

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

253

1. INTRODUCTION

ezScrum since last year was in the phase of
architectural transition from the old style of the
monolithic to the microservice, this transition
is due to the monolithic architecture that
currently used by ezScrum is very dependent
on specific technologies that have been
used more than ten years since the first
release ezScrum and the development of some
of these technologies have even discontinued. In
the implementation of the microservice
architecture, large monolithic applications such
as ezScrum are split into several modules
each of which would become independent
service and each service has its own technology
coverage with its functionality and clear boundary
[1].

ezScrum is a web application that facilitates
system development through a scrum framework
with several key functions such as product
backlog, sprint planning, sprint backlog,
taskboard, burndown chart, task management
and et cetera. some of the above features
have become the primary candidates that
need to be decomposed into small bounded
functionality. The product backlog is a list of
everything to be accomplished in a project
that is currently running. This list can be the
addition of new features, enhancement running
feature, or even fixing the issues. Usually,
product backlog sorted by priority level. These
priority levels are generated from several factors
such as value added, cost and risk based on
these criteria the product owner would be able to
determine which user story that needs to
be finished in the sprint backlog for the next sprint
[2].

Scrum is one of the most popular method among
the agile methods [3] , it has a few simple rules
designed to help a team to organize, achieve high
quality, high customer satisfaction and good
developer experience. The open-source
application ezScrum [4] is maintained around
mature practices such as automated tests
including user acceptance test cases for verifying
the functional requirements and unit testing to test
the individual classes and methods. The
application is developed in Java, more specifically
in Struts framework [5]. The 1.2.7 version of the
Struts framework that is used to develop ezScrum
became old and it is no longer supported by the
community [6]. There are numbers of research
studies and literatures that address issues on
identifying and investigating possible methods and
models to describe microservice, one of such is a
Domain-Driven Design notion of Bounded Context
[7]. It helps the development team gain a clear
and shared understanding of what has to be
consistent and what can be developed
independently. Basically, it defines explicit
boundaries of the service, which is essential in
developing microservice. Fig. 1 is a sample
diagram of a bounded context, as it shows how
two unrelated concepts are separated into two
services where they only share the common
concepts Customer and Product [4-7].

However, getting service boundaries wrong would
be costly and risky in the long run. Hence, the
team has to be cautious when defining and
modeling the loosely coupled and high cohesive
services. Once the bounded context are
determined and have the explicit public interface
defined, it is then up to developers to develop the
micro services around the business capabilities
[9].

Fig. 1. Bounded context [8]

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

254

2. METHODOLOGY STARTING WITH
MICROSERVICE

2.1 Preliminary Preparation

The first step that needs to be done is to identify
the logical architecture of the ezScrum and find
out in which cluster that business logic and
domain model reside. This process is called
isolating the domain [1]. This task including
reading and organizing the existing source code
and draw it into context diagram which is
necessary to get the more profound understanding
of the overall business process of ezScrum. The
context diagram is also essential for mediating
with domain professional to categorize the related
domain into the defined business context and filter
out the domains which not related to the product
backlog microservice.

2.1.1 ezScrum package structure

In the legacy ezScrum java classes that have the
similar functionality are grouped in the single
package which is named into a meaningful name
that is reflecting the concept and functionality for
each class member. With this package naming
and structure, providing the convenient way for
locating the class that should be delegated to
complete some specific task. For instance,
AjaxAddStoryAction class and AjaxAddTaskAction
class are providing the similar functionality, both
classes primarily handling the client request and
prepare the response data back to the client and
these classes are grouped in the Package action.
In Fig. 1a each package has its specific
functionality that respectively describes as
follows, Package action is responsible for
coordinating the task that came from client and
delegates work to Package helper for specific
process with help from Package logic if there is
any calculation involves then the process
continues to Package Mapper which provides the
higher level functionality to do a database query
and maps this query to the underlying database
query using Package Dao and return the output by
creating an object from Package data Object [6].

2.1.2 Analyzing ezScrum architecture

ezScrum package naming structure above
provides us with a convenient way to presume
which package that contains the domain concept
and also provides the excellent foundation for
defining the specific architecture that is currently
applied in ezScrum. This task is necessary to

define the specific concern of each ezScrum
package. This process also provides a reference
for isolating the domain concept and decoupling it
from the framework technology or other unrelated
concepts that might be mixed with domain concept
[3].

