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In Ethiopia, agricultural production and productivity are very low, and hence increase in production 
and productivity are vital to meet increasing food demand.  This study identifies and quantifies the 
main sources of productivity growth in Ethiopian agriculture using the translog (TL) stochastic input 
distance function and the Ethiopian Rural Household Survey (ERHS) panel dataset. The true fixed 
effects (TFE) panel data estimator is used to separate inefficiency effects from observed and 
unobserved heterogeneity. The parametric Malmquist productivity index (MPI) is used to decompose 
total agricultural growth into three major sources. The average technical efficiency score was 0.875; 
this finding indicates that on average a farmer produces 87.5% of the value of the output that is 
produced by the most efficient farmer using the same technology and inputs. This implies that they 
can reduce the inputs required to produce the average output by 12.5% if their farming operation 
becomes technically efficient. MPI shows that the average annual productivity growth was 17.9% 
between 1994 and 2009. Further decomposition of the index shows that scale efficiency change is the 
most important source of this growth, and accounts for about 14.5%. Technological improvement 
accounts for approximately 4.8% while the contribution of technical efficiency change is negative, 
leading to an annual productivity decline of 1.3%. This finding suggests that increasing productivity is 
possible via improving these components by improving training to the farmers, extension services, 
research and development, and agronomic practices.  
 
Keywords: Productivity growth, translog stochastic input distance function, Malmquist productivity index, 
Ethiopia. 

 
 
INTRODUCTION 
 
Ethiopia is the second most populated country (109.2 
million) in Africa, with the gross domestic product (GDP) 
of 84.4 billion USD, 7.6% GDP growth, 9.6% inflation, 
and 2.5% population growth as of 2018. Agriculture  is  a 

major economic activity in many developing countries. 
Ethiopia is no exception as it is predominantly an 
agrarian economy. Agriculture accounts for about 50% of 
GDP,  85%  of  employment,  70%  of  raw  materials  for
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industry, and 90% of foreign earnings. Agricultural 
production of crops and livestock are the main sources 
of income and employment for 70% of its rural 
population (World Bank, 2018a, b). The government 
aims to transform the economy of Ethiopia into a middle-
income country by 2025. Thus, agriculture is part of this 
transformation with substantial growth in production and 
productivity. The population grows fast while the amount 
of cultivable land remains constant to produce food and 
fiber to the growing population. Thus, improving 
productivity in the agricultural sector is an important step 
forward to meet food supply challenges and to generate 
more income in rural areas. Total factor productivity 
(TFP) change is an important notion in developing 
countries because it measures the ability of households, 
firms, industries, and national economies to enhance the 
aggregate volume of outputs given the aggregate volume 
of inputs used (Balk et al., 2019).  

Increasing agricultural productivity is one way to meet 
this growing demand. Improvements in agricultural 
productivity are also vital for economic development, 
especially in developing countries. In developing 
countries with low productivity, such as Ethiopia, there is 
limited surplus production over and above household 
consumption, which restricts market supply.  

To my knowledge, there are no rigorous empirical 
studies that investigate sources of productivity growth in 
Ethiopia. To assess low agricultural productivity, we 
need to identify and quantify the main sources of 
productivity growth. In the literature, the main 
components of productivity growth include technical 
change and efficiency change. Efficiency change can be 
further decomposed into technical, mix and scale 
efficiency change (O’Donnell, 2012). O’Donnell (2016) 
states that the total factor productivity (TFP) index can 
be theoretically decomposed into measures of 
environmental change, technical change and other 
sources of efficiency change (technical, mix (input and/or 
output), and scale efficiency change). Kumbhakar et al. 
(2015) argue that most of a company’s efficiency 
improvements come from technical efficiency 
improvements and technological improvements. 
Technical efficiency change means that the individual 
farmer moves closer to or further away from the boundary 
while technological improvement means that the set of 
feasible combinations expands or contracts (Balk, 2001). 
Scale efficiency measures the gap between constant and 
variable (increasing and decreasing) returns to scale.  
Therefore, scale efficiency change refers to the 
productivity growth that will arise because of a producer 
operating at a scale closer to the most productive scale 
size (MPSS) (Färe et al., 1994b). In comparison, mix 
efficiency is a measure of productivity change that arises 
when the input and/or output mix restrictions are relaxed, 
leading to an increase in the set of feasible input and/or 
output combinations (O’Donnell, 2012). 

 
 
 
 
In agriculture, the three main sources of productivity 
growth are technological improvement, technical 
efficiency improvement, and scale efficiency change. 
Some nomenclatures are: 
 

(1) Technical efficiency improvements essentially refer to 
increases in output-input ratios by reducing slack in the 
production process.  
(2) Technological improvements usually refer to the 
expansion of a set of production possibilities that result 
from increased knowledge.  
(3) Scale efficiency change refers to working at a scale 
level that is closer to the maximum productive scale size 
(Färe et al., 1994b). 
 

Policies that are designed to improve agricultural 
productivity can target these different components. Such 
policies that are designed to increase productivity through 
improvements in technical efficiency include education, 
training and extension programs. Policies that seek to 
improve productivity through technical progress include 
government support for investment in scientific research 
and development. Policies that assist farmers to operate 
a scale closer to the most productive scale size include 
relaxing restrictions on land ownership and transfer, 
recommending proper input and/or output combination 
based on orientation and returns to scale. For example, 
if a producer is operating at decreasing returns to scale, 
then the scale of production can be optimized by a 
reduction of input(s). 

There are limited empirical literatures measuring and 
decomposing productivity growth in Ethiopian agriculture. 
A summary of the various thematic strands of this 
empirical research are:  
 

(1) Productivity comparisons between farmers who use 
an extension package program and those who do not 
(Ayele et al., 2006), or ways in which productivity can 
reduce the poverty of smallholder farmers (Abro et al., 
2014). 
(2) Assess the impact of sustainable agricultural 
practices (minimum tillage) (Kassie et al., 2011), or the 
effects of soil and water conservation (Adgo et al., 2013) 
on crop productivity. 
(3) The effects of inefficiency as an explanatory variable 
on supply response using a profit function approach 
(Abrar and Morrissey 2006), and estimate and compare 
inefficiency from stochastic frontier analysis (SFA) with 
ordinary least square (OLS) during 1994 to 2004 
(Bachewe, 2009). This paper covers a longer time (1994 
-2009) than Bachewe (2009). 
 

Methodologically, these studies employed the Tornqvist 
index (Ayele et al., 2006), propensity score matching 
methods and a switching regression model (Kassie et 
al., 2011), a macroeconomic approach to the growth 
accounting    method   (Bachewe,   2012),   or  stochastic  



 

 

 
 
 
 
frontier analysis (SFA) (Abro et al., 2014; Bachewe, 
2009). Most previous studies did not include risk and 
animal products and employed deterministic approaches. 
Besides, the model specifications in the parametric SFA 
approach used by these studies do not separate 
technical inefficiency and unobserved heterogeneity. 
Consequently, technical inefficiency might be over-
estimated, and hence conclusions might be biased. 

