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Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities occur in many situations in
Nature and technology from astrophysical to atomic scales, including stellar evolution,
oceanic flows, plasma fusion, and scramjets. While RT and RM instabilities are sister
phenomena, a link of RT-to-RM dynamics requires better understanding. This work
focuses on the long-standing problem of RTI/RMI induced by accelerations, which
vary as inverse-quadratic power-laws in time, and on RT/RM flows, which are three-
dimensional, spatially extended and periodic in the plane normal to the acceleration
direction. We apply group theory to obtain solutions for the early-time linear and late-
time nonlinear dynamics of RT/RM coherent structure of bubbles and spikes, and
investigate the dependence of the solutions on the acceleration’s parameters and initial
conditions. We find that the dynamics is of RT type for strong accelerations and is of RM
type for weak accelerations, and identify the effects of the acceleration’s strength and the
fluid density ratio on RT-to-RM transition. While for given problem parameters the early-
time dynamics is uniquely defined, the solutions for the late-time dynamics form a
continuous family parameterised by the interfacial shear and include special solutions
for RT/RM bubbles/spikes. Our theory achieves good agreement with available
observations. We elaborate benchmarks that can be used in future research and in
design of experiments and simulations, and that can serve for better understanding of RT/
RM relevant processes in Nature and technology.

Keywords: rayleigh-taylor instability, richtmyer-meshkov instability, coherent structures, interfacial dynamics,
variable acceleration

1 INTRODUCTION

Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities and RT/RM interfacial mixing are
fluid dynamics phenomena controlling a broad range of processes in nature and technology, at
celestial and at molecular scales, in high and in low energy density regimes [1–6]. Examples include
the abundance of chemical elements in supernova remnants, the magneto-spherical structure of
Jupiter and Saturn, the coastal up-welling along the eastern boundary of oceans, the formation of hot
spots in inertial confinement fusion, material transformations under high strain rates, nano-
fabrication, and fossil fuel extraction [5–15]. RT/RM instabilities develop when fluids of
different densities are accelerated against their density gradients [1–4]. The case of constant
acceleration is referred as classical RT instability (RTI), whereas the case of shock induced
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impulsive acceleration is referred as classical Richtmyer-Meshkov
instability (RMI) [1–4, 6]. In realistic environments, accelerations
are often variable and are power-law functions of time [8–18]. In
the work we present the first detailed investigation of RTI/RMI
induced by an acceleration being an inverse-quadratic power-law
function of time in a three-dimensional flow. We apply group
theory to find solutions for the early-time linear and the late-time
nonlinear scale-dependent RT/RM dynamics, explore properties
of RT-to-RM transition, compare with existing observations
achieving good agreement, and elaborate theory benchmarks
for future experiments and simulations.

RT/RM flows, while occurring in vastly different physical
circumstances, have similar features of their evolution [6–8,
17–19]. The instabilities start to develop when the fluid
interface (and/or the flow fields) is (are) slightly perturbed
near the equilibrium state. With time, the interface is
transformed to a composition of a large-scale structure and
small-scale structures [1–4, 6–8]. The large-scale structure
consists of bubbles and spikes, with a bubble (spike) being a
portion of the light (heavy) fluid penetrating the heavy (light)
fluid; it’s dynamics is coherent and depends on deterministic
initial conditions [1–4, 6–8, 18, 19]. Small-scale vortical
structures are produced by the interfacial shear and Kelvin-
Helmoholtz instability; their dynamics can be irregular [6–8,
17–19]. As time evolves, the interaction of scales enhances and
the flow transitions to a stage of intense interfacial mixing [6–8].
The mixing is believed to be scale-invariant, with the amplitude of
the interface perturbation increasing self-similarly in time [18].
Note that in shock-induced RM flows, the interfacial dynamics is
superposed with the background motion of the fluids, and with
the appearance of small-scale non-uniform structures in the bulk,
including, e.g., cumulative jets, hot and cold spots, high and low
pressure regions [8, 20]. While, depending on the flow Mach and
Atwood numbers and the adiabatic indexes of the fluids, the
background motion can be sub/super/hyper-sonic, the interfacial
dynamics is usually sub-sonic and is nearly incompressible in a
broad range of parameters and conditions [8, 20–22].

Non-equilibrium RT/RM dynamics is challenging to study
[5–8, 17–19]. In experiment, the challenges are due to the
sensitive and transient character of RTI/RMI, and the
unusually tight requirements on the flow implementation and
control [23–28]. Simulations must accurately track interfaces and
capture small-scale processes, as well as apply highly accurate
methods, massive computations and a large span of spatial and
temporal scales [29–33]. In theory, one has to capture the multi-
scale, nonlinear and non-local dynamics, identify universal
properties of asymptotic solutions, and find symmetries and
order in the unstable RT/RM flows [6–8, 34–41]. Remarkable
success has recently been achieved in the understanding of the
fundamentals of RTI/RMI and of RT/RM mixing [6–8].
Particularly, group theory has enabled the systematic study of
RTI/RMI and RT/RM mixing and explained experimental
observations in a broad range of parameters and conditions
[6–8, 18, 23–28].