Fig. 1a. Splitting Illustration

Fig. 1b. ezScrum packages

Follows is the sequence diagram that taken when
new product backlog request occurs, which is
notated using product backlog class and story
class in ezScrum Fig. 1c.

Fig. 1c mildly illustrates the request action for
creating a new story in ezScrum, the process that
comes from HTTP request with body parameter
firstly flows from Ajax Addnew Story Action class
converts the HTTP request body to Story Info
object and delegates the creation process to the
Product Backlog Helper class which relies on
Product Backlog Logic class for handling the
conditional checking and Story Object for storing
the story data to persistence database that
facilitated by Story Dao class and when the
process has been finished the delegated class
notifies the caller class package by package.

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

255

Fig. 1c. Sequence diagram of class call-stack in ezScrum

From above analysis it is straightforward to
denote that ezScrum architecture is reflected with
above figure which states that each layer is
specialized in specific aspect of ezScrum process
(Table 1).

2.1.3 ezScrum domain layer entities

Class diagram is used to express the situation and
followed with the description for each class
respectively. Two diagrams would be created the
first diagram exhibits the list of the classes that
were used by ezScrum and all the attributes that
belongs to it respectively and the other one

exhibits the interaction between these two
classes.

2.1.4 ezScrum database entities

Having all the database entities listed in the report
would help us to understand which table is
currently being mapped from the domain entities
to underlying database. Back to ezScrum
database, we have identified 15 tables each of
these tables representing the object model in
ezScrum for storing the data in MySQL database,
then in the splitting work. We will identify which
entity that part of Product Backlog context and

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

256

declare the relationship for each table based on
the Table 2.

2.2 Splitting Work

2.2.1 Product backlog context boundary

To ensure our splitting processes would work in
right path we implement one of DDD technique
that called bounded context this approach states
that each component and these context models
are only used within their bounded scope and data
arenot shared across the bounded contexts. We
can explicitly defined the bounded context of
product backlog with some general concept of
product backlog:

“The product backlog is a list of product
requirements to be accomplished in a project
that is currently running. This list can be
categorized into several category like the
addition of new features, enhancement
running feature, or even fixing the issues.
Usually, product backlog sorted by priority
level. These priority levels are generated from
several factors such as value added, cost and
risk based on these criteria” [8].

From above product backlog concept we sorted
out several important terms that would be
important to be the list of sub-domain and
explicitly compare these sub-domain into ezScrum
related terms through a discussion session with
domain expert.

Noticed that we ignored the product owner term
because in ezScrum product owner is expressed
by the user object that part of Account
management context [5].

In the scrum, product requirement is a single item
that needs to be accomplished to deliver a viable
product. This item contains several attributes that
defined with ranged value such as risk, business
value, dependencies, size, and date needed.
Similar with ezScrum product requirements and its
attributes terms represented explicitly with story
item that has the attributes with ranged value like
a status, important, value and related tags that
would categorize a story into the predefined
category.

From above boundary we extracted several
scenarios which involving the project, tags system,
and story.Further we would analyze these
scenario to confirm that we solve this boundary
effectively.

2.2.2 Product backlog scenarios

Based on above analysis we extracted several
product backlog related scenariosby running these
scenarios in legacy ezScrum and track every class
that apperars in callstack and express this
scenario into call sequence using this phases
intended to confirm that we solved the analysis
effectively this phase would also help for
structuring the microservice design and
channeling for implementation as a reference.

Table 1. ezScrum layer description

Ezscrum presentation
layer

In ezscrum, this layer is responsible for handling the user request that comes
from a browser and returns the response whenever the related task is done.
The classes that responsible for handling this task are grouped together in
the package action.

Ezscrum application
layer

In ezscrum, this layer which consisted with helper packages that are
responsible for mediating a task comes from the action class for package
naming, although the member classes are named with a related specific
business process for example “productbackloghelper” this package is not
involved with any business situation, only for delegating the task to the
package in domain layer and tracks the progress of the currently running
process to notify the package in an upper layer.