Moreover, these studies do not decompose 
productivity growth into its components. They neither 
disaggregate of crop and livestock products nor use 
multiple-input multiple-output (MIMO) approaches. Only 
a few of these studies use panel data, and when they do, 
the panels span short periods. 

Finally, these few studies on productivity growth in 
Ethiopian agriculture are narrow in scope. Most of them 
only consider crop products, use cross-sectional data, 
shorter panel, and small sample sizes. 

In comparison, this study employs modern methods on 
a large panel data set that contributes to the literature in 
the following ways. First, a comprehensive understanding 
of the main components of productivity growth can help 
to make Ethiopian agricultural policy more focused. This 
study contributes to this end by investigating the sources 
of agricultural productivity growth in Ethiopia into three 
major components. Second, it includes the risk preference 
behavior of households in the production function. Third, 
it takes into account livestock products separately from 
crop products by using a multi-out procedure using 
distance function techniques to give equal attention to 
crop and animal products. Fourth, it uses a true fixed 
effects (TFE) model that enables one to separate 
observed and unobserved heterogeneity from inefficiency.  

Fifth, it simultaneously estimates production techno-
logy and inefficiency. Sixth, it employs a stochastic 
frontier approach with a longer panel. Last of all, it 
employs total agricultural productivity decomposition rather 
than the extant literature of partial agricultural productivity.  
 
 
METHODOLOGY  
 
This part discusses Input Distance Function (IDF), Malmquist 
Productivity Index (MPI), econometric specification of IDF, and 
data sources and collection precisely. 
 
 
Input distance function 
 
For a vector of inputs               and a vector of outputs,  
            , the multiple input-output production technology 
defined by T. The technology set T is defined as an input-output 
relationship given as follows: 
 

T  x can produce    (1) 

 
Where, is a vector of K inputs and 


is a vector of M 

outputs of non-negative real numbers. This technology can be 
consistently    represented     using    the    input   requirement    set 
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This input requirement set requires a 
technology that satisfies strong disposability

1
of inputs, and is 

closed and convex for all outputs (Coelli et al., 2005). The distance 
function measures the distance between a particular observation 


and the efficient technology boundary. Its value 

depends on a mapping rule, or a directional vector, which 
determines the direction in which the inputs are to be contracted 
and/or the outputs are to be expanded to reach this efficient 
boundary. The input distance function (IDF)    (   ) defined on the 
technology set given as: 
 

   (2) 
 

Where, λ is an input scaling factor by which the inputs can be 
contacted to make them technically efficient given the outputs. 
Concerning inputs, IDF   (   ) is non-decreasing, homogenous of 
degree one, and concave, whereas with respect to outputs, 
IDF  (   ) is non-increasing and quasi-concave (Färe and Primont, 
1990).  Further, IDF   (   )   when the input mix is feasible 
or   𝐿( ) , whereas IDF   (   )    when the input mix is 
infeasible or  𝐿( ). Therefore, for any feasible production mix, 
the technical efficiency (TE) is computed from IDF as: 
 

   
 

  (   )
                (3) 

 

Since, IDF   (   )    for any data points, then   𝑇    for any 
feasible observation. Both TE and IDF are equal to one when a 
household produces on the frontier for technically efficient 
households, and TE tends to zero as IDF tends to infinity for 
technically inefficient households.  

The IDF, following input-output vector (  
    

 ) , and the 

exogenous environmental variables,   
      

          
 is given as: 

  

  
 (  

    
 )   [(    

          
      

          
 )     

  𝑡]                                (4)  

 

 

    
   [(

    
 

    
        

    
 

    
      

          
 )      

  𝑡]    
 (  

    
 )                 (5) 

 

Following Orea (2002), F is a flexible translog (TL) technology 
proposed by Christensen et al. (1973).  It is a more general and 
flexible functional form than Cobb-Douglas (CD) model. The TL 
approximation to the input based distance function is given as: 
 

 (6) 

 
Where, 𝑙𝑛    

   𝑙𝑛    
  𝑙𝑛    

 , 𝑣    is the stochastic noise term,  is 

unobserved heterogeneity, and 𝑢    𝑙𝑛  
 (  

    
 ))  is a non- 

negative error term capturing time-varying inefficiency. There are k 

                                                            
1 The strong disposability assumption in inputs states that a proportional 

increase in inputs cannot decrease outputs (Färe et al., 1985; 1994a). 

 𝐼( ,  ) = max𝜆*𝜆  1:
 

𝜆
𝝐 𝐿( )+,  

 𝑙𝑛 𝑟,𝑖,𝑡
𝑡 =  𝑖   +      𝛽𝑘

𝐾 1

𝑘=1

𝑙𝑛 𝑖,𝑘
 𝑡  +  

1

2
  𝛽𝑘,𝑗

𝐾 1

𝐽=1

𝐾 1

𝑘=1

𝑙𝑛 𝑖,𝑘
 𝑡 𝑙𝑛 𝑖,𝑗

 𝑡  

                      +    𝜃𝑚 𝑙𝑛 𝑖,𝑚
𝑡

𝑀

𝑚=1

+  
1

2
  𝜃𝑚,𝑛

𝑀

𝑗=1

𝑙𝑛 𝑖,𝑚
𝑡 𝑙𝑛 𝑖,𝑛

𝑡

𝑀

𝑚=1

 

            +      𝜙𝑚,𝑘 𝑙𝑛 𝑖,𝑚
𝑡 𝑙𝑛 𝑖,𝑘

 𝑡

𝑀

𝑚=1

𝐾 1

𝑘=1

+ 𝛶1𝑡 +
1

2
𝛶2𝑡

2 

          +    𝜓𝑚 𝑡𝑙𝑛 𝑖,𝑚
𝑡

𝑀

𝑚=1

+  𝜂𝑘𝑡𝑙𝑛 𝑖,𝑘
 𝑡

𝐾 1

𝑘=1

 

           +      𝜉𝑝 𝑖,𝑞
𝑡

𝑃

𝑝=1

 𝑢𝑖,𝑡 + 𝑣𝑖,𝑡  
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inputs and m outputs. Homogeneity of degree one in input 
quantities implies that: 
 
∑ 𝛽 
 
            𝑛        ∑ 𝛽   

 
  ∑ 𝜙   

 
  ∑ 𝜂 

 
                    (7)  

 
Whereas, quadratic symmetry implies𝛽    𝛽      𝑛    𝜃    𝜃   . 

These restrictions are imposed before estimating IDF above by 
dividing the quantity of all inputs is divided by the quantity of oneof 
the inputs (Lovell et al., 1994). The method also allows the IDF to 
be estimated as it gives equation (6). Monotonicity requires all 
estimated IDF elasticities to satisfy the following conditions.  
 

