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By employing a pseudoorthonormal coordinate-free approach, the Dirac equation for particles in the Kerr–Newman spacetime is
separated into its radial and angular parts. In the massless case to which a special attention is given, the general Heun-type
equations turn into their confluent form.We show how one recovers some results previously obtained in literature, by other means.

1. Introduction

After Carter found that the scalar wave function is separable
in the Kerr–Newman–de Sitter geometries [1], the solutions
to the Teukolsky equations [2], for massless fields in the Kerr
metrics, have been analytically expressed in the form of a
series of various functions [3, 4].

Starting with the work of Chandrasekhar [5], general
properties of a massive Dirac field equation in the Kerr back-
ground have been extensively studied.

The recent interest in the so-called quasinormal modes of
a Dirac field in the Kerr background is motivated by the
detection of gravitational waves [6–8], whose phase can be
described in terms of the proper oscillation frequencies of
the black hole.

In terms of techniques, after the Dirac equation in the
Kerr–Newman background was separated [9, 10], using the
Kinnersley tetrad [11], the Newman-Penrose formalism [12]
has been considered a valuable tool for dealing with this sub-
ject [13]. This formalism as well as the Geroch–Held–Penrose
variant has been used for the Teukolsky Master Equation
describing any massless field of different spins, in the Kerr
black hole and for an arbitrary vacuum spacetime [14, 15].

In [16, 17], it was shown that, for Kerr-de Sitter and
Kerr–Newman–de Sitter geometries, both angular and radial

equations for the Teukolsky equation, for massless fields, are
transformed into Heun’s equation [18, 19] and analytic solu-
tions can be derived in the form of a series of hypergeometric
functions. More recently, solutions of the Dirac equation in
the near horizon geometry of an extreme Kerr black hole
have been found analytically in terms of the confluent Heun
functions in [20].

The massive case was tackled within the WKB approach
[21] or numerically, using the convergent Frobenius method
[22]. Very recently, in [22], after a tedious calculation, using a
generalised Kinnersley null tetrad in the Newman-Penrose
formalism, the Dirac equation for a massive fermion has been
separated in its radial and angular parts, the solutions being
expressed in terms of generalised Heun functions.

Our work is proposing an alternative, free of coordinates,
method based on Cartan’s formalism. Thus, we are comput-
ing all the geometrical essentials for dealing with the Dirac
equation in its SOð3, 1Þ ×Uð1Þ-gauge covariant formulation.
Our approach is generalizing the theory developed in [23],
where for massless fermions on the Kerr spacetime, the
authors are switching between canonical and pseudoortho-
normal bases and the solutions are derived using numerical
techniques.

By imposing the necessary condition for a polynomial
form of the Heun confluent functions [18, 19], we obtain
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the resonant frequencies, which are of crucial importance for
getting information on the black holes interacting with different
quantum fields [24]. In the last years, the Heun functions in
either their general or confluent forms have been obtained by
many authors, for example, [25–40] and the references therein.

The structure of this paper is as follows: in Section 2, we
present all the necessary ingredients for writing down the
massive Dirac equation in the Kerr–Newman background.
We show that, by using an orthonormal tetrad adapted to
the Kerr–Newman metric, one can separate the massive
Dirac equation. For slowly rotating objects, the solutions of
the radial equations can be expressed in terms of the conflu-
ent Heun functions. As an application, we compute the
modal radial current vector. In Section 3, we turn our atten-
tion to the massless Dirac fermions and show that the Dirac
equations can be solved exactly in the Kerr case and also in
the extremal case, a result previously known in literature,
obtained by other means. The final section is dedicated to
conclusions.

2. The SOð3, 1Þ ×Uð1Þ-Gauge Covariant Dirac
Equation

Let us start with the four-dimensional Kerr–Newman metric
in the usual Boyer–Lindquist coordinates:

ds2 = ρ2

Δ
drð Þ2 + ρ2 dθð Þ2 + sin2θ

ρ2
a dt − r2 + a2

� �
dφ

� �2
−

Δ

ρ2
dt − a sin2θ dφ
� �2, ð1Þ

where Δ = r2 − 2Mr + a2 +Q2, ρ2 = r2 + a2 cos2θ, and M, Q,
and a are the black hole’s mass, charge, and angular momen-
tum per unit mass. The electromagnetic background of the
black hole is given by the four-vector potential, in coordinate
basis:

Aidx
i = Qr

ρ2
dt − a sin2θdφ
� �

: ð2Þ

Within a SOð3, 1Þ-gauge covariant formulation, we intro-
duce the pseudoorthonormal frame fEaga= �1,4, whose corre-
sponding dual base is

Ω1 = ρ dθ,Ω2 = sin θ

ρ
r2 + a2
� �

dφ − a
sin θ

ρ
dt,

Ω3 = ρffiffiffiffi
Δ

p dr,Ω4 = −a
ffiffiffiffi
Δ

p

ρ
sin2θ dφ +

ffiffiffiffi
Δ

p

ρ
dt,

ð3Þ

leading to the expressions

dθ = 1
ρ
Ω1, dφ = 1

ρ sin θ
Ω2 + a

ρ
ffiffiffiffi
Δ

p Ω4,

dr =
ffiffiffiffi
Δ

p

ρ
Ω3, dt = a

ρ
sin θΩ2 + r2 + a2

ρ
ffiffiffiffi
Δ

p Ω4:

ð4Þ

Thus, using the relations gikdx
idxk = gikE

i
aE

k
bΩ

aΩb = δab
ΩaΩb, i.e., dxi = Ei

aΩ
a, one may write down the pseudoortho-

normal frame:

E1 =
1
ρ
∂θ, E2 =

1
ρ sin θ

∂φ +
a
ρ
sin θ ∂t ,

E3 =
ffiffiffiffi
Δ

p

ρ
∂r , E4 =

a

ρ
ffiffiffiffi
Δ

p ∂φ +
r2 + a2

ρ
ffiffiffiffi
Δ

p ∂t :
ð5Þ

Using (3), the first Cartan’s equation

dΩa = Γa
: bc½ �Ω

b ∧Ωc, ð6Þ

with 1 ≤ b < c ≤ 4 and Γa
:½bc� = Γa

:bc − Γa
:cb, can be explicitely

worked out as

dΩ1 = −
ffiffiffiffi
Δ

p

ρ2
ρ,3Ω1 ∧Ω3,

dΩ2 = 1
sin θ

sin θ

ρ

� �
,1
Ω1 ∧Ω2 −

r
ffiffiffiffi
Δ

p

ρ3
Ω2 ∧Ω3

+ 2ar sin θ

ρ3
Ω3 ∧Ω4,

dΩ3 = ρ,1
ρ2

Ω1 ∧Ω3,

dΩ4 = −2 a
ffiffiffiffi
Δ

p

ρ3
cos θΩ1 ∧Ω2 −

a2

ρ3
sin θ cos θΩ1 ∧Ω4

+
ffiffiffiffi
Δ

p

ρ

 !
,3

Ω3 ∧Ω4,

ð7Þ

where ð·Þ,1 and ð·Þ,3 are the derivatives with respect to θ and r,
leading to the following complete list of nonzero connection
coefficients in the Cartan frames fΩa, Eaga= �1,4:

Γ122 = −Γ212 = −
1

sin θ

sin θ

ρ

� �
,1
, Γ124 = −Γ214 = −Γ412 = −

a
ffiffiffiffi
Δ

p

ρ3
cos θ,

Γ131 = −Γ311 =
ffiffiffiffi
Δ

p

ρ2
ρ,3, Γ133 = −Γ313 = −

ρ,1
ρ2

,

Γ232 = −Γ322 =
r
ffiffiffiffi
Δ

p

ρ3
, Γ234 = −Γ324 =

ar
ρ3

sin θ,

Γ142 = −Γ412 = −
a
ffiffiffiffi
Δ

p

ρ3
cos θ, Γ144 = −Γ414 = −

a2

ρ3
sin θ cos θ,

Γ241 = −Γ421 = Γ412 =
a
ffiffiffiffi
Δ

p

ρ3
cos θ, Γ243 = −Γ423 = −Γ234 = −

ar
ρ3

sin θ,

Γ342 = −Γ432 = −Γ234 = −
ar
ρ3

sin θ, Γ344 = −Γ434 =
ffiffiffiffi
Δ

p

ρ

 !
,3

: ð8Þ
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Now, one has all the essentials to write down the SOð3, 1Þ
×Uð1Þ-gauge covariant Dirac equation for the fermion of
mass μ:

γa Ψ;a + μΨ = 0, ð9Þ

where “;” stands for the covariant derivative:

Ψ;a =Ψ∣a +
1
4 Γbcaγ

bγcΨ − iqAaΨ, ð10Þ

with Ψ∣a = EaΨ.
In view of the relations (8), the term expressing the Ricci

spin connection

1
4Γbcaγ

aγbγc = 1
2 Γ212 + Γ313 − Γ414½ �γ1

+ 1
2 Γ131 + Γ232 − Γ434½ �γ3 + i

2Γ241γ
3γ5

+ i
2Γ234γ

1γ5

ð11Þ
has the concrete expression

1
4Γbcaγ

aγbγc = 1
2

cot θ
ρ

−
a2

ρ3
sin θ cos θ

	 

γ1

+ 1
2

ffiffiffiffi
Δ

p� �
,3

ρ
+ r

ffiffiffiffi
Δ

p

ρ3

2
64

3
75γ3 + iar

2ρ3 sin θγ1γ5

+ ia
ffiffiffiffi
Δ

p

2ρ3 cos θγ3γ5,

ð12Þ
where γ5 = −iγ1γ2γ3γ4, while the kinetic term reads

γaΨ∣a =
1
ρ
γ1Ψ,1 + γ2

1
ρ sin θ

Ψ,2 +
a
ρ
sin θΨ,4

	 

+

ffiffiffiffi
Δ

p

ρ
γ3Ψ,3

+ γ4
a

ρ
ffiffiffiffi
Δ

p Ψ,2 +
r2 + a2

ρ
ffiffiffiffi
Δ

p Ψ,4

" #
:

ð13Þ
Putting everything together, the Dirac equation (9) has

the explicit form:

γ1
1
ρ
Ψ,1 +

cot θ
2ρ −

a2

2ρ3 sin θ cos θ + iar
2ρ3 sin θγ5

� �
Ψ

 


+ γ2
1

ρ sin θ
Ψ,2 +

a
ρ
sin θΨ,4

 �
+ γ3

�
ffiffiffiffi
Δ

p

ρ
Ψ,3 +

ffiffiffiffi
Δ

p� �
,3

2ρ + r
ffiffiffiffi
Δ

p

2ρ3 + ia
ffiffiffiffi
Δ

p

2ρ3 cos θγ5
0
@

1
AΨ

8<
:

9=
;

+ γ4
a

ρ
ffiffiffiffi
Δ

p Ψ,2 +
r2 + a2

ρ
ffiffiffiffi
Δ

p Ψ,4

( )
− iqγ4A4Ψ + μΨ = 0,

ð14Þ

where the proper four-potential component, coming from

AðcÞ
i dxi = A4Ω

4, with AðcÞ
i given in (2), reads

A4 =
Qr

ρ
ffiffiffiffi
Δ

p : ð15Þ

For ease of calculations, the choice for γa matrices is
important and we are going to employWeyl’s representation:

γμ = −iβαμ, γ4 = −iβ, ð16Þ

with

αμ =
σμ 0
0 −σμ

 !
, β =

0 −I

−I 0

 !
, ð17Þ

so that

γ5 = −iγ1γ2γ3γ4 =
I 0
0 −I

 !
: ð18Þ

Thus, for the bispinor written in terms of two-
component spinors as

Ψ =
ζ

η

" #
, ð19Þ

the general equation (14) leads to the following system of
coupled equations for the spinors ζ and η:

σ1
1
ρ
ζ,1 +

cot θ
2ρ + ia sin θ

2ρ3 ρ+

� �
ζ

	 

+ σ2 1

ρ sin θ
ζ,2 +

a
ρ
sin θζ,4

	 


+ σ3
ffiffiffiffi
Δ

p

ρ
ζ,3 +

ffiffiffiffi
Δ

p� �
,3

2ρ +
ffiffiffiffi
Δ

p

2ρ3 ρ+

0
@

1
Aζ

2
4

3
5 + a

ρ
ffiffiffiffi
Δ

p ζ,2

+ r2 + a2

ρ
ffiffiffiffi
Δ

p ζ,4 − iqA4ζ − iμη = 0

ð20Þ

σ1
1
ρ
η,1 +

cot θ
2ρ −

ia sin θ

2ρ3 ρ−

� �
η

	 

+ σ2

1
ρ sin θ

η,2 +
a
ρ
sin θη,4

	 


+ σ3
ffiffiffiffi
Δ

p

ρ
η,3 +

ffiffiffiffi
Δ

p� �
,3

2ρ +
ffiffiffiffi
Δ

p

2ρ3 ρ−

0
@

1
Aη

2
4

3
5 −

a

ρ
ffiffiffiffi
Δ

p η,2

−
r2 + a2

ρ
ffiffiffiffi
Δ

p η,4 + iqA4η + iμζ = 0,

ð21Þ
where ρ± = r ± ia cos θ and ρ2 = ρ+ρ−.