Ezscrum domain
layer

In ezscrum this layer is consisted with the package that manages the
business definition, for an instance the storyobject class member of the
package object contains with variables that reflecting the states and
attributes of the user story.

Ezscrum persistence
layer

When the specific task that demands for storing data to persistence storage
the domain layer invokes the mapper that maps the java storing procedure
using the dao object to specific sql query which would be processed by
underlying database system.

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

257

Fig. 1d. ezScrum layered architecture

Fig. 1e. ezScrum object entities

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

258

Fig. 1f. ezScrum database entities

Fig. 1g. Product Backlog context boundary

Table 2. Product backlog sub-domain list

Subdomain Description In ezScrum

Product requirements The items that has to be done. Story
Category A predefined categories that allow the PO to categorize

the story.
Tagging system

Project Aplanned work that need to be finished in the range of
time.

Project

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

259

2.2.2.1 Scenario 1: The story and project scenario

Whenever the request comes from the user, the
process would first pass through the action class
Ajax Addnew Story Action which stand in the user
interface layer, the raw requested parameters that
contain the Story Info are mapped into the Story
Object in the domain layer data. Product Backlog
Helper in the application layer that responsible for
tracking the progress status.

The specific work here occurs in Product Backlog
Logic which responsible for maintaining the new
story creation state and initializes the Product

Backlog Mapper for mapping the Story Object to
StoryDao for storing the data in the underlying
database. Noticed that the id of Project Object is
needed for basic parameter to instantiate Story
Object, the relationship detail would be covered
later.

The state diagram above exhibits the state of
ezScrum and story creation process, state
starting from the request that comes until
appending the response back. From above
analysis we noticed that StoryObject and
ProjectObject are classes that residing in domain
layer.

Fig. 1h. Sequence diagram for story creation scenario

Flow Chart 1. The state of ezScrum and story creation process

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

260

Fig. 1i. Project and story relationship

Fig. 1i describing the relationship between project
and story which has one-to-many cardinality type.
This type states that one project can contains with
many story and many story can only belongs to
one project and based on above analysis we
extract these requirements as noted in the
Table 3.

2.2.2.2 Scenario 2: The tag scenario

Fig. 2a describes the process for tag creation in
legacy ezScrum, the request that forwarded to
AjaxAddNewTagAction class, before the creation
process, the system ensures that only one tag
data with the similar name that exist in the current
running project.

With the ProductBacklogHelper class delegates
the checking task to ProductBacklogMapper class
for looking up the database entry,if the new
tag does not exist, the system can leap to
creation process by delegating the process to

TagDao class for storing it with defined SQL-
query.

The state diagram above exhibits the state of
ezScrum and for tag creation process state, the
request must come with valid parameters that
contains the tag data which would be stored in
database if the tag does not exist and return the
status back.

From the tag sequence diagram we noticed a
sentence for ensuring that only one tag with
similar tag_name exists in current running project,
this sentence expressing the relationship between
tag and project which one tag can only belongs to
one project, whereas one project can have many
tags as expressed in the following image.

From the tag creation scenario analysis, it
demands two object that should be involved in
from domain layer Tag Object and Project
Object and extracts two following requirements in
Table 4.

Table 3. Project based analysis

R1 As a developer I want to develop api that serve for story creation, so that the client can store the
story data in the microservice.

R2 As a developer I want to develop api for project creation, so that the project data can be
appended in my new story data.

R3 As a developer I want to develop api for updating and removing the story, so that client can alter
their story data.

R4 As a developer I want to develop api for modifying the project attributes, so that client can alter
their project data.

R5 As a developer I want to develop api for retrieving a list of story based on parent project, so that
the client can manage the detailed story in current running project

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

261

Fig. 2a. The process for tag creation in legacy ezScrum

Fig. 2b. State of ezScrum and for tag creation process

2.2.2.3 Scenario 3: Story and tag relationship

The valid requests for attaching story to tag job
are fistly forwarded through Ajax Add Story Tag
Action class, the ProductBacklogHelper class
then delegating the job to the
ProductBacklogMapper for retrieving the story and
tag data from database and attach these two data
by creating the new record in pivot table in mysql
database.