Having been formulated in mid-1990s, group theory approach
identifies key properties of RT/RM unstable interfaces, establishes
invariant measures and coherence of RT/RM dynamics, and

provides with bias-free interpretations of experiments and
simulations [6–8, 18, 23–28, 42, 43]. For instance, for the
classical RT/RM dynamics, group theory finds that three-
dimensional RT/RM flows keep isotropy in the plane normal
to the acceleration, the dimensional crossover is discontinuous,
and the nonlinear dynamics is essentially interfacial and multi-
scale [6, 43]. While in the linear regime RT/RM dynamics is
uniquely defined by the length-scale of the initial perturbation,
the nonlinear RT/RM solutions both form continuous families
with the number of the family parameters set by flow symmetries
[42–44]. Yet, the shape of nonlinear RT bubble is curved because
it moves steady, and that of RM bubble is flattened because it
decelerates. These results achieved excellent agreement with
experiments and simulations [6, 7, 18, 20, 24, 43–45]. Group
theory approach further finds that the invariant, correlation,
scaling and spectral properties of RT mixing depart
substantially from those of canonical turbulence, and that RT
mixing with constant acceleration keeps order even at high
Reynolds numbers, ∼ 3.2x106. This explained the experiments
in fluids and plasmas [6–8, 18, 23, 24, 27, 28].

Some important aspects of RT/RM dynamics still require
better understanding [8]. One such aspect is the link between
RT and RM dynamics [8, 18]. In applications, this aspect is
critical for blast-wave-driven RTI/RMI in core-collapse
supernovae, for RT/RM unstable plasma irregularities in the
Earth’s ionosphere, for RTI/RMI induced by unsteady shocks
in inertial confinement fusion, and for RT/RM instabilities in the
fossil fuel industry [8–15]. As regards to fundamentals, since
classical RTI is driven by the acceleration and classical RMI is
driven by the initial growth-rate dependent on the initial
conditions, the link between RT and RM dynamics can be
self-consistently revealed for variable accelerations,
particularly, for accelerations whose magnitudes vary as
power-laws in time [8, 46–49]. Power-law functions are
important to consider because they can yield special invariant
and scaling properties of RT/RM dynamics, and can also be used
to adjust the acceleration’s time-dependence in applications [8,
46–49].

By applying group theory approach, recent research on RTI/
RMI with variable acceleration, which has magnitude g �Gtawith
G, a being respectively the acceleration’s strength and exponent,
found the dependence of RTI/RMI dynamics on the exponent a
of the acceleration’s power-law [8, 46–49] The linear and
nonlinear interfacial dynamics is of RT type and is driven by
the acceleration with magnitude g � Gta for the acceleration
exponents greater than negative two, a >−2 [8, 46–49]. It is of RM
type and is driven by the initial growth rate with magnitude v0 for
the acceleration exponents smaller than negative 2, a <−2. The
properties of the scale-dependent RT and RM dynamics differ
substabtially from one another in both the linear or nonlinear
regimes [8, 46–49]. Detailed investigation is thus required of RT/
RM dynamics and RT-to-RM transition at the acceleration
exponent equal to negative two, a �−2 [8].

To illustrate the importance of the acceleration exponent
a �−2 physically and mathematically, we recall that for a
given value of the length scale λ, which is the wavelength of
the initial perturbation, the acceleration strength G and the initial
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growth-rate v0 establish the characteristic time scales τG ∼ (λ/G)
1/(a+2) and τ0 ∼ λ/v0. For a >−2 the time scales relate as τG ≪ τ0,
and the fastest process is set by the acceleration. For a <−2 the
time scales relate as τ0 ≪ τG, and the fastest process is set by the
initial growth-rate. At a �−2, the acceleration strength G has the
dimension of the length scale λ, and the interplay of length scales
G and λ defines properties of RT-to-RM transition [8].

Here we study RTI and RMI induced by variable acceleration
with inverse-quadratic power-law time dependence [8, 49]. We
consider a three-dimensional spatially extended periodic flow,
apply group theory and scaling analysis, and identify the
dependence of the linear and nonlinear dynamics of RT/RM
bubbles and spikes on the acceleration’s parameters and initial
conditions. In particular, we investigate the dependence of RT-to-
RM transition on the acceleration strength and the fluid density
ratio for both linear and nonlinear dynamics, and elaborate
extensive theory benchmarks for future research.

2 METHODS

2.1 Governing Equations
The dynamics of an ideal fluid is governed by the laws of
conservation of mass, momentum and energy:

zρ

zt
+ z

zxi
ρvi( ) � 0,

z

zt
ρvi( ) + z

zxj
ρvivj( ) + zP

zxi
� 0,

zE

zt
+ z

zxi
E + P( )vi( ) � 0, (1)

where i � 1, 2, 3, (x1, x2, x3) � (x, y, z) are Cartesian coordinates, t
is time, ρ is its density, v its velocity, P is the pressure field and E �
ρ (e + v2/2) is the energy density field, in which e is the specific
internal energy [40]. The governing equations Eq. 1 are
augmented with the closure equation of state associating
pressure P and internal energy e [17]. We presume the
equation of state has the form P � sρe with some constant s,
describing an ideal fluid behaving similarly to an ideal gas [17].

There is zero mass flux across the interface, and the fluxes of
mass, momentum and energy are conserved at that interface.
Consequently, the boundary conditions at the interface are

v · n[ ] � 0, P[ ] � 0,
v · τ[ ] � arbitrary, W[ ] � arbitrary, (2)

where [. . .] is used to denote the difference in function values
across the interface; the unit normal and tangent vectors at the
interface are n and τ, specifically, n � ∇θ/|∇θ| and n · τ � 0, where
θ � θ (x, y, z, t) is such that θ � 0 at the interface, θ > 0 in the bulk
of the heavy fluid and θ < 0 in the bulk of the light fluid;W is the
specific enthalpy W � e + P/ρ.