Due to the time independence and symmetry of the
spacetime, we can assume that the wave function can be writ-
ten as

ζ = Δ−1/4ρ−1/2− ei mφ−ωtð ÞX ρ, θð Þ, η = Δ−1/4ρ−1/2+ ei mφ−ωtð ÞY ρ, θð Þ,
ð22Þ
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where the factors Δ−1/4ρ−1/2± have been introduced in order to
pull some terms out of equations (20) and (21).

With the new functions Xðρ, θÞ and Yðρ, θÞ, equations
(20) and (21) can be put into the transparent form:

σ1DθX + iσ2HX + σ3
ffiffiffiffi
Δ

p
X,3 + iKX − iμρ−Y = 0,

σ1DθY + iσ2HY + σ3
ffiffiffiffi
Δ

p
Y ,3 − iKY + iμρ+X = 0,

ð23Þ

where we have introduced the operators:

Dθ =
∂
∂θ

+ cot θ
2 ,H = m

sin θ
− ωa sin θ,

K = 1ffiffiffiffi
Δ

p ma − ω r2 + a2
� �

− qQr
� �

:

ð24Þ

Finally, by applying the separation ansatz

X1 = R1 rð ÞT1 θð Þ, X2 = R2 rð ÞT2 θð Þ, Y1 = R2 rð ÞT1 θð Þ, Y2 = R1 rð ÞT2 θð Þ,
ð25Þ

one gets the system:

R1 Dθ −H½ �T1 − T2
ffiffiffiffi
Δ

p
∂r − iK

h i
R2 − iμρ−R1T2 = 0,

R2 Dθ +H½ �T2 + T1
ffiffiffiffi
Δ

p
∂r + iK

h i
R1 − iμρ−R2T1 = 0,

R2 Dθ −H½ �T1 − T2
ffiffiffiffi
Δ

p
∂r + iK

h i
R1 + iμρ+R2T2 = 0,

R1 Dθ +H½ �T2 + T1
ffiffiffiffi
Δ

p
∂r − iK

h i
R2 + iμρ+R1T1 = 0,

ð26Þ

which leads to the radial and angular equations:

ffiffiffiffi
Δ

p
∂r + iK

h i
R1 = λ + iμrð ÞR2,

ffiffiffiffi
Δ

p
∂r − iK

h i
R2 = λ − iμrð ÞR1,

Dθ −H½ �T1 = λ + μa cos θð ÞT2, Dθ +H½ �T2 = −λ + μa cos θð ÞT1,

ð27Þ

where λ is a separation constant.
The first-order angular equations may be combined to

obtain the so-called Chandrasekhar-Page angular equation
and have been discussed in detail in [41].

From the radial equations in (27), one gets the following
second-order differential equation for the R1 component:

ΔR1′′ + r −M −
iμΔ

λ + iμr

	 

R1′

+ i
ffiffiffiffi
Δ

p
K ′ + μK

ffiffiffiffi
Δ

p

λ + iμr
+ K2 − λ2 − μ2r2

" #
R1 = 0,

ð28Þ

and i→ −i, for R2.
Similar relations have been obtained in [22], by a differ-

ent approach, namely, using the Newman-Penrose formal-

ism. In the generalised Kinnersley frame, the null tetrad
has been constructed directly from the tangent vectors of
the principal null geodesics. Even though the radial and
angular equations coming from (27) have been reduced to
generalised Heun differential equations [18, 19], the solu-
tions are not physically transparent since they look quite
complicated and there are many open questions especially
related to their normalization or to the behavior around
the singular points.