In ezScrum story and tag can be attached
together by storing the story_id value and tag_id
value in story_tag_relation table, this table acts as
a pivot table for mediating the many-to-many
relationship between tag and story which has the
bidirectional relationship type, states that either
story or tag can be the aggregate point for
retrieving the relationship between the story and
tag job which would be detailed in the requirement
list in this section.

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

262

Fig. 3. Project tags

Table 4. Domain layer tag object

R1 As a developer I want to developapi tag for a tag creation, so that the client can manage their
story with defined tag.

R2 As a developer I want to develop api for tag checking, so that the client can ensure only one tag
exist in current running project.

R3 As a developer I want to develop api for updating and removing the tag, so that client can alter
their tag.

Table 5. From above analysis we extracted the requirements as following

R1 As a developer I want to develop api for attaching defined tags to story, so that the client can
organize the user story based on tag

R2 As a developer I want to develop api for removing attached tags from story, so that the client can
change it whenever incorrect tagging.

R3 As a developer I want to develop api retrieving a list of story based on certain tag, so that the
client can organize the story with tag

2.3 Put All Pieces Together

As we have mentioned before that we have
analyzed the splitting monolith application through
a gradual process which has produced pieces of
separate requirements and entity description
based on the sub-domain. In this phase, we aim to
bring all these pieces into one completed
requirements list and compose all the extracted
database entity into one relationship details as
expressed in the following Fig. 6.

2.4 Product Backlog Microservice

Our product backlog microservice basically a small
instance of service that should serve functionality
which we have defined before in splitting works,

however in the implementation phase
microservice should also have a clear data
exchange format, and communication channel,
which will be consumed regardless of underlying
technology is being applied by the client. Which
we would discuss in this chapter including the
architecture, communication mechanism, and
microservice framework.

2.4.1 The architecture

Fig. 7 describes the purposed architecture of our
microservice. We split the purposed architecture
into three tiers, the first tier is called user interface
tier and the second tier is a legacy ezScrum which
mainly communicate via web browser client
through HTTP protocol, but in our project we did

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

263

not touch the first tier since there are residing
legacy services which are still not decomposed yet
and need to be orchestrated by the legacy
ezScrum in order to work, such as Sprint Backlog
service, Taskboard service, and et cetera. Ideally
when all these services have been established the
API gateway will take over the orchestration job so
that the client in the first tier would leap to the third

tier without needing to communicate to legacy
ezScrum anymore.

In the third tier, the legacy ezScrum would
communicate with Product Backlog Microservice
using the API endpoints that are publicly
published. This endpoint and detail will be
discussed later.

Fig. 4. Story and tag relationship

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

264

Fig. 5. Story and tag data from database

Fig. 6. Extracted database entity into one relationship details

Fig. 7. Architecture of our microservice

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

265

Table 6. Sub-domain

R1 As a developer I want to develop api that serve for story creation, so that the client can store the
story data in the microservice.

R2 As a developer I want to develop api for project creation, so that the project data can be
appended in my new story data.

R3 As a developer I want to develop api for updating and removing the story, so that client can alter
their story data.

R4 As a developer I want to develop api for modifying the project attributes, so that client can alter
their project data.

R5 As a developer I want to develop api tag for a tag creation, so that the client can manage their
story with defined tag.

R6 As a developer I want to develop api for tag checking, so that the client can ensure only one tag
exist in current running project.

R7 As a developer I want to develop api for updating and removing the tag, so that client can alter
their tag.

R8 As a developer I want to develop api for attaching defined tags to story, so that the client can
organize the user story based on tag

R9 As a developer I want to develop api for removing attached tags from story, so that the client
can change it whenever incorrect tagging.