The heavier fluid is assumed to sit above the lighter and both
are subject to a body force and a time-dependent acceleration,
which is directed from the heavy fluid to the light. This
acceleration influences the pressure field. The acceleration
direction is chosen to be that of the z-coordinate. The
acceleration g � (0, 0,−g) is such that g � Gta, where a is the
acceleration’s power-law exponent and G > 0 is its strength. We

note that G has dimensions ms−(a+2) and a is dimensionless. The
time t > t0 > 0 where t0 is some initial instant of time.

It is assumed that the upper and lower boundaries of the
domain do not influence the dynamics and also that there is an
absence of mass sources. The upper and lower boundary
conditions are

lim
z→∞

vh � 0, lim
z→−∞

vl � 0. (3)

where h indicates the heavy fluid and l indicates the light fluid.
The governing equations are subject to a set of initial conditions
which include the perturbations of the interface and/or the flow
fields. The initial conditions define the characteristic length scale,
time scale, and symmetry of the resulting flow.

2.2 Group-Theory Approach
The large-scale coherent structures in the destabilised flow are
periodic arrays of bubbles and spikes in the plane normal to the
acceleration direction as is set by the initial conditions. As a
specific example, we consider the flow which has square
symmetry [8, 41] in the plane normal to the acceleration, with
wavelength λ and wavevector k � 2π/λ.

The group theory approach [6, 8, 19, 40, 41, 48, 49] accurately
describes both the linear and nonlinear dynamics of the unstable
interface and can be used to identify similarities and differences in
the dynamics of these flows. In particularly, for linear RTI and
RMI with time-varying acceleration, the linear dynamics is
single-scale and is defined by the spatial period of the
coherent structure, whereas the process of formation of
bubbles and spikes is set by the initial conditions. For
nonlinear RTI with constant and time-varying accelerations
and for RMI with impulsive and time-varying accelerations,
there are families of regular asymptotic solutions with the
number of relevant parameters defined by the flow symmetry;
the dynamics is multi-scale and characterised by the
contributions of two macroscopic length scales, these being the
spatial period and the amplitude of the interfacial coherent
structure. Furthermore, non-equilibrium dynamics is
essentially interfacial, consisting of intense fluid motion near
the interface and insignificant fluid motion away from it.

Here we consider dynamics of ideal fluids, which are
inviscid and are free from thermal heat flux, Eq. 1 [17].
Their velocity field is irrotational in the bulk [17, 50]. The
latter can be illustrated by the analysis of slight perturbations
of the fluid system in Eq. 1 near the state of hydrostatic
equilibrium, similarly to [50]. Particularly: 1) by
introducing a small velocity field to an initially stationary
system, 2) by representing the velocity field as a
superposition of a gradient of a scalar potential and a curl
of a vortical potential, and 3) by considering the associated
changes in the fields of density and pressure, one can linearize
the system of the governing equations in the bulk Eq. 1 and the
equation of state near the equilibrium state. By finding the
fundamental solutions for the linear system, including their
eigenvalues and eigenvectors, one can further identify the
structure of the perturbation waves [50].

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org January 2022 | Volume 7 | Article 7355263

Hill and Abarzhi RT-to-RM Bubbles and Spikes

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


According to the analysis, for both compressible and
incompressible ideal inviscid fluids, the vortical component of
the velocity is zero in the bulk [50]. This suggests that for ideal
inviscid fluids Eq. (1), the velocity field is potential in the bulk,
and the vortical structures can emerge only at the interface, due to
discontinuities of the tangential component of velocity and
enthalpy Eq. 2. In the limit of a small viscosity, the small-scale
vortical structures at the interface may be influenced by the
viscosity, and the vortical structures may also appear in the
bulk. However, given the interfacial character of RT/RM
dynamics, the influence of the viscosity on the bulk motion
may also be negligible. In this work we consider ideal
incompressible fluids and their three-dimensional dynamics.
We focus on RTI/RMI driven by variable accelerations with
inverse quadratic power-law time-dependence and on RT-to-
RM transition. We address to the future the detailed analysis of
compressible and viscous effects on RT/RM dynamics.

We emphasize that even for ideal incompressible fluids, with
_e � 0 and ∇e � 0, the system (Eqs 1–3) is extremely challenging,
requiring the solution of a system of nonlinear partial differential
equations in a bulk, the solution of the boundary value problem at
the nonlinear unstable interface, in addition to the solution of the
relevant initial value problem, which is ill-posed [6, 8, 17, 19]. It is
remarkably that even with this amount of complexity, the
dynamics nevertheless has features of universality and order
and can thus be approached using group theory [6, 19].

2.3 Dynamical System
We focus on bubbles and spikes moving in the z-direction and for
convenience work in a frame of reference which moves with
velocity v (t) in the z-direction, where v (t) � zz0/zt and z0 is the
position of the bubble or spike in the laboratory frame. We define
the function θ (x, y, z, t) as θ (x, y, z, t) � z* (x, y, t)−z, where z � z*
(x, y, t) describes the interface.

The fluids are assumed to be incompressible and stratification
and density variation are negligible. We focus on large-scale
coherent dynamics having length scale λ, and presume that
the length scale of shear-driven interfacial vortical structures is
comparatively small, ≪ λ. The fluid motion in the bulk is
potential. Consequently, the velocity of the heavy fluid vh �
∇Φh and that of the light fluid vl � ∇Φl and the equation of
conservation of mass means that Laplace’s equation ΔΦh(l) � 0 is
satisfied in the respective bulks, that is, θ > 0 (θ < 0).