However, for large values of the coordinate r, equation
(28), with K given in (24), reads

r2 1 − 2M
r

� �
R1′′ + M −

a2 +Q2

r

� �
R1′

+ −2iωr − iqQ + 2iΩr r −Mð Þ
r − 2M + Ω2r3

r − 2M − λ2 − μ2r2
	 


R1 = 0,

ð29Þ

with the notation

Ω = ω + qQ
r

+ a2

r2
ω −

m
a

� �
, ð30Þ

where one may identify the fermion’s quanta energy, ω, the
standard Coulomb energy, qQ/r, and the internal centrifugal
energy with the quantum resonant correction, i.e., ω −m/a.

To the first order in a, meaning a slowly rotating object,
for which

Ω ≈ ω + qQ
r

−
ma
r2

,

Ω2 ≈ ω + qQ
r

� �2
−
2ωma
r2

,
ð31Þ

the solutions of (29) are given in terms of the Heun confluent
functions [18, 19] as

R1 ~ eipr r − 2Mð Þ14+γ
2r

3
4
n
C1r

β
2HeunC α, β, γ, δ, η, r

2M
h i

+ C2 r
−β
2HeunC α,−β, γ, δ, η, r

2M
h io

,
ð32Þ

with the parameters written in the physical transparent
form as

α = 4ipM, β =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4 −

2ima
M

r
≈
3
2 −

2ima
3M ,

γ = 4iM Ω∗ +
i

4M

� �2
+ 3
64M2

" #1/2
≈ 4iMΩ∗,

δ = 8M2 ω ω + qQ
2M

� �
−
μ2

2

	 

, η = 5

8 − λ2,

ð33Þ
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where p2 = ω2 − μ2 and Ω∗ is the energy computed on the
Schwarzschild horizon, i.e.,

Ω∗ = ω + qQ
2M −

ma

4M2 : ð34Þ

The second component, R2, is given by the complex
conjugated expression of (32).

One may notice that, for Δ ≈ rðr − 2MÞ and ρ+ ≈ ρ− ≈ r,
the first component in ζ defined in (22) reads

ζ1 = eαx/2eimφe−iωt x − 1ð Þγ/2x±β/2HeunC α,±β, γ, δ, η, x½ �,
ð35Þ

with x = r/ð2MÞ.
Moreover, since jR1j2 = jR2j2, the modal radial current (of

quantum origin), computed as

jr = i�Ψγ3Ψ =Ψ†α3Ψ = ζ†σ3ζ − η†σ3η, ð36Þ

vanishes. The only nonvanishing component is the azimuthal
one, which is given by the expression

jφ = i�Ψγ2Ψ = Im eαx x − 1ð ÞγxβHeunC α, β, γ, δ, η, x½ �2
h i

T1T2

= x3/2Im

exp 4ipMx + 4iMΩ∗ ln x − 1ð Þ − 2ima

3M ln xð Þ
	 


� HeunC½ �2
�
T1T2:

ð37Þ
The current has the generic representation given in

Figure 1, for x > 1, i.e., r > 2M. One may notice the oscillating
behavior, with both positive and negative regions, vanishing
at infinity. Also, there is a dominant positive maximum, just
after the (Schwarzschild) horizon r = 2M of the slowly rotat-
ing black hole, where the Heun functions have a regular
singularity.

For the asymptotic behavior in the neighborhood of the
singular point at infinity, where the two solutions of the con-
fluent Heun equation exist, one may use the formula [24]

HeunC α, β, γ, δ, η, x½ � ≈D1x
− β+γ+2

2 +δ
α½ � +D2e

−αxx−
β+γ+2

2 −δ
α½ �

= e−
αx
2 x−

β+γ+2
2 D1e

αx
2 x−

δ
α +D2e

−αx
2 x

δ
α

n o
=De−

αx
2 x−

β+γ+2
2 sin −

iαx
2 + iδ

α
ln x + σ

	 

,

ð38Þ

so that the two independent solutions in (32) are given by the
simple expression

R1 =D sin pr + 2M
p

ω ω + qQ
2M

� �
−
μ2

2

	 

log r

2M
� �

+ σ

 �
,

ð39Þ

where σðωÞ is the phase shift, D = const, and p =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − μ2

p
.

Thus, the first component of Ψ defined in (19), (22), and
(25) has the following (physical) behavior for large r values:

ζ1 ≈
R1
r
ei mφ−ωtð ÞT1 θð Þ, ð40Þ

and similarly for the other three spinor’s component built
with (25).