       (8) 
 
Saal et al. (2007) noted that there are two features that the above 
IDF differs from the standard translog approximation: (1) The 
addition of q exogenous operating characteristics, whose impact 

on input requirements is captured in the term  ∑ 𝜉     
  

   . (2) The 

additional household-specific intercept instead of the single 
intercept parameter that is the heterogeneous household-specific 
  parameters. These fixed effects allow controlling further for 
factors influencing input requirements that have not been 
specifically controlled for in the model. 
 
 

Malmquist productivity index 
 
Caves et al. (1982a; b) demonstrate that the Malmquist (1953) 
index can be used to measure the growth in productivity that 
occurred between two periods based on a given reference 
technology. The reference technology can be represented by the 
technology of one of the periods, as constructed from the observed 
input-output data or by some combination of technologies from both 
periods. For example, Färe et al. (1992) defined the input-oriented 
MPI, MI

CCD
, as the geometric mean of the Malmquist productivity 

indices for two adjacent periods, t and t+1, as: 
 

𝑀 
   (               )  

𝑀 
 (               )  𝑀 

   (               )     (9) 
 

 
 
Where, (     )  and (         )  are input and output vectors that 

correspond to t and t+1 ,   
 ( ) and   

   ( ) are corresponding IDFs, 

and 𝑀 
 ( ) and 𝑀 

   ( ) are the respective Malmquist indices. It is 

possible to decompose the 𝑀 
   ( ) index into technical efficiency 

change (that is catching up the best practice frontier), and technical 
change (that is a shift in the best practice frontier) (Saal et al., 2007; 
Fuentes et al., 2001; Färe et al., 1992). As indicated in Coelli et al. 
(2005), technical efficiency change between two periods can be 
expressed as: 
 

𝑀 
 (               )  

  
 (     )

  
 (         )

 Δ  (               )  

     

   
                      (10) 

 
 
 
 
Given that   

 ( )> 1 for any feasibleinput-output mix, and   
 ( )<1for 

any infeasible input-output mix,𝑀 
   ( )can be less than ,equal to, 

or greater than one to indicate productivity progress, stagnation, or 
decline, respectively.  

This study follows that of Orea (2002), who suggested a 
parametric decomposition of the Malmquist productivity index that 
enables scale efficiency change to be introduced without computing 
scale efficiencies. For translog specifications, ODF (Orea, 2002) 
and IDF (Saal et al., 2007) defined the parametric MPI as the 
weighted difference between the average growth rates of output 
and inputs. Following Orea (2002) and Balk (2001) of an ODF, and 
Saal et al. (2007) and Pantzios et al. (2011) of an IDF, for a 
translog specification, the parametric MPI can be defined using 
distance elasticities with respect to inputs and outputs as weights. 
These weights are derived from estimated translog IDF elasticities 
with respect to outputs and inputs evaluated with data at time t and 
t+1 as 
  

 

 

Where,   
  

     
 ( )

     
  and   

  
     

 ( )

     
  indicate the output and input 

change weights evaluated at time t data, respectively, whereas 

  
    

     
   ( )

     
  and   

    
     

   ( )

     
  are evaluated at  time t+1 data 

points. The negative sign before the output change and input 
change indices are to ensure positive weights.   

The input weights sum to one because the IDF is homogenous of 
degree one in input quantities. However, the sum of the output 
weights does not equal one except under constant returns to scale. 
This implies that equation (11) violates the proportionality property 
that is required to satisfy to be a total factor productivity index (Orea, 
2002). This is because the elasticity of scale, that is returns to scale 
(RTS), is measured for the IDF representation of technology by the 
negative of the inverse of the sum of the output elasticities (Färe 
and Primont, 1995). 
  

              (12) 
 
To ensure that the proportionality property is satisfied, the study 
follows that of Orea (2002) and define the output weights as 
elasticity shares. From Orea (2002) and Saal et al. (2007), the 
generalized parametric MPI is given as: 
  

      (13) 

 
By rearranging Equation (13), Saal et al. (2007) showed that it is 
possible to write the generalized parametric MPI as: 

 

𝜕𝑙𝑛 𝐼
𝑡(. )

𝜕𝑙𝑛 𝑚
𝑡 = 𝜃𝑚 +  𝜃𝑚,𝑛

𝑀

𝑚=1

𝑙𝑛 𝑛
𝑡 +   𝜙𝑚,𝑘 𝑙𝑛 𝑖,𝑘

 𝑡

𝐾 1

𝑘=1

+ 𝜓𝑚 𝑡  0                        

  and  

𝜕𝑙𝑛 𝐼
𝑡(. )

𝜕𝑙𝑛 𝑘
 𝑡 = 𝛽𝑘 +  𝛽𝑘,𝑗

𝐾 1

𝑘=1

𝑙𝑛 𝑘,𝑗
 𝑡 +   𝜙𝑚,𝑘 𝑙𝑛 𝑚

𝑡

𝑀

𝑚=1

+ 𝜂𝑘𝑡  0          

        =  
 𝐼
𝑡( 𝑡 ,  𝑡)

 𝐼
𝑡( 𝑡+1,  𝑡+1)
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𝑡+1( 𝑡 ,  𝑡)
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𝑡+1( 𝑡+1,  𝑡+1)

 

1
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   , 

𝑙𝑛𝑀𝐼 =  
1

2
𝑀𝐼
𝑡  ,( 𝑚

𝑡+1 +  𝑚
𝑡 )(𝑙𝑛 𝑚

𝑡+1  𝑙𝑛 𝑚
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𝑀

𝑚=1

 

 
1

2
𝑀𝐼
𝑡 [( 𝑗

𝑡+1 +  𝑗
𝑡)(𝑙𝑛 𝑗
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𝐽
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𝐽
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  (14) 
 

Where, 𝑆   
  ((∑   

  
     ) ∑   

  
    )    𝑅𝑇𝑆   is an input 

distance scale factor and  𝑅𝑇𝑆  is the elasticity of scale at time t, as 
defined above. Thus, with constant returns to scale  𝑅𝑇𝑆   , 

𝑆  
   , and the generalized productivity index is equivalent to the 

Malmquist index. In contrast, with increasing (decreasing) returns to 

scale RTS>1 (RTS<1), and consequently𝑆  
   (𝑆  

   ), and the 
generalized productivity index captures the positive (negative) 
impact of change in scale on productivity growth, which are not 
captured by MPI.  