In the moving frame of reference, the interface conditions are

ρh ∇Φh · n̂ +
_θ

|∇θ|( ) � 0 � ρl ∇Φl · n̂ +
_θ

|∇θ|( ),
ρh

zΦh

zt
+ |∇Φh|2

2
+ g t( ) + dv

dt
( )z( )

� ρl
zΦl

zt
+ |∇Φl|2

2
+ g t( ) + dv

dt
( )z( ), (4)

and the vertical far-field boundary conditions are

zΦh

zz
|z→∞ � −v t( ), zΦl

zz
|
z→−∞

� −v t( ). (5)

The periodic nature of the large-scale coherent structure can
be address by means of group theory [6]. Upon identification of a
group which enables structurally stable dynamics, a specific
Fourier series (an irreducible representation of that group) can
be employed to solve the nonlinear boundary value problem (Eqs
4, 5) For three-dimensional flow with square symmetry the
potentials are [41].

Φh x, y, z, t( ) � ∑∞
m,n�0

Φmn t( ) cos mkx( )cos nky( )e−αmnkz

αmnk
+ z( )

+ fh t( ),

Φl x, y, z, t( ) � ∑∞
m,n�0

~Φmn t( ) cos mkx( )cos nky( )eαmnkz

αmnk
− z( )

+ fl t( ),
(6)

where αmn �
							
m2 + n2

√
, m and n are integers, k � 2π/λ is the

wavenumber, Φmn and ~Φmn are the Fourier amplitudes for the
heavy and light fluids respectively, with Φ00 ≡ 0, ~Φ00 ≡ 0, and fh
(t) and fl (t) are time-dependent functions. Symmetry requires
that Φmn � Φnm and ~Φmn � ~Φnm.

In the vicinity of the tip of a bubble or spike we make
expansions in terms of the spatial coordinates. This reduces
the set of governing equations to a system of oridonary
differential equations (ODEs) in terms of the interface
variables and the moments [6–8, 19, 40, 41].

The local behaviour of the interfacial dynamics in the vicinity
of the tip of a bubble or spike can be investigated by expanding the
interface function in a power series about (x, y) � (0, 0), this being

z* x, y, t( ) � ∑∞
N�1

∑N
i+j�1

ζ ij t( )x2iy2j, (7)

where ζ ij (t) � ζ ji (t) due to symmetry, ζ (t) � ζ10(t) is the principal
curvature at the tip, and N is the order of the approximation. To
lowest order (that is, N � 1), the interface is z* (x, y, t) � ζ (t) (x2 +
y2). Note that ζ (t) < 0, v (t) > 0 for bubbles, and ζ (t) > 0, v (t) < 0
for spikes.

The Fourier series and interface functions are substituted into
the boundary conditions at the interface and the these expressions
are then expanded in power series, yielding an infinite system of
ordinary differential equations for Φmn(t), ~Φmn(t) and ζ ij (t).

We introduce the following moments for the heavy and light
fluids:

Ma,b,c t( ) � ∑
mn

Φmn t( ) mk( )a nk( )b αmnk( )c,
~Ma,b,c t( ) � ∑

mn

~Φmn t( ) mk( )a nk( )b αmnk( )c (8)

These are weighted sums of the (infinite number of) Fourier
amplitudes.We note thatMa, b, c �Mb, a, c andMa+2, b, c +Ma, b+2, c

�Ma, b, c+2, by symmetry, and similarly for ~M. AtN � 1, the series
is abbreviated to second order in x, y and first order in z, since z*
(x, y, t) is quadratic in both x and y.
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We also define a shear function at the interface. Traditionally,
in viscous fluids, such as boundary layers, the velocity share is
quantified with the shear rate, which is the rate of change of
velocity at which one layer of fluid passes over an adjacent layer
[51]. The velocity change is caused by, e.g., the fluid’s viscosity,
and the velocity shear rate is estimated in the direction normal to
the direction of motion [17]. This traditional definition has a
limited applicability in our problem, because in RT/RM dynamics
the shear is produced by the finite jump(s) of tangential
component of velocity (and enthalpy) at the interface Eq. 2.
In RT/RM dynamics, the rate of change of the tangential
component of velocity (and the enthalpy) is infinite at the
interface in the direction normal to the interface, since the
jump of the tangential component of velocity (and the
enthalpy) is finite at the interface, and since the interface is a
contact discontinuity separating inviscid fluids (Eqs 1–3).

We notice however that in RT/RM dynamics the jump of the
tangential velocity is non-uniform along the interface and it is a
function changing continuously along the interface. The jump of
the tangential component of velocity and, hence, the interfacial
shear is exactly zero at the very tip of the bubble and the very tip of
the spike, and it achieves its extreme values in-between the bubble
and the spike. In experiments and simulations (with a finite
viscosity) this is observed as the formation of shear-driven
vortical structures on the side of the bubble and the side of
the spike and in-between of (rather than at) the tip of the bubble
and the tip of the spike [20, 23, 29, 30, 36, 45, 52–54].

Hence, in the RT/RM problem, we consider the jump of the
tangential component of velocity across the interface in the
direction normal to the interface as a function changing
continuously along the interface. We define the shear Γ to be
the spatial derivative of this function along the interface. Note
that the shear Γ (hereafter—the shear function or the shear)
depends on the problem parameters (including the acceleration
parameters G, a, the initial growth-rate v0, the Atwood number
A), and it also depends on time t and on the position along the
interface and thus on the interface morphology, i.e., the curvature
ζ (t) of the bubble/spike.

At N � 1 the shear function is Γ � Γx(y) with Γx(y) � z(vx(y))/zx
(y), where [vx(y)] is the jump of the x(y) component of the
velocity at the interface, with [vx] � x( ~M1 −M1) and
[vy] � y( ~M1 −M1), leading to the shear function Γ � ~M1 −
M1 in the vicinity of the tip.