R10 As a developer I want to develop api retrieving a list of story based on certain tag, so that the
client can organize the story with tag

R11 As a developer I want to develop api for retrieving a list of story based on parent project, so that
the client can manage the detailed story in current running project

2.4.2 Connect with product backlog

microservice

When our product backlog microservice has been
deployed properly, we need to expose the service
to the client with common communication
mechanism. Restful API with HTTP protocol is
chosen to expose our microservice mainly
because this concept encourages the developer to
address the resource inside the service using the
URL pattern which has been used widely over the
world for exposing the resource. Our microservice
resource would have an endpoint interface using
the URL pattern as follows:

http://host:port/product_backlog/{resource_na
me_path}/{identifier}/{child_resource}

Since we are implementing the HTTP protocol the
URL pattern would be started with http:// term
follows by our microservice hostname and port.
The product_backlog path is representing the
context of our microservice followed by
resource_name path in our service it could be a
story, tag, project with identifier path that is
required when the client need specific single
resource and child_resource path for retrieving the
related resource that belongs to the parent.

2.4.3 Microservice framework

Spring boot is chosen as a microservice
framework in implementation part, since it

provides a production ready code with minimum
configuration thus make the application up and
running as fast as possible, spring also comes
with embedded application server (Tomcat by
default) so we don’t need to build and deploy our
application into WAR file. These two advantages
align with our project goal, since we need to
deliver our application for every sprint or iteration.

3. PRODUCT BACKLOG MICROSERVICE

So far we have extracted the ezScrum parts that
related to product backlog context, started from
isolating the layer contains the business domain,
analyzing the database schema that which
belonged to product backlog and capturing the
product backlog business requirements. Further,
we would develop the product backlog
microservice by using the spring boot framework
as an environment and properly up and running
the microservice to ensure the extraction will not
affect the operation of legacy ezScrum.

3.1 Product Backlog DB Entity Details

3.1.1 Entity relationship diagram

From the product backlog sub-domain analysis
phase we have extracted the following entities in
our development database, noted that some of the
field are required by spring framework and not
related to the product backlog context, which will
be explained later in field description part.

http://host:port/product_backlog/%7bresource_name_path%7d/%7bidentifier%7d/%7bchild_resource%7d
http://host:port/product_backlog/%7bresource_name_path%7d/%7bidentifier%7d/%7bchild_resource%7d

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

266

Fig. 8. Entity relationship diagram of product backlog microservice table

We have noticed between from Fig. 8 each entity
is circularly connected, states that each entity
could be an aggregate point for retrieving the
entity which belongs to it. In our case for an
instance we could retrieve the list of story or list of
tag by picking up one single project and traverse
the relationship to point out the story or tag that
belongs to it; thus the relation between project and
story or project and tag would be a one-to-many
with condition that each project has 0 or more
story and tag. Or we could also say each story
and tag should only exist in one single project.

From the scenario analysis part, state that we
could attach the story to tag or attach the tag to
the story. Hence the relation between these
entities would be many-to-many which states one
tag could have zero or more story and one story
could have zero or more tag. Because of the
complexity of the relationship, we could not
connect these two tables directly; thus we need
the story_tag table as a pivot table that stores the
relationship between them.

3.1.2 Entity field descriptions

Entity field descriptions presented in Table 7.

3.2 Product Backlog API Contracts

Our API endpoint pattern would be like the
following with the orange colored text path

represent the context prefix and black colored text
path represent the resource:

http://host:port/product_backlog/{resource_na
me_path}/{identifier}/{child_resource}

From the product backlog requirements, we have
developed a list of API endpoint contracts with the
pattern like as Table 11.

3.3 Class Diagram

The product backlog microservice has three
controllers which contain all the microservice API
endpoints that we have explained in chapter 9.
The classes are the slim class with responsibility
for handling the incoming HTTP request, and the
request further delegated to service package.

The service package has three class packages
which are responsible for maintaining the state of
the request progress and delegates more
complicated job, business rules and computation
in the logic layer which for now only has one class.