Orea (2002) used the quadratic identity (approximation) lemma of 
Diewert (1976) to decompose Equation 14 into the different 
components contributing to productivity growth. Following Diewert 
(ibid.), the quadratic identity lemma states that if F(s) is a quadratic 
function of its arguments, which is a vector of dimension R, then 

 (𝑆 )   (𝑆 )  ∑
 

 
 
   ,  (𝑠

 )    (𝑠
 )-,𝑠  𝑠 - . In this equation, 

the superscripts on s represent certain data points (for example 

specific years), and    
  

   
 . In addition,  (𝑆 ) and  (𝑆 ) represent 

the evaluation of    at two data points. Since the translog functional 
form is quadratic in the natural logarithms of its arguments, the 
difference between the evaluations of the IDF at two data points, 
which is a decomposition of total productivity growth, can be written 
as follows:  
 

      (15)  
    
As the input distance is the negative inverse of the input based 

technical efficiency, i.e., 𝑙𝑛  
  𝑙𝑛𝑇  

 , one can rewrite Equation 
14 as: 
    

       (16) 
 
Therefore, one can decompose Equation 14 into three sources of 
productivity growth: 
 

(1) Change in technical efficiency  𝑇  𝑙𝑛𝑇  
    𝑙𝑛𝑇  

  ,  

(2) technical change  𝑇    
 

 
,(𝜕𝑙𝑛  

   𝜕𝑡 )  (𝜕𝑙𝑛  
 𝜕𝑡 )-, and  

(3) Scale change 

 𝑆   
 

 
∑ ((  

   𝑆  
   )  (  

 𝑆  
 ))𝑙𝑛(  

     
  ) 

   .  

 

Technical changes are the derivatives of the IDF with respect to the 
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time trend evaluated with data at periods t and t+1. Thus, total 
factor productivity growth (TFPG

t,t+1
) is the sum of technical 

efficiency change (EC
t,t+1

), technical change (TC
t,t+1

), and scale 
change(SC

t,t+1
) between t and t+1 periods as: 

  
  

                           (17) 
 
 
Econometric specification 
 
This paper is studied based on the neoclassical production theory, 
which states that how producers transform inputs into outputs. In 
this production process, the producer is concerned with the 
management of inputs-efficiency. The theoretical basis for variable 
selection is whether the variable is a direct input in the production 
function, or it helps in the efficiency of the management of inputs 
or both, and data availability for both inputs in the production 
function and covariates in the inefficiency function.  

The translog IDF specified in Equation 6 was estimated using 
stochastic frontier analysis (SFA). The stochastic frontier 
production function framework independently introduced by Aigner 
et al. (1977), and Meeusen and Van den Broeck (1977) and latterly 
developed by Greene (2005a, b). The parametric SFA is employed 
to take account of the effect of measurement error and stochastic 
noise, and to test hypotheses on functional forms, parameters, and 
inefficiency (Coelli and Perelman, 1999; Pantzios et al., 2011). The 
Breusch-Pagan Lagrange multiplier (LM) was employed to test and 
check the presence of unobserved heterogeneity effects across 
households. Greene (2005a; b), the TFE and TRE models were 
chosen to separate time-varying technical inefficiency from unit-
specific time-invariant unobserved heterogeneity. The Hausman 
specification test allows for checking if the true fixed effect (TFE) 
or true random effect (TRE) model specification is more preferred. 
The TRE model is more efficient, but its parameter can be biased if 
the Hausman test rejects the null hypothesis of no correlation 
between unobserved heterogeneity and the regressors and/or the 
model error term. The result of this test then decides the TFE 
estimator rather than the TRE panel estimator. Both models permit 
time varying-inefficiency, control for observed and unobserved 
heterogeneity in addition to separating inefficiency from 
unobserved heterogeneity. However, they differ concerning the 
assumption that the correlation between the unobserved 
heterogeneity and the regressors and/or error of the model. The 
TFE allows the correlation between them unlike the TRE model 
(Greene, 2005a, b). The test suggests that TFE is more appropriate 
then TRE. Therefore, the TFE model is used in the estimation. 

Exogenous environmental variables     
  are included to account 

for observable factors affecting inefficiency beyond farmer’s 
decision. These models allow   varying across households to 
control for the unobserved heterogeneity. Both the maximum 
likelihood estimator (MLE) of the TFE model and the TRE model 
can consistently estimate the unobserved effect models without 
dropping time-invariant variables (for example geographical 
variables) (Belotti et al., 2013b) though the latter drops it in the 
error term. Moreover, as noted by Wang and Schmidt (2002), the 
parameters of the technology and inefficiency are estimated using 
MLE in one-step to avoid biases associated with the two-step 
approach.  

The decomposition of the residual random variable,    , into 
𝑣  and 𝑢  in the production function defines the stochastic 
production frontier, as first proposed by Aigner et al. (1977) and 
Meeusen and Van den Broeck (1977). 

Battese and Coelli (1995) assume that 𝑣   are iid with mean zero 

and variance   
 ,i.e., 𝑣  ~N (0, σv

2). The 𝑢  are independently 

distributed non-negative truncations of a normally distributed random  
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variable with mean    and variance   

 . The mean efficiency is  

            
 , where    

 is a vector of observed exogenous 

variables like household characteristics, farm characteristics and 
geographic-specific variables that affect efficiency, while    is a 

vector of unknown parameters  of  the  inefficiency  equation,  and    

are a household-specific unobserved effect. The 𝑣   and 𝑢  are 
distributed independently of one another, and independently of 

the    . Two additional parameters, 𝜆    
   

  ,  and    
  
 (  

    
  ), are estimated to test the significance of inefficiency in 

the model. This shows the proportion of the inefficiency to noise 
variations in the variance of the estimated model.   

 
 
Data sources and collection 

 
This study used the Ethiopia Rural Household Survey (ERHS) 
dataset. The ERHS is a longitudinal dataset gathered from rural 
Ethiopia. Addis Ababa University (AAU), the Centre for the study of 
Africa Economics (CSAE) at Oxford, and the International Food 
Policy Research Institute (IFPRI) collaboratively collected the 
dataset in 1994, 1999, 2004 and 2009 from 4 major regions of the 
country: Amhara, Oromia, Southern Nation Nationalities and 
Peoples (SNNP), and Tigray. These four regions of the nine 
administrative regions in Ethiopia account for approximately 86% 
of the Ethiopian population. The ERHS dataset covers many 
villages in rural Ethiopia, including 18 farmers’ associations (FAs), 
15 of the 389 woredas

2
 (districts), and 1,195 households. The 

surveys were conducted on a sample that is stratified over the 
country’s three major farming systems across five agro-ecological 
zones (AEZs) (Dercon and Hoddinott, 2004). The three main 
sedentary farming systems are plough-based cereal farming, 
mixed plough/hoe cereal farming, and enset (false banana) 
farming systems. Finally, an unbalanced panel of 4,194 
observations was created over four rounds. 

The northern highland AEZ includes two villages in the Tigray 
region, Geblen and Harresaw, and one in the Amhara region, 
Shumsheha. The northern highlands are characterized by poor 
resource endowments, adverse climatic conditions, and frequent 
drought.  

The central highland AEZ includes the villages of Dinki, Yetmen, 
and DebreBirhan, all located in the Amhara region, and Turufe 
Ketchema in the Oromia region.  

The Arussi/Bale AEZ includes the villages of Koro Degaga and 
Sirbana Godeti, both located in Oromia. Adele Keke is the sole 
survey site locatedin the Hararghe AEZ of Oromia.  

The remaining five villages of Imdibir, Aze Deboa, Gara Godo, 
Adado, and Doma are located in the enset-growing AEZ located in 
the SNNP region. Rainfall data from the National Meteorological 
Service Agency of Ethiopia are used.  