The boundary conditions at the interface become

_ζ � 4M1ζ + M2

2
, _ζ � 4 ~M1ζ −

~M2

2
, (9)

1 + A( ) _M1

2
+ ζ _M0 − M2

1

2
− ζg( )

� 1 − A( )
_̃M1

2
− ζ _~M0 −

~M
2

1

2
− ζg⎛⎝ ⎞⎠. (10)

M1 − ~M1 � arbitrary, (11)

and the vertical far-field requirement becomes

M0 � − ~M0 � −v t( ) (12)

whereM0 �M0, 0, 0,M1 �M2, 0, −1 andM2 �M2, 0, 0, and the ratio
of the densities of the fluids is parametrised by the Atwood
number A � (ρh − ρl)/(ρh + ρl), and 0 ≤ A ≤ 1.

Initial conditions for the dynamical system (Eqs 9–12) include
the conditions for the initial curvature ζ (t0) and the initial
velocity v (t0) at some initial instance of time t0. The initial
velocity sets the initial growth-rate v0 � |v (t0)|.

Representation in terms of the moments M, ~M and interface
variable ζ allows us to accommodate the nonlocal nature of RT/
RM dynamics, and also enables us to study the interplay of the
harmonics and to derive solutions in both the linear and the
nonlinear regimes.

2.4 Scales of the Problem
Equations 1–5 and Equations 9–12 are in the dimensional form,
hence requiring us to identify the problem’s length and time
scales. The length scale is defined by the wavelength λ with the
corresponding wavevector k. In this work we focus of the case
a �−2, that is g � G/t2. The dimension of the acceleration strength
G is dim (G) � dim (1/k) � dim (λ) � m. The dimension of the
initial growth-rate v0 is dim (v0) �m/s. Hence, at a �−2, there are
two natural time scales in the problem: τG �G/v0 and τ0 � 1/(kv0).
Their interplay is depends on the parameter (Gk), with τG/τ0 ≪
(≫)1 for (Gk)≪ (≫)1. Here we use τ0 for time-scale and consider
the broad range of values (Gk) ∈ (0,∞). We also presume that t0
≫ (τG, τ0) in order to preempt the effect of the choice of time
origin on the dynamics.

3 RESULTS

3.1 Early-Time Regime
When t−t0 ≪ τ0, the perturbation amplitude is small and the
interface is approximately flat, meaning that only first order
harmonics need be retained in moments, that is, M0 � 2Φ10,
~M0 � 2 ~Φ10;Mn � knΦ10, ~Mn � kn ~Φ10, n � 1, 2. Continuity of the
normal components of velocity and momentum at the fluid
interface, that is Eqs 9 and 10, become

dζ̂

dt
+ k

4
v � 0,

dv

dt
+ Ak

2
v2 + 4AG

t2
ζ̂ � 0

(13)

where ζ̂ � ζ/k is a nondimensional curvature. These apply for any
sign of kζ0 and v (t0)/v0, and can be combined to give

d2ζ̂

dt2
� 2A

dζ̂

dt
( )2

+ AkG

t2
ζ̂ .

For Gk ≫ 1, the dynamics is acceleration-driven and
consequently the relative contributions of the terms is
|AkGζ̂/t2|≫ |(2Adζ̂/dt)2|. The system becomes

d2ζ̂

dt2
� AkG

t2
ζ̂ , v � −4

k

dζ̂

dt
. (14)

The curvature equation has solution
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ζ̂ � C1
t

τ
( )p

+ C2
t

τ
( )−p

, p � 				
AkG

√
, (15)

where C1 and C2 are integration constants which can be
determined from the initial conditions ζ (t0) and v (t0), with
|ζ (t0)/k|≪ 1 and |τkv (t0)|≪ 1. This dynamics is driven by the
acceleration and is of RT type. [2, 8, 17, 49].

For kG ≪ 1, the dynamics is driven by the initial conditions
and consequently the relative contributions of the terms is
|AkGζ̂/t2|≪ |(2Adζ̂/dt)2|. The system becomes

d2ζ̂

dt2
� 2A

dζ̂

dt
( )2

, v � −4
k

dζ̂

dt
. (16)

The curvature equation has solution, with integration constants
C1 and C2,

ζ̂ � − 1
2A

ln C1t + C2( ).

This dynamics is driven by the initial growth-rate and is of RM type.
The very-early-time (t ∼ t0) dynamics yields

ζ − ζ0
k

� −1
4

t − t0
τ0

( )sgn v t0( )
v0

[ ],
v − v0 � −A

2
v0

t − t0
τ0

( ) + 4AG
kv0t20

ζ0
k

( ) t − t0
τ0

( ). (17)

suggesting that the formation of RT/RM bubbles and spikes are
defined by the initial conditions [8, 49].

3.2 Late-Time Regime
For t≫ τ, we must retain higher order harmonics in the moments.
Asymptotic solutions of the resulting set of equations can be derived.
To leading order, these will have the following time-dependence:

ζ

k
∼ const, v ∼

1
kτ0

( ) t

τ0
( )b

, Φn, ~Φn ∼
1
kτ0

( ) t

τ0
( )a

2

,

Mn, ~Mn ∼ knΦn, k
n ~Φn, (18)

where b is a constant to be determined. For N � 1, the first two
harmonics are retained and we arrive at a one-parameter family of
solutions. We choose the nondimensional curvature ζ̂ � ζ/k to
parametrise the family. The velocity is

v t( ) � ±
9 − 64ζ̂

2( ) 3 + 10Aζ̂ − 128Aζ̂
3 + 	

q
√( )