The Repositories is Java Persistence API the
class implementing the repository enterprise
architecture, and this implementation is needed for
mediating the access between the domain and
data mapping layer in spring boot technology
[7].

http://host:port/product_backlog/%7bresource_name_path%7d/%7bidentifier%7d/%7bchild_resource%7d
http://host:port/product_backlog/%7bresource_name_path%7d/%7bidentifier%7d/%7bchild_resource%7d

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

267

Table 7. Project table field descriptions

Field name Data type Description

Id BIGINT The unique identified for project, maximum 20 character

Comment VARCHAR Additional details for the project, maximum 255 character, can be
null

Display_name VARCHAR The displayed project name in client, maximum 255, not null

Name VARCHAR The project name, maximum 255 character and not null

Product_owner VARCHAR The product owner name, maximum 255 character, not null

Attach_max_size BIGINT A configurable maximum size of the attached file in MB, default 2

Created_time DATETIME Storing the date and time for the row creation in datetime format

Updated_time DATETIME Storing the date and time for the last update row, in datetime format

Table 8. Story table field descriptions

Field name Data type Description

Id BIGINT The unique identified for story, maximum 20 character

Notes TEXT Additional details for the story

Status INTEGER Story status, new : 1, assigned : 2, closed : 3

Name VARCHAR The story name, maximum 255 character and not null

Importance INTEGER Importance level for the story, maximum 11 character,
required

Value INTEGER A value level for the story, maximum 11 character, required

Estimate INTEGER An estimation value for the story, maximum 11 character,
required

How_to_demo TEXT Demo description

Project_id INTEGER Reference to the project table, not null

Serial_id INTEGER Reference to the serial, not null

Sprint_id INTEGER Reference to the sprint id

Created_time DATETIME Storing the date and time for the row creation in datetime
format

Updated_time DATETIME Storing the date and time for the last update row, in datetime
format

Table 9. Tag table field descriptions

Field name Data type Description

Id BIGINT The unique identified for tag, maximum 20 character

Name VARCHAR The tag name, maximum 255 character and not null

Project_id BIGINT A reference value to the project

Created_time DATETIME Storing the date and time for the row creation in datetime
format

Updated_time DATETIME Storing the date and time for the last update row, in datetime
format

Table 10. Story tag pivot table, field descriptions

Field name Data type Description

Story_id BIGINT A reference value for the story
Tag_id BIGINT A reference value for the tag

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

268

Table 11. Product backlog API endpoint list

Resource Method Description

/project/projects GET Retrieving all the project in microservice.

/project/get/{id} GET Retrieving single project data with
appended id {id}.

/project/get_by_name/{name} GET Retrieving single project data with
appended project name {name}.

/project/check_by_name/{name} GET Provides the Boolean data for checking
the project existence.

/project/create POST Create single project with appended
project data in request body.

/project/update/{id} PUT Update the project with id {id} and
appended project data in request body.

/project/delete/{id} DELETE Remove single project data with id {id}.

/project/{id}/stories/{filterType} GET Retrieving the stories that belongs to
project id {id} with optional filter type {filter
type} ALL, BACKLOG, DONE, DETAIL.

/project/{id}/tags GET Retrieving the tags that belongs to project
with id {id} .

/story/stories/{filterType} GET Retrieving the stories with optional filter
type {filter type} ALL, BACKLOG, DONE,
DETAIL.

/story/get/{id} GET Retrieving single story data with
appended id {id}.

/story/get_by_project_serial/{project_id}/{s
erial_id}

GET Retrieving single story data with
appended project id {project_id} and
serial id {serial_id}.

/story/{id}/project GET Retrieving project that belongs to story
with id {id}

/story/{id}/tags GET Retrieving tags that attached to story with
id {id}

/story/{id}/attach_tag/{tag_id} GET Attach story with id {id} to the tag with id
{tag_id}

/story/{id}/un_attach_tag/{tag_id} GET Unattached story with id {id} to the tag
with id {tag_id}

/story/create POST Create single project with appended story
data in request body.

/story/update/{id} PUT Update the story with id {id} and
appended story data in request body.

/story/delete/{id} DELETE Remove single story data with id {id}.

/tag/create POST Create single tag with the appended tag
data in request body

/tag/update/{id} PUT Update single tag data with id {id} and
appended tag data in request body.

/tag/delete/{id} DELETE Delete single tag data with id {id}

/tag/{id}/project GET Retrieving project data that has the tag id
{id}

/tag/{id}/stories GET Retrieving the stories data that has the
tag id {id}

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

269

Fig. 9. Class diagram of the product backlog microservice

Fig. 10. Product backlog microservice entity relationship diagram

3.4 The Integration

We have picked up several AT test case
scenario which related to the product
backlog requirements with additional test case
scenario that might potential having a share
data with product backlog context. This phase

intended to ensure our product backlog
microservice has been appropriately
implemented in the legacy ezScrum and covered
all the requirements that are needed by the
client to run the application without any
defecting the existing functionality of our legacy
ezScrum.