For the variables defined above, all monetary terms are adjusted 
based on the 1994 prices using producer price index. The outputs 
of Ethiopian agriculture are crop and livestock. Crop output is 
represented by the value of about 60 types of crops (for example 
teff, maize, wheat, barley, sorghum, coffee, chat, enset, legumes, 
vegetables, etc.) which are annual and perennial crops produced in 
that specific production year. Livestock output is represented by the 
value of more than 10 types of livestock products ( for example 
meat, live animals, hides, skins, butter, cheese, milk, chicken, eggs, 
dung cakes, etc.) produced in the given production year. Soil fertility 
is an index from one to three indicating 1 for relatively bad and 3 for 
the relatively fertile land.  

                                                            
2 Woreda is a governmental administrative unit within zones of a given region, 

which is equivalent to the district designation elsewhere. 

 
 
 
 
RESULTS AND DISCUSSION 
 

Estimation and results 
 

All variables were  normalized  by  their  geometric  mean 
prior to transforming them into logarithmic form (Table 1). 
Hence, the first order parameters of the variables can be 
interpreted as distance elasticities at the geometric 
mean

3
. The maximum likelihood estimator (MLE), as 

implemented in the SFPANEL module of STATA 13.1 
(Belotti et al., 2013a; b), is used to estimate the 
parameters in Equation 6. The translog production 
function is one of the flexible functional forms, but it is 
vulnerable to multicollinearity problems, is used. To 
proceed with a more parsimonious specification, I 
conducted various specification tests. As shown by test 
results reported in Table 2, restrictions for constant 
returns-to-scale technology, Cobb-Douglas technology 
specification, Hicks-neutral in input, joint restriction of 
Hicks neutral technology, no unobserved heterogeneity, 
no observed heterogeneity, time-invariant technical 
inefficiency, and truncated normal distribution for in 
efficiency are rejected at the 5%. However, scale neutral 
technology restriction cannot be rejected at the 5% level 
of significance. Hence, the non-restricted model of 
Equation 6 is estimated. The parameter estimates of the 
non-restricted model and truncated-normal distribution for 
technical inefficiency, which are estimated simultaneously, 
are reported in Table 3. The consequent computations of 
productivity growth (Tables 4 to 6) are based on this non-
restricted model specification. As shown in Table 2, there 
is statistically significant decay over time captured by 
parametereta. Hence, technical efficiency has declined 
over time. 
 
 
Parameter estimates 
 
The estimated parametric stochastic frontier input 
distance function is presented. As depicted in Table 3, 
the input distance function parameters for inputs and 
outputs have the expected signs and are statistically 
significant at the 5% level of significance. The coefficients 
from the translog technology input distance function are 
distance elasticities at the geometric mean. The 
estimated input distance elasticities are 0.205, 0.003, 
0.650, 0.006, 0.016 and 0.011 for labor, oxen, 
precipitation, seed, hoe and wealth, respectively. Modern 
inputs (for example seed), on average, contribute little 
and fertilizer does not lead to increased output. This 
reveals the extent to which Ethiopian agricultural 
production relies on conventional inputs (for example 
labor and precipitation) and explains why crop production  

                                                            
3All logged variables are divided by their geometric mean values before taking 

their logarithms. For the non-logged variable (that is the trend), the geometric 

mean value is subtracted from the observed values. 
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Table 1. Descriptive statistics of model variables. 

 

Variable Symbol Mean Std. Dev. Minimum Maximum 

Output variables      

Crop product (birr)    2950.54 4115.55 1.000 45821.48 

Livestock product (birr)    195.85 652.74 0.0001 14358.74 

      

Input variable      

Farm size (hectare)    1.56 1.29 0.01 10.9 

Labour (AE)    4.21 2.33 0.20 19.1 

Oxen (number)    0.81 1.10 0.00 11.00 

Precipitation (mm)    86.20 28.57 26.54 176.99 

Seed (birr)    321.93 835.27 0.00 13400 

Fertilizer (birr)    170.89 314.38 0.00 3782.37 

Hoe (number)    1.26 1.55 0.00 12.00 

Wealth (birr)     16506.78 39967.08 0.00 510947.90 

Soil fertility (index)     2.36 0.66 1.00 3.00 

      

Environmental variable      

Education (yes/no)     0.38 0.49 0.00 1.00 

Extension(yes/no)     0.32 0.46 0.00 1.00 

Market distance (minutes)     29.79 41.35 0.00 240.00 

Trend t(1=1994) 𝑡 1.46 1.09 1.00 4.00 
 

Source: by author’s computation. 
 
 
 

Table 2. Properties of the Ethiopian Farms’ Household Technology. 
 

Restriction Parametric Restriction Wald test statistics p-value 

Constant returns-to-scale technology     𝜃 

 

   

     𝑛    𝜙  

 

   

  𝜃  

 

   

   41979.44 0.000 

Cobb-Douglas technology H0: All interaction terms are equal to zero  4.3e+08 0.000 

Hicks neutral in inputs     𝜂  𝜂    𝜂        644.81 0.000 

Hicks neutral in outputs     𝜓  𝜓       5.23 0.073 

Hicks neutral in input and output/joint significance     𝜂  𝜂    𝜂   𝜓  𝜓       14050.77 0.000 

No unobserved heterogeneity      𝑟( 𝑢  )    11.01 0.000 

No observed heterogeneity     𝜉  𝜉    𝜉    84.93 0.000 

Inefficiency is constant  H0: eta = 0 31.86 0.000 

Truncated -normal distribution for technical 
inefficiency 

        3.69 0.050 

 

Source: by author’s computation. 
 
 
 

in Ethiopia is sensitive to changes in the level of 
traditional and natural input use. The empirical evidence 
from the literature indicates that the probability of 
adopting fertilizer and improved seeds decreases as farm 
size declines (Croppenstedt et al., 1999; Amaha, 1999; 
Demeke, 1999). Endale (2010) indicated that the high 
price of fertilizer is the major constraint for about 47.6% 
of the farmers followed by a supply shortage and late 
arrival of fertilizer. In the study period, about 49 percent 

of smallholder farmers use fertilizer and 39 percent 
according to CSA survey (CSA (Central Statistics Agency  
of Ethiopia) of varies years). 

As shown in Table 3, the input distance elasticity for 
wealth, which is a proxy variable for farmers’ risk 
preference behavior (0.011), is positive and significant at 
the 5% level. This shows that as farmers become 
wealthier or become less risk-averse, they tend to use a 
greater quantity of  inputs  and  hence  the input distance  



 

 

26          Afr. J. Agric. Res. 
 
 
 
Table 3. Parameter estimates of the unrestricted Translog input distance function, 1994-2009. 
 