2kt 64Aζ̂
2 + 9A − 48ζ̂( ) , (19)

where

q � 3 + 10Aζ̂ − 128Aζ̂
3( )2

− 8AkGζ̂ 64Aζ̂
2 + 9A − 48ζ̂( ),

the shear function is

Γ t( ) � ±
3 3 + 10Aζ̂ − 128Aζ̂

3 + 	
q

√( )
t 64Aζ̂

2 + 9A − 48ζ̂( ) , (20)

and the corresponding Fourier amplitudes are

Φ10 � −2 + 8ζ̂

3 + 8ζ̂
v, Φ20 � 1 + 8ζ̂

6 + 16ζ̂
v,

~Φ10 � 2 − 8ζ̂

3 − 8ζ̂
v, ~Φ20 � − 1 − 8ζ̂

6 − 16ζ̂
v. (21)

In (Equations 19–21), the positive sign applies for bubbles and
the negative sign applies for spikes.

In (Equations 19–21) the limit

kG → 0,

v t( ) → ±
9 − 64ζ̂

2( ) 3 + 10Aζ̂ − 128Aζ̂
3( )

kt 64Aζ̂
2 + 9A − 48ζ̂( ) ,

Γ t( ) → ±
6 3 + 10Aζ̂ − 128Aζ̂

3( )
t 64Aζ̂

2 + 9A − 48ζ̂( ) (22)

is consistent with RM dynamics induced by the acceleration g �
Gta with a →−2−, whereas the limit

kG → ∞,

v t( ) → ± 9 − 64ζ̂
2

kt

															
−2AkGζ̂

64Aζ̂
2 + 9A − 48ζ̂

√√
,

Γ t( ) → ± 6
t

															
−2AkGζ̂

64Aζ̂
2 + 9A − 48ζ̂

√√
(23)

is consistent with RT dynamics induced by the acceleration g �
Gta with a →−2+ [8, 46].

3.2.1 Bubbles
The bubble solutions are valid for curvatures ζ̂ ∈ (−ζ̂cr, 0)
where ζ̂cr � 3/8. Figure 1 shows the bubble tip velocity as a
function of the bubble curvature for various values of A and
kG, respectively. We note that plots for particular (A, kG)
pairs have remarkable similarity, for example, the plots for
the pairs (A � 1, kG � 30) and (A � 0.87, kG � 50) are almost
identical. This suggests that the dynamics in these two cases
may be very similar.

Figure 2 shows the shear function as a function of the bubble
curvature for various values of A and kG, respectively. Figure 3
shows the bubble tip velocity as a function of the shear function
for various values of A and kG, respectively.

For small curvature, ζ̂ ≈ 0,

v t( ) ≈
3

Akt
− 2ζ̂ 3A3kG − 5A2 − 8( )

A2kt
, Γ t( ) ≈

2
At

− 4ζ̂ 3A3kG − 5A2 − 8( )
3A2t

. (24)

From the expansion Eq. 24, we observe that there exists a special
value of the acceleration strength Gsep separating RM type
bubbles from RT type bubbles:
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kGsep � 5A2 + 8
3A3

, (25)

with kGsep→ 13/3 for A→ 1, and kGsep→ 8/(3A3)→∞ for A→
0. For G < Gsep the flat bubble is the fastest, similarly to classical
RMI; it is also always true for the a <−2 case. For G > Gsep, the
maximum growth-rate solution is a curved bubble, similarly to
classical RTI; it is also always true for the a >−2 case [6, 8]. In all
cases, the bubble tip velocity is larger for larger values of the
Atwood number A.

As kG→∞, the curvature of the fastest bubble approaches the
curvature ζ̂m, which satisfies

ζ̂
4

m − 1
A
ζ̂
3

m + 9
32
ζ̂
2

m − 27
4096

� 0

and by solving this for A and substituting into the Eq. 23 gives
that the maximum velocity approaches vm (t), where

vm t( )			
g/k

√ � 8ζ̂m
∣∣∣∣∣ ∣∣∣∣∣32.

This is a universal relation between the curvature and the
maximum velocity (and in fact holds for any values of kG and
A when g � Gta with a >−2). For kG finite, we find the
relationship

FIGURE 1 | Bubble tip velocity as a function of curvature for various acceleration strengths when A � 1, and various Atwood numbers when kG � 30.

FIGURE 2 | Shear as a function of bubble curvature for various acceleration strengths when A � 1, and various Atwood numbers when kG � 30.
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vmax t( )			
g/k

√ �
9 − ζ̂

2

max( ) −Aζ̂3max + 9
16ζ̂

2

max − 27
1024( )

12 ζ̂
4

max − 1
Aζ̂

3

max + 9
32ζ̂

2

max − 27
4096( ) 			

kG
√ , (26)

where the curvature ζ̂max of maximum velocity satisfies a nonic
polynomial with coefficients which depend on A and kG. When
A � 1, this reduces to the cubic equation

ζ̂
3

max −
3kG − 11

16
ζ̂
2

max +
31 − 9kG

192
ζ̂max − 3kG − 13

1024
� 0

and Eq. 26 reduces to

vmax t( )			
g/k

√ � 3 + 8ζ̂max( ) 3 + 16ζ̂max( )
9 1 + 8ζ̂max( ) .

When A � 1, the fastest bubble is a curved bubble when kG> 13
3

and correspondingly, ζ̂max < 1
8, as observed in Figure 1.

Asymptotic analysis of the case when kG is large leads to the
result that the fastest bubble is that with approximate curvature

ζ̂max ≈ ζ̂∞ +
9 − 64ζ̂

2

∞( ) 448ζ̂
2

∞ − 9( )
196608

							
−2kGζ̂7∞

√ . (27)

When A � 1, this is approximately

ζ̂max � −1
8
+ 1

12
			
kG

√ .