Such analytical solutions of the radial part of the Dirac
equation, computed far from the black hole, are useful to
investigate the scattering of charged massive fermions.

3. The Massless Case

3.1. The Kerr Metric. In the particular case of massless fer-
mions, the Dirac equation can be solved exactly, with its solu-
tions being given by the Heun confluent functions [20]
(fermionic one-particle states in Kerr backgrounds have been
considered in [42]).

In view of the analysis presented in the previous section,
for μ = 0, the system (27) gets the simplified form:

ffiffiffiffi
Δ

p
∂r + iK0

h i
R1 = λR2,

ffiffiffiffi
Δ

p
∂r − iK0

h i
R2 = λR1,

Dθ −H½ �T1 = λT2, Dθ +H½ �T2 = −λT1,
ð41Þ

which firstly leads to the radial Teukolsky equations:

ΔRA′′ + r −Mð ÞRA′ + ±i
ffiffiffiffi
Δ

p
K0′ + K2

0 − λ2
h i

RA = 0, ð42Þ

where A = 1, 2, the prime denotes the derivative with respect
to r, and K0 can be written from (24) putting q = 0.

0.5

0.4

0.3

0.2

0.1

0

–0.1

–0.2

2 3 4

X

J

5 6

Figure 1: The radial part of the current (37), for x > 1.
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The corresponding solutions can be expressed in terms of
Heun confluent functions [18, 19] as

R1 = Δ1/4eαz/2 z − 1ð Þγ/2 ×
n
C1z

β/2HeunC α, β, γ, δ, η, z½ �
+C2z

−β/2HeunC α,−β, γ, δ, η, z½ �
o
,

ð43Þ

of variable

z = r − r−
r+ − r−

, ð44Þ

where r± =M ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
are the outer and inner horizons

and parameters

α = 2iω r+ − r−ð Þ, β = 1
2 + 2i

r+ − r−ð Þ 2ωMr− −mað Þ,

γ = −
1
2 + 2i

r+ − r−ð Þ 2ωMr+ −mað Þ, δ = ω 4Mω − ið Þ r+ − r−ð Þ,

η = ω 4Mω − ið Þr− − 2ω2a2 −
2a2

M2 − a2
ωa −

m
2

� �2
− λ2 + 3

8 :

ð45Þ

For the case under consideration with a <M, the two
horizons are real, while for an overspinning Kerr spacetime
with a >M, the quantities r+ and r− are complex. The solu-
tions to Heun’s confluent equations are computed as power
series expansions around the regular singular point z = 0,
i.e., r = r−. The series converges for z < 1, where the second
regular singularity is located. An analytic continuation of
the HeunC function is obtained by expanding the solution
around the regular singularity z = 1 (i.e., r = r+) and overlap-
ping the series.

For the polynomial form of the Heun functions, one has
to impose the necessary condition [18, 19]:

δ

α
= − n + 1 + β + γ

2

	 

, ð46Þ

which gives us the resonant frequencies associated with the
massless fermion.

In view of the parameters in (45), it turns out that only
the component multiplied by C1 gets a polynomial expres-
sion, with the energy ω having the real and imaginary parts
given by

ωR =
ma

r− r+ + r−ð Þ , ωI = n + 1
2

� �
r+ − r−

2r− r+ + r−ð Þ , ð47Þ

where m and n are the azimuthal and the principal quantum
numbers.

To the first order in a2/M2, the above expressions become

ωR ≈
m
a
, ωI ≈ n + 1

2

� �
M
a2

, ð48Þ

and they depend only on the BH parameters.
Next, for a polynomial which truncates at the order n,

once we set the n + 1 coefficient in the series expansion to
vanish, we get the separation constant λ expressed in terms
of the black hole’s parameters.