Variable First-orders lnx2 lnx3 lnx5 lnx6 lnx7 lnx8 lnx9 lnx10 lny1 lny2 t 

Constant  -1.171***(0.106)            

lnx2 0.205***(0.008) 0.167***(0.009)           

lnx3 0.003*(0.002) -0.001 (0.003) -0.010**(0.005)          

lnx5 0.650***(0.013) -0.126*** (0.016) 0.007***(0.002) 0.138***(0.020)         

lnx6 0.006***(0.002) -0.000 (0.002) -0.000 (0.000) -0.002(0.002) 0.001**(0.001)        

lnx7 -0.001(0.001) -0.002   (0.003) -0.000   (0.000) 0.001    (0.002) -0.000 (0.000) -0.001(0.002)       

lnx8 0.016**(0.006) -0.002 (0.001) -0.000 (0.000) -0.005*  (0.003) 0.000  (0.000) 0.000 (0.000) 0.007*(0.004)      

lnx9 0.011*** 0.004) -0.005 (0.009) 0.000(0.001) 0.004  (0.009) -0.000 (0.000) -0.000 (0.000) 0.002***(0.001) (0.001)     

lnx10 -0.038(0.026) -0.009 (0.034) 0.002(0.005) -0.004  (0.031) -0.000 (0.006) 0.002   (0.003) -0.001 (0.006) -0.001(0.003) -0.044(0.097)    

lny1 -0.029***(0.011) 0.003 (0.009) -0.001(0.002) 0.005 (0.011) -0.000 (0.000) 0.001   (0.001) -0.000(0.001) -0.000(0.004) 0.021(0.028) -0.005(0.009)   

lny2 -0.001(0.001) -0.001   (0.002) 0.000  (0.000) 0.003***(0.001) -0.000 (0.000) -0.000   (0.000) 0.000   (0.000) 0.001**(0.000) -0.003  (0.002) 0.001 (0.001) 0.000(0.001)  

t 0.038***(0.005) 0.055***(0.012) -0.002  (0.001) -0.045*** (0.012) 0.002 (0.001) 0.002*(0.001) 0.000(0.002) 0.002(0.004) -0.059***(0.017)   0.032**(0.012) 

           

Inefficiency determinants -Z-variables           

x11 -0.104(0.079)            

x12 -0.035(0.090)            

x13 0.001*(0.001)            

Sigma 

(u)    
  

0.460***(0.014)            

Sigma(v)

:   
  

0.000***(0.000)            

Lambda: 𝜆  
  
 

  
  

5545.03*** 

(0.014) 
 Gamma:  

  
 

  
    

  =0.999  Log-likelihood function =3754.74   

 

Significance codes: *** significant at the 1% level; **significant at the 5% level; * significant at the 10% level; robust standard errors reported in parentheses. Source: author’s computations. 
 
 
 
increases. Farmers’ input allocation to each 
enterprise shows their risk preference behavior 
(Berbel, 1990). My basic premise is that farmers 
act rationally. Salimonu and Falusi (2007) argue 
that farmers’ risk preference behavior affects 
enterprise selection, and thus input use and 
allocation pattern. Findings from the empirical 
literature suggest that absolute risk aversion 
decreases with wealth (Laffont, 1989; Arrow, 
1965; Pratt, 1964), with income (Vickrey, 1945), 
and with endowment  (Guiso  and  Paiella, 2008). 

The  findings are in line with those of Collier and 
Gunning (1999), that is that farmers in developing 
countries tend to focus on low risk-low return 
activities. Since the pioneering work of Arrow 
(1965), who demonstrates the relationship 
between risk aversion and wealth, a growing 
body of literature has suggested individual risk 
attitudes are correlated with their wealth (Bucciol 
and Miniaci, 2011; Dohmen et al., 2011; Wik et al. 
2004; Saha et al. 1994); with their constraint sets, 
such as  access  to  credit,  marketing,  extension 

(Binswanger, 1980); with farm size, technology, 
wealth, or other personal traits (Lybbert and Just, 
2007); and with fertilizer use (Holden and 
Westberg, 2016; McIntosh et al., 2013; Hagos 
and Holden, 2011).  

The input distance elasticities for labor show 
approximately 20.5%, indicating that Ethiopian 
agricultural production technology is labor-
intensive. This finding is not surprising given that 
85% of the population depends on agriculture. As 
expected,  the  crop  output  elasticity  (-0.029)  is 
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Table 4. Technical efficiency and total factor productivity growth of Ethiopian Farm Households, 1994–2009. 
 

Year 
Technical 
efficiency 

Technical 
efficiency change 

Technical 
change 

Scale efficiency 
change 

Total factor  
productivity growth 

1994 0.890 - - - - 

1999 0.891 0.004 0.017 0.765 0.785 

2004 0.864 -0.028 0.048 -0.090 -0.070 

2009 0.855 -0.015 0.080 -0.253 -0.190 

Average  0.875 -0.013 0.048 0.145 0.179 

Cumulative  -0.039 0.145 0.422 0.525 
 

Source: by author’s computation. 

 
 
 

Table 5. Technical Efficiency and total factor productivity Growth of Ethiopian farm households across agro-ecological zones 
(AEZs). 
 

AEZ 
Technical 
efficiency 

Efficiency 

change 

Technical 
change 

Scale 

efficiency change 

Total factor 

productivity growth 

Northern highlands 0.884 -0.009 0.045 -0.060 -0.024 

Enset, hoe 0.872 0.017 0.048 0.648 0.713 

Hararghe, oxen 0.853 -0.052 0.048 0.191 0.187 

Arussi-Bale        0.877 -0.017 0.048 -1.084 -1.053 

Central highlands 0.880 -0.036 0.048 0.193 0.205 

Average        0.875 -0.013 0.048 0.145 0.179 
 

Source: by author’s computation. 
 
 
 

Table 6. Technical Efficiency and total factor productivity growth of Ethiopian farm households across regions. 
 

Region 
Technical 
efficiency 

Efficiency 

change 

Technical 
change 

Scale 

efficiency change 

Total factor 

productivity growth 

Tigray 0.863 -0.023 0.040 -0.293 -0.275 

Amhara 0.898 -0.011 0.048 0.161 0.199 

Oromia 0.857 -0.050 0.048 -0.379 -0.381 

SNNP        0.871 0.017 0.048 0.648 0.713 

Average        0.875 -0.013 0.048 0.145 0.179 
 

Source: by author’s computation. 

 
 
 
negative and significantly different from zero at the 1% 
level. The negative value for output elasticity suggests 
that input distance decreases as output increases, that is 
the required input set to produce a given level of output 
decreases. The coefficient for trend variable (0.038) is 
positive and significant at the 1% level, indicating that 
the input requirement set of producing a given level of 
output expands if the trend variable increases. Additional 
factors that change over time, but that are not controlled 
for in the model are reflected by the trend variable. 