The approximation Eq. 27 is accurate to within 2.2% for kG �
50, and to within 0.1% for kG � 1,000. The corresponding
velocity is

vmax t( )			
g/k

√ ≈ −8ζ̂∞( )3
2 + 8192ζ̂

4

∞ + 320ζ̂
2

∞ − 9

32ζ̂∞
			
kG

√ . (28)

This approximation is accurate to within 0.7% for kG � 50, and to
within 0.03% for kG � 1,000.

3.2.2 Spikes
The spike solutions are valid for curvatures ζ̂ ∈ (ζ̂ sing, ζ̂cr) where

ζ̂ sing

ζ̂cr
� 1 − 						

1 − A2
√
A

.

Figure 4 shows the spike tip velocity as a function of the spike
curvature for various values of A and kG, respectively. The
velocity becomes singular at ζ̂ � ζ̂ sing, the value of which
depends on the Atwood number. Figure 5 shows the spike
shear function as a function of the spike curvature for various
values of A and kG, respectively.

3.2.3 Special Solutions for Nonlinear Bubbles and
Spikes
There are a number of solutions in the family of nonlinear
solutions which deserve special attention. Here, we consider
properties of these special solutions for bubbles and for spikes
in details.

3.3 Special Solutions for nonlinear bubbles
To conveniently describe properties of special solutions for
nonlinear bubbles, we introduce dimensionless variables

�ζ � −ζ
k
, �υ � Akt

3
v t( ), �Γ � At

2
Γ t( ),

and use superscript 0 to refer to the limit kG→ 0 and superscript
∞ to refer to the limit kG → ∞.

3.3.1 The Critical Bubble
For the critical bubble the curvature, velocity and shear
function are

FIGURE 3 | Bubble velocity as a function of shear for various acceleration strengths when A � 1, and various Atwood numbers when kG � 30.
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�ζcr � 3
8
, �υcr � 0, �Γcr � A

4
1 +

													
1 + A 1 + 6kG( )

1 + A

√[ ],
�Γ0cr �

A

2
, �Γ∞cr �

	
6

√
4

					
kGA3

1 + A

√
. (29)

This is a limiting-case solution, because bubbles in the family of
solutions cannot be more curved than the critical bubble. For this
bubble the velocity is zero and the shear alone maintains the
pressure at the interface.

3.3.2 The Convergence-Limit Bubble
The magnitudes of the Fourier harmonics |Φ10 (t)| and |Φ20 (t)|
coincide when ζ

̌
� 5/24. We define this to be the convergence-

limit bubble solution. The curvature, velocity and shear
function are

�ζ cl � 5
24
, �υcl � 14A

81

81 − 25A + 		
�qcl

√
45 + 53A

( ),
�υ0cr �

28
81

81 − 25A
53A + 45

( ), �υ∞cr � 14A
27

								
30A

53A + 45

√
,

�Γcl � 81
56
�υcl, �qcl � 81 − 25A( )2 + 270AkG 53A + 45( ). (30)

For any Atwood number, the convergence limit bubble is less
curved than the critical bubble, ζ

̌

cl/ζ
̌

cr � 5/9, and has larger
velocity when compared to the critical bubble.

3.3.3 The Taylor Bubble
We call this bubble as a “Taylor bubble” because its curvature is
the same as in the work [2] of Davis & Taylor except for a
difference in the wave-vector value. The Taylor bubble curvature,
velocity and shear function are

FIGURE 4 | Spike tip velocity as a function of curvature for various acceleration strengths when A � 3/4, and various Atwood numbers when kG � 1.

FIGURE 5 | Shear as a function of spike curvature for various acceleration strengths when A � 3/4, various Atwood numbers when kG � 1.
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�ζT � 1
8
, �υT � 2A 3 − A + 		

�qT
√( )

3 5A + 3( ) ,

�υ0T � 4A 3 − A( )
3 5A + 3( ) , �υ∞T � 2A

3

						
2A

5A + 3

√
,

�ΓT � 9
8
�υT, �qT � 3 − A( )2 + 2AkG 5A + 3( ). (31)

For any Atwood number, the Taylor bubble is less curved and has
larger velocity and smaller shear when compared to the
convergent limit bubble and the critical bubble.

3.3.4 The Minimum-Shear Bubble
For any Atwood number and acceleration strength, there is a
solution which minimises the shear function. We call this the
minimum-shear bubble. Its curvature is in general a cumbersome
function on A and GK. For Gk → 0 and 0 < A < A* � 2/9, the
curvature of this bubble is ζmin/ζcr � 1. For Gk → ∞, the
curvature of this bubble is ζmin/ζcr � 0.

3.3.5 The Layzer-Drag Bubble
The family of bubbles has a solution with velocity v/

			
g/k

√ �										
2A/(1 + A)√

in the limit kG → ∞. We call the bubble with
this curvature the Layzer-drag bubble since the drag model
applies the above velocity rescaling in terms of the Atwood
number to the single-mode Layzer first-order approximation
at A � 1 [38, 55]. Experiments and simulations tend to
compare well with this rescaling [32, 38, 55]. The
dimensionless curvature of the Layzer-drag bubble
depends only on the Atwood number A and satisfies the
quintic equation

4096 1 + A( )�ζ5 − 1152 1 + A( )�ζ3 + 64A�ζ
2 + 33 + 81A( )�ζ + 9A � 0.