For the asymptotic behavior at infinity, one may use for-
mula (38) and expression (43) turns into the simplified form:

R1 ≈
Δ1/4

r
sin ωr + 2ωM −

i
2

� �
log r

2M
� �

+ σ

	 


≈
Δ1/4ffiffi

r
p exp i ωr + 2ωM log r

2M
� �

+ σ
h in o

,
ð49Þ

where σðωÞ is the phase shift.
In order to study the radiation emitted by the black hole,

one has to write down the wave function components near
the exterior horizon, r→ r+. Using (43), for z→ 1, the
(radial) components of Ψ defined in (19), (22), and (25)
can be written as

Ψout ~ e−iωt r − r+ð Þ i
r+−r− 2ωMr+−mað Þ: ð50Þ

By definition, the component ψout near the event horizon
should asymptotically have the form [24]

Ψout ~ r − rhð Þi/2κh ω−ωhð Þ, ð51Þ

and the scattering probability at the exterior event horizon
surface is given by

Γ = Ψout r > r+ð Þ
Ψout r < r+ð Þ
����

����
2
= exp −

2π
κh

ω − ωhð Þ
	 


: ð52Þ

In our case, using the explicit expressions

κh =
r+ − r−
4Mr+

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

2M M +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p� � , ωh =
ma
2Mr+

, ð53Þ

we get the Bose–Einstein distribution for the emitted particles:

N = Γ

1 − Γ
= 1
λeω/T − 1 , ð54Þ

with

T = κh
2π =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

4πM M +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p� � ð55Þ

λ = exp −2πωh

κh

	 

= exp −

4πma
r+ − r−

	 

: 56
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One may notice that the expression of the temperature
(55) agrees with the one obtained following the usual thermo-
dynamical procedure. Thus, by using the formula of the
entropy S = π½r2+ + a2�, with r+ =M +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, and a = J/

M, we express the mass in terms of the entropy as

M = r2+ + a2

2r+
= S

4π + πJ2

S

	 
1/2
ð57Þ

and compute the temperature on the event horizon as the fol-
lowing derivative:

T = ∂M
∂S

= S2 − 4π2 J2

4 ffiffiffi
π

p
S2

S

S2 + 4π2 J2

	 
1/2
= r2+ − a2

4πr+ r2+ + a2ð Þ

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p

4πMr+
:

ð58Þ
The corresponding heat capacity at constant angular

momentum, i.e.,

CJ = T
∂S
∂T

� �
J

= −
2S S4 − 16π4 J4
� �

S4 − 24π2 J2S2 − 48π4 J4

= 2π r2+ − a2
� �

r2+ + a2
� �2

3a4 + 6r2+a2 − r4+
,

ð59Þ

is positive for the following range of the parameter a/M:

2
ffiffiffi
3

p
− 3

h i1/2
< a
M

< 1, ð60Þ

for which the thermal system is stable on the event horizon.

For a slowly rotating black hole with a/M < ½2 ffiffiffi
3

p
− 3�1/2,

the heat capacity becomes negative, corresponding to a ther-
modynamically unstable phase.

A particular value of a/M where the Kerr–Newman
black hole undergoes a phase transition and the heat capac-
ity has an infinite discontinuity was found many years ago
by Davies [43].

Secondly, the angular equations coming from the system
(27), i.e.,

TA′′ + cot θTA′ + −
cot2θ
4 −

1
2 ∓H ′ −H2 + λ2

	 

TA = 0, ð61Þ

where prime means the derivative with respect to θ, for
ξ = cos θ, is the spheroidal Teukolsky equation. However,
for y = cos2ðθ/2Þ, the solutions are given by the Heun con-
fluent functions as

T1 = eωa cos θ cos θ

2

� �γ

C1 sin θ

2

� �β

HeunC α, β, γ, δ, η, y½ �
(

+C2 sin θ

2

� �−β
HeunC α,−β, γ, δ, η, y½ �

)
,

ð62Þ

and similarly for T2, with the real parameters

α = 4ωa, β =m + 1
2 , γ =m −

1
2 , δ = −2ωa,

η = 1 − 2mð Þωa − λ2 + m2

2 + 3
8 :

ð63Þ

As expected, for the given parameters of the black hole
ðM, aÞ, the Dirac solutions are enumerated by the half-
integer-positive multipole number m ± 1/2. Since β is not
an integer, the two functions in (62) form linearly indepen-
dent solutions of the confluent Heun differential equation.

Similar expressions have been obtained for the solutions
of the Klein-Gordon equation describing a charged massive
scalar field in the Kerr–Newman spacetime [24, 44].

Up to a normalization constant A, the first component of
Ψ defined in (19), (22), and (25) has the following behavior
for large r values:

Ψ1 ≈
A
r
exp i ωr + 2ωM log r

2M
� �

+ σ
h in o

ei mφ−ωtð ÞT1 θð Þ,
ð64Þ

while the other components can be easily built using the rela-
tions (25).