As previously mentioned, the estimated input distance 
function is  non-decreasing  in  input  quantities  and non-

increasing in output quantities. Hence, it satisfies the 
monotonicity property of agricultural production 
technology at the point of normalization.  However, as 
stated in Orea (2002), monotonicity with respect to the 
inputs of the output distance function has to be satisfied 
at all data points to avoid biased estimates of scale 
efficiency change. Likewise, the input distance function 
must be monotonous with respect to outputs at all data 
points. However, the translog function does not satisfy 
monotonicity globally (Orea, 2002). Hence, the estimated 
scale effects might be biased at those data points where 
monotonicity with respect  to  outputs  is  violated.  In  this  
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case, I find that the percentages of violations with respect 
to inputs range from 0 to 45% of the observations. The 
violations with respect to crop product and animal 
products are 21 and 52% of the observations, 
respectively

5 . 
To evaluate the effect of violations 

concerning crop and animal outputs on scale elasticity, I 
calculated the average scale elasticity (returns-to-
scale/RTS) for all observations, and only for those 
observations that satisfy monotonicity with respect to 
both outputs. I find that the violations concerning crop 
output have a negligible impact on the scale elasticity 
estimate. Scale effects are also the most important 
source of agricultural productivity growth. The average 
scale elasticity (returns-to-scale) is -0.14, suggesting 
decreasing returns to scale. On average, the producers 
are operating at decreasing returns to scale. Hence, the 
scale of production can be optimized by the reduction of 
input(s) to produce a given level of production. The 
Eigen-value decomposition of the Hessian matrix supports 
this finding as that the curvature properties are violated at 
the geometric mean. Sauer et al. (2006) argue that 
violations of theoretical conditions are common in flexible 
functional forms, partly because of the tradeoff between 
flexibility and theoretical consistency. 
 
 
Technical efficiency 
 
Given the estimated true fixed effects, time-varying 
technical efficiency scores of each farm household are 
obtained from the composite error term using the 
conditional expectation predictor of Jondrow et al. (1982). 
The inefficiency parameters are statistically significant 
with the expected signs. Again, the positive or negative 
signs of the parameters for these z-variables indicate that 
technical inefficiency has increased or decreased, 
respectively. Of the three z-variables controlled, the 
market distance measured in minutes affects inefficiency 
positively and significantly. The parameter estimates of 
gamma (γ= 0.99) in Table 3 indicates the share of 
technical inefficiency in the total error variance. The 
higher value is a measure of the suitability of the frontier 
approach compared with the least squares approach. 
Technical inefficiency accounts for approximately 99% of 
the total variability in output. The parameter estimates the 
lambda (λ= 5545.03), which measures the proportion of 
variance due to inefficiency as compared to statistical 
noise, which is many times fold than inefficiency, and it is 
statistically significant. The average technical efficiency 
score is 0.875, with a standard deviation of 0.13. This 
finding indicates that the average farmer produces 
87.5% of the value of the output that is produced  by  the  

                                                            
5The percentages of violations with respect to inputs are 0.0% for precipitation, 

0.6% for farm size, 5.7% for labor, 17.6% for wealth, 23.4% for seed, 34.6 for 

hoe, 45.2 for ox and 51.5 % for fertilizer.  

 
 
 
 
most efficient farmer using the same technology and 
inputs. This estimate is in line with the average 
agricultural efficiency score in China (88.4%), as 
reported by Yu et al. (2014) for the 1978 to 2010 period. 
Similar to Chinese farmers, Ethiopian farmers can 
improve their technical efficiency by fully utilizing existing 
inputs and technology. They can reduce the inputs 
required to produce the average output by 12.5% if their 
farming operation becomes technically efficient. 

 
 
Agricultural productivity growth and its sources 

 
The total factor productivity growth rates (TFP) during 
the study period and its decomposition into three main 
components are presented in Table 4. The TFP is 
decomposed into technical efficiency change, technical 
change, and scale efficiency change. The results show 
that overall productivity growth is positive, and both scale 
efficiency change and technical improvement contribute 
positively while technical efficiency change contributes 
negatively. 

As shown in Table 4, the average technical efficiency 
score drops from approximately 89.0% in 1994 to 85.5% 
at the end of the study period. The temporal decline in 
technical efficiency can partly be explained by the 
household decision on how to use limited inputs like 
fertilizers and improved seeds, risk preference behavior 
of the household, fragmented and small farm size, and 
the learning curve related to optimally using improved 
technologies. 

In addition, the average technical efficiency was 89.0, 
89.1, 86.4 and 85.5% in 1994, 1999, 2004 and 2009, 
respectively. These figures indicate that households have 
significant room for improvement in their farming 
practices over these periods compared with the best 
performers in the agricultural sector. I report the average 
and cumulative productivity growth during the 1994 to 
2009 period.  

The productivity decomposition in Table 4 shows that 
the productivity increase over time is mainly driven by 
scale efficiency change and technical change. Moreover, 
my results suggest that households were somehow 
approaching the most productive scale size in 1999. 
During the study period, productivity increased by 14.5% 
due to scale effects and 4.8% due to technical change. 
However, productivity decreased by 1.3% due to 
technical efficiency change, which was negative except 
in 1999. The scale efficiency change was 76.5% in 1999; 
it declined to -9.0% in 2004 and -25.3% in 2009. 
Unexpectedly, the scale effects show the inverse 
relationship between farm size and agricultural 
productivity. The cumulative productivity growth due to 
scale efficiency effect and technical change was 42.2% 
and 14.5%, respectively positive and far greater than 
that due to efficiency change. 



 

 

 
 
 
 

The estimates are in line with the components of 
average productivity growth in agriculture reported for 
many other developing countries. Belloumi and Salah 
(2009) reported similar agricultural productivity growth 
rates (1%) from 1970-2000 in the Middle East and North 
African countries (Algeria, Egypt, Iran, Iraq, Israel, 
Jordan, Lebanon, Libya, Mauritania, Morocco, Saudi 
Arabia, Sudan, Syria, Tunisia, Turkey and Yemen). 
Similarly, Yu et al. (2014) reported an annual agricultural 
productivity growth of 2% for China from 1978-2010. 
Moreover, Belloumi and Salah (2009) concluded that 
technical change is the main source of productivity 
growth in the Middle East and North Africa. However, 
Fuglie and Wang (2012) reported that long-run TFP 
growth was below 1% per year in sub-Saharan Africa 
during the 1961 to 2009 period. 

However, my results are much lower than  the Fulginiti 
and Perrin (1998) findings for Turkey, Chile, Dominican 
Republic, Egypt, Portugal, Malaysia and Sri Lanka, 
during the 1961-1985 period; technical change ranges 
from 92.5% (Korea) to 100.9% (Egypt) and, efficiency 
change ranges from 97.3% (Thailand) to 103.3% 
(Dominican Republic) using output-based Malmquist 
index and a parametric Cobb-Douglas production 
functions). 

With reasonable confidence, I thus conclude that scale 
efficiency and technical improvement contributes to 
productivity growth more than technical efficiency 
improvement.   This result implies that there are many 
opportunities to increase production through technical 
efficiency, technological and scale efficiency 
improvements.  