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

270

Fig. 11. Automatic testing result

4. CONCLUSION

As we have accomplished so far, we have
reached our primary goal to split the product
backlog context from ezScrum application, our
work progress has extracted 11 requirements
which we have converted into single product
backlog microservice that serves with 24 API
endpoints, in the splitting process we first came
through for understanding our problem which is
the context of our product backlog, we have
identified the boundary of this context by using the
general concept of product backlog because we
did believe that each component or sub-domain is
firmly connected and would share the data in
frequent time within this context. This DDD
concept was became our firm guidelines for
splitting the product backlog related from
ezScrum.

Then based on the sub-domains which we
obtained above, we extracted several business
scenarios which aligned within the product
backlog context and pointed out the java class and
database entities that representing the data model
by running these scenarios in the legacy ezScrum.

Then we generated the requirement list based on
the scenarios and its specification based on the
data model.

Further, we developed the product backlog micro
service which serving 24 API endpoint that
satisfied the requirement list. Although we have
established a well prepared a product backlog
micro service but still there are some aspect that
we would seize this opportunity in the future such
as: how we coordinate and arrange since we will
have more micro service eventually, how do we
ensure our micro service will keep serving
whenever exception appears so that our micro
service will not be a single point of failure, and the
last but not least how our micro service will be
more tenacious from external interference since
our micro service directly facing the public and we
need to have a mechanism to hide the actual
implementation to filter out the malicious request
is addressing to it.

COMPETING INTERESTS

Author has declared that no competing interests
exist.

Kurniawan; J. Eng. Res. Rep., vol. 23, no. 12, pp. 252-271, 2022; Article no.JERR.94880

271

REFERENCES

1. Sedeño J, et al. Modelling agile

requirements using context-based
persona stories. in WEBIST 2017: 13

th

International Conference on Web
Information Systems and Technologies
(2017). ScitePress Digital Library. 2017:196-
203.

2. Mereu S, et al. Top-down vs bottom-up
approaches to user segmentation: The best
of both worlds. in Proceedings of the Human
Factors and Ergonomics Society Annual
Meeting. SAGE Publications Sage CA: Los
Angeles, CA; 2017.

3. Beck K, Beedle M, Van Bennekum A.
Principles behind the agile manifesto.
2001;2–3.

4. Fowler M. Monolith First; 2015. [Online].
Available:https://martinfowler.com/bliki/Mono
lithFirst.html

5. Evans E. Domain Driven Design; 2006.
6. Bakyei G. Adding new functionalities to a

legacy system with microservices: A case
study of ezScrum; 2017.

7. Zheng Anfa. Implementing account
management service using the

microservice architecture: A Case Study of
ezScrum.

8. Alur D, Crupi J, Malks D. Core J2EE
Patterns, Design. 2003;650.

9. Fowler M. Patterns of Enterprise Application
Architecture. 2003;23.

10. Deemer P, Benefield G, Larman C, Vodde
B. The Scrum Primer, InfoQ. 2012;1–20.

11. Tryfonas T, Askoxylakis I. Human Aspects
of information security, privacy, and trust.
Springer; 2013.

12. Losana P, et al. A systematic mapping study
on integration proposals of the personas
technique in agile methodologies. Sensors
(Basel). 2021;21(18).

13. Wolkerstorfer P, et al. Probing an agile
usability process, in CHI'08 Extended
Abstracts on Human Factors in Computing
Systems. 2008;2151-2158.

14. Seffah A, Gulliksen J, Desmarais MC.
Human-centered software engineering-
integrating usability in the software
development lifecycle. Springer Science &
Business Media. 2005;8.

15. Felderer M, Travassos GH. Contemporary
empirical methods in software engineering.
Springer; 2020.

© 2022 Kurniawan; This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/94880

http://creativecommons.org/licenses/by/2.0