Let us notice that, by introducing the new coordinate
r∗ = r + 2M log ðr/2MÞ, the radial part of the above com-
ponent has the form obtained by Starobinsky, for the
Klein-Gordon equation in the Kerr metric [45], namely,

R ~ 1
r

Aeiωr∗ + Be−iωr∗
� �

, ð65Þ

where A and B are for the incident and reflected wave
coefficients, respectively.

3.2. The Extreme Kerr Metric. The extreme Kerr metric can
be easily written from (1), by setting the Kerr parameter a
equal to M, so that there is a single (degenerate) horizon at
r =M with zero Hawking temperature and horizon angular
velocity ΩH = 1/ð2MÞ. Thus, for the massless case, the radial
equation (42) has the same form, but with Δ = ðr −MÞ2 and

K0 =
mM − ω r2 +M2� �

r −M
: ð66Þ

The solutions are given by the Heun double confluent
functions [18, 19] as being

R1 ~ C1 exp −iω r −Mð Þ − ikM
r −M

	 

HeunD α, β, γ, δ, ζ½ �



+C2 exp iω r −Mð Þ + ikM
r −M

	 

HeunD −α, β, γ, δ, ζ½ �

�
,

ð67Þ
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with

k = 2M ω −
m
2M

� �
, ζ = r −M + i

ffiffiffiffiffiffiffiffiffiffiffiffi
kM/ω

p

r −M − i
ffiffiffiffiffiffiffiffiffiffiffiffi
kM/ω

p , ð68Þ

and the parameters

α = −8i
ffiffiffiffiffiffiffiffiffiffi
ωkM

p
, β = −32ωM

ffiffiffiffiffiffiffiffiffiffi
ωkM

p
+ 16ω2M2 − 4λ2,

γ = 2α, δ = −32ωM
ffiffiffiffiffiffiffiffiffiffi
ωkM

p
− 16ω2M2 + 4λ2:

ð69Þ

Usually, the double confluent Heun functions are
obtained from the confluent ones, through an additional con-
fluence process [18, 19].

One may notice that, for ωm =m/ð2MÞ and r =M, one
has to deal with the irregular singularities, at ζ = ±1. For
ω <m/ð2MÞ, the variable in (68) is real.

4. Conclusions

Since the pioneering works of Teukolsky [2] and Chandrase-
khar [5], the study of the solutions of the massive Dirac equa-
tion in the background of an electrically charged black hole
has a long history.

The method used in the present paper, while based on
Cartan’s formalism with an orthonormal base, is an alterna-
tive to the Newman-Penrose (NP) formalism [12], which is
usually employed for solving the Dirac equation describing
fermions in the vicinity of different types of black holes.

The solutions to the radial Teukolsky equations (42),
with two regular singularities at r = r± and an irregular singu-
larity at r =∞, have been written in the form of a series of
hypergeometric functions [4]. Similar expressions as the ones
in (43) have been found for the exact solutions of the Teu-
kolsky Master Equation for electromagnetic perturbations
of the Kerr metric [46] and in the study of bosons in a
Kerr-Sen black hole [47].

By imposing the necessary condition for a polynomial
form of the Heun confluent functions [18, 19], we get the res-
onant frequencies, which are of crucial importance for get-
ting information on the black holes interacting with
different quantum fields [24].

By identifying the out modes near the r+ horizon, one is
able to compute the scattering probability (52) and the
Bose–Einstein distribution of the emitted particles. For a =
0, we identify the expected Hawking black body radiation
and the Hawking temperature Th = 1/ð8πMÞ. It is worth
mentioning that, for computing the temperature on the event
horizon, we have used the analytical solutions of the Dirac
equation, expressed in terms of Heun functions, as an alter-
native method to the one usually employed in literature.
Expression (55) agrees with the one obtained in other works
devoted to the thermodynamics of the Kerr–Newman black
hole, for example, in [48, 49].

As avenues for further work, it will be interesting to fur-
ther investigate the connection between the asymptotic reso-
nant frequencies found in this work in the context of the

recent research on black hole quantization [39, 50]. In partic-
ular, it was shown in those works that the imaginary part of
the asymptotic resonant frequencies could further confirm
the Bekenstein conjecture [51, 52] of the quantization of
the area and entropy of the black holes. We intend to address
these issues in further work that will be published elsewhere.
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