In Table 5, the further decomposition of productivity 
shows that technical inefficiency is somehow different 
across regions and AEZs. For example, the Central and 
the Northern highlands, and Arrusi/Bale AEZs have 
higher technical efficiency and above the overall national 
average. The enset-growing AEZ has technical efficiency 
slightly below the national average. The Hararghe AEZ 
has the lowest technical efficiency and it is below the 
national average. This is because precipitation is an 
important factor in this rain-fed agriculture, more 
specifically Hararghe relatively dry region and enset-
growing AEZ is a relatively wet region of the country.  
Technical change is almost similar across AEZs and 
regions except for small variation in Tigray region and 
Northern highlands. This suggests that farmers use 
similar farming technologies. 

Table 6 presents regional productivity decomposition, 
showing that the SNNP and Amhara regions are slightly 
more technically efficient and above the national 
average; and Oromia and Tigray are slightly less efficient 
and below the national average. Similarly, SNNP and 
Amhara regions show more productivity growth than the 
Oromia and Tigray regions. This is because scale 
efficiency  and   efficiency  change  contribute  to  SNNP,  
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while only scale efficiency change contributes to Amhara 
region. 

Agricultural production is not only a function of 
biophysical endowments but also a result of socio-
economic conditions and the policy environment, which 
includes the availability of labor, the demand for food, the 
infrastructure between farms, and the presence of input 
and output markets (Chamberlin and Schmidt, 2011). The 
negative productivity growth in 2004 and 2009 is probably 
linked to the following factors. First, the Eritrean-
Ethiopian war in 2000 increased the average military 
spending to GDP ratio from approximately 2.7 to 8.5%, 
spending that otherwise most likely would have been 
used in the agricultural sector to enhance input and credit 
supply during this period. Second, the Ethiopian 
government launched the National Extension 
Intensification Program (NEIP) in 1995, adopting 
methods originally introduced by Sasakawa Global 2000 
(SG2000, 1995), with the intent of enhancing the 
availability of inputs and access to credit. Here, we note 
that the reach of and funding for the NEIP was 
subsequently reduced, and SG2000 abandoned its 
extension program in 2000. Finally, argumentative and 
unsettled national issues, such as land ownership and 
economic development; the institutional and constitutional 
structure of the Ethiopian state; and equality of ethnic and 
religious communities, were brought to the forefront more 
specifically during and after the 2005 election that have 
not been yet resolved. 
 
 
CONCLUSION AND POLICY IMPLICATIONS 
 
Currently, the Ethiopian population is growing quickly, 
and natural resource stocks are depleting rapidly. 
Hence, improving agricultural productivity becomes 
increasingly important for several reasons: to increase 
agricultural production for home consumption and the 
market, to supply labor to other sectors, to conserve the 
environment, and to improve standards of living and 
thereby foster economic development. Future 
productivity growth in agriculture is also necessary to 
satisfy the increasing demand for food, fiber, fodder, and 
bio-energy, to contribute environmental conservation, 
and to bring Ethiopians to middle-income country in 
2025.  

Advances in agricultural productivity are also vital for 
economic development in developing countries. In 
developing countries with low productivity, such as 
Ethiopia, there is limited surplus production over and 
above household consumption, restricting the supply to 
the market. As a result, a large share of the population 
continues to participate in farming activities. For 
instance, in Ethiopia, 85% of the population farms, but 
these farmers cannot meet home consumption and 
domestic demands, mainly  because  of  low  agricultural  
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productivity. By contrast, in the developed countries with 
high agricultural productivity, a greater share of the 
produced quantity reaches formal markets. A small 
share of their population engages in farming, but these 
farmers manage to meet their domestic and export 
demands because of high productivity and efficiency. 
Because of this, more of the labor force is available for 
other sectors of the economy, such as services and 
manufacturing, which enables the overall economy to 
grow faster by increased demand for products from 
agriculture and other sectors.  

Ethiopian farmers in particular and farmers in 
developing countries, in general, have an objective 
function of input contraction. Hence, the input distance 
function and decomposed TFP into scale efficiency  
change, technological change and efficiency change was 
estimated using the Malmquist productivity decomposition 
index.  

The overall average technical efficiency score has been 
approximately 87.5%; this indicates that an average 
farmer produces 87.5% of the value of the output 
produced by the most efficient farmer using the same 
technology and inputs. In other words, farm households 
can reduce the inputs required to produce the average 
output by 12.5% if their farming operation becomes 
technically efficient. This implies that households have 
significant room to improve their farming efficiency and 
become close to the best performers in the agricultural 
sector. 

On average, total factor agricultural productivity growth 
was estimated at about 17.9% during the study period. 
From this, agricultural productivity growth due to scale 
efficiency change, technical change, and efficiency 
change was approximately 14.5%, 4.8%, and -1.3, 
respectively. The first two components were the primary 
annual productivity growth during this period and unlikely 
there was a decline in efficiency change. Notably, 
according to my estimates, nearly all the agricultural 
productivity growth in Ethiopia is due to scale efficiency 
and technical change. This indicates that technical 
efficiency improvement becomes the main sources of 
productivity growth in the future.   

Under the current production practices, and with such 
small and fragmented farm size, it is critical to fulfilling 
home consumption, domestic market demand, and allows 
people to leave agriculture for other jobs. However, 
narrowing the gap is possible by increasing productivity 
via technical change, scale efficiency change, and 
technical efficiency change through improving training to 
the farmer, extension services, research and development, 
and agronomic practices.  

Scale efficiency effect and technological improvements 
are important sources of productivity growth in Ethiopian 
agriculture. The results suggest that scale efficiency 
change and technical change, not technical efficiency 
change, have been major sources of productivity  growth  

 
 
 
 
in Ethiopian households during the study period. The 
average efficiency change decreases over the study 
period. There are also many opportunities to increase 
productivity by improving technical efficiency, which 
implies that there are many opportunities to increase 
production via efficiency improvements. First, smallholder 
farmers are technically inefficient. Technical efficiency 
improvement could be enhanced by improving farmer’s 
education, training, and extension services that could 
reduce mistakes and encourage developing skills. The 
technical change could be enhanced through improved 
technologies (like an improved seed, fertilizer, irrigation, 
tractor, combiner, amongst other technologies) that must 
be introduced to improve the productivity of Ethiopian 
agriculture. Research and extension services should 
generate and promote appropriate technologies to boost 
the productivity of agricultural production systems, 
including improved farm implements, high-yielding 
varieties, better credit systems, better fertilizer application 
and usage, enhanced extension services, better 
irrigation facilities, and improved infrastructure. It is 
possible to increase the scale efficiency by scaling up 
best agronomic practices such as fertilizer application 
(amount, time and rate), seed rate, weeding, ploughing 
and pest, and disease management. These enable the 
farmer to produce at a scale closer to the maximum 
productive scale size. To sum up, my findings suggest 
that scale efficiency, technological and technical 
efficiency improvements are the three most important 
areas to consider in increasing productivity growth in 
Ethiopian agriculture.  
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