For fluids of very similar densities the curvature is
�ζLD(A � 0) � (1/8) 							

9 − 4
	
3

√√
, whereas for fluids with very

different densities it is �ζLD(A � 1) � 1/8, suggesting that
Layzer-drag bubble is more curved for A → 0 than for A → 1.

The curvature, the velocity and the shear function are
complicated functions on the Atwood number A and the
acceleration strength G

�ζLD � �ζLD A( ), �υLD � �υLD �ζLD, A, kG),(
�ΓLD � �ΓLD �ζLD, A, kG).( (32)

For G≪ Gsep, for the Layzer-drag bubble
(�ζLD, �υLD, �ΓLD) → (�ζLD, �υLD, �ΓLD)0; in agreement with the
classical RMI [6], we obtain:

A → 0, �ζLD →
							
9 − 4

	
3

√√
8

, �υLD → 2A										
3 9 − 4

	
3

√( )√ ,

�ΓLD → 3A

2
							
9 − 4

	
3

√√ ;

A → 1, �ζLD → 1
8
, �υLD → 1

3
, �ΓLD → 3

8
.

For G≫ Gsep, for the Layzer-drag bubble
(�ζLD, �υLD, �ΓLD) → (�ζLD, �υLD, �ΓLD)∞; in agreement with the
classical RTI [6], we obtain:

A → 0, �ζLD →
							
9 − 4

	
3

√√
8

, �υLD → A

3

					
2AGk

√
,

�ΓLD → A
	
3

√
4

					
2AGk

√
;

A → 1, �ζLD → 1
8
, �υLD →

			
Gk

√
3

, �ΓLD → 3
			
Gk

√
8

.

Figure 6 consists of plots of the scaled velocity and scaled
shear function as functions of the acceleration parameter kG for
the Layzer-drag bubble.

3.3.6 The Atwood Bubble
The fastest bubble of the family of solutions we refer to as the
“Atwood bubble” in order to emphasise its dependence on the
Atwood number. The Atwood bubble parameters are
complicated functions of the Atwood number A and the
acceleration strength G.

�ζA � �ζA A( ), �υA � �υA �ζA, A, kG),(
�ΓA � �ΓA �ζA, A, kG).( (33)

The acceleration Gsep, with kGsep � (5A2 + 8)/(3A3) in Eq.
25, separates the Atwood bubble solutions of RM type from
those of RT type. If the acceleration strength is such that G <
Gsep, then the maximum velocity Atwood bubble is the flat
bubble and it is of RM type. If, however, G > G* then the fastest
Atwood bubble is curved and is of RT type; its curvature
depends on A and kG and is determined by maximising the
velocity function Eq. 19.

For G < Gsep, the Atwood bubble is the flat bubble with the
curvature, velocity and shear function

�ζA � 0, �υA � 1, �ΓA � 1.

ForG >Gsep, the Atwood bubble is the curved bubble. Its velocity,
curvature and shear functions depend on the Atwood number
and the acceleration strength and are cumbersome. For G≫ Gsep,
for the Atwood bubble (�ζA, �υA, �ΓA) → (�ζA, �υA, �ΓA)∞; in
agreement with the classical RTI [6], we obtain:

A → 0, �ζA → 3
16

A
1
3, �υA → A

2

						
3
2
AGk

√
, �ΓA → A

2

						
3
2
AGk

√
;

A → 1, �ζA → 1
8
, �υA →

			
Gk

√
3

, �ΓA → 3
			
Gk

√
8

.

Figure 7 is a plot of the scaled curvature �ζ � −ζ/k as a function
of the Atwood number A for the special critical, convergence
limit, minimum shear, Taylor, Layzer-drag and Atwood bubbles.
Figure 8 shows plots of their corresponding velocities and shear
functions.

3.4 Special Solutions for Nonlinear Spikes
To conveniently describe special solutions for nonlinear spikes,
we introduce the dimensionless and negated variables
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ζ̂ � ζ

k
, v̂ � −Akt

3
v t( ), Γ̂ � −At

2
Γ t( )

and use superscript 0 to refer to the limit kG→ 0 and superscript
∞ to refer to the limit kG → ∞.

3.4.1 The Critical Spike
For the critical spike the curvature, velocity and shear
function are

ζ̂cr � 3
8
, v̂cr � 0, Γ̂cr � −A

4
1 +

													
1 + 6kG − 1( )A

1 − A

√[ ],
Γ̂0cr � −A

2
, Γ̂∞cr �

	
6

√
4

					
kGA3

1 − A

√
. (34)

3.4.2 The Convergence-Limit Spike
The magnitudes of the Fourier harmonics | ~Φ10(t)| and | ~Φ20(t)|
coincide when ζ̂ � 5/24. This defines the convergence-limit spike
solution. The curvature, velocity, shear function and
coefficients are

ζ̂cl � 5
24
, v̂cl � 14A

81

25A + 81 + 		
q̂cl

√
53A − 45

( ),
v̂0cl �

1

3Ĉcl

, v̂∞cl � 14A
27

								
30A

45 − 53A

√
,

Γ̂cl � 81
56

v̂cl, q̂cl � 25A + 81( )2 + 270AkG 45 − 53A( ). (35)

3.4.3 The Taylor Spike
We refer to this spike as a ‘Taylor spike’ since its curvature is
opposite to that of the Taylor bubble. The curvature,
velocity, shear function and group-momentum
coefficients are

ζ̂T � 1
8
, v̂T � 2A 3 + A + 		̂

qT
√( )

3 5A − 3( )
Γ̂T � 9

8
v̂T, q̂T � 3 + A( )2 + 2AkG 3 − 5A( ). (36)

Note that q̂T � 0 if kG � (3+A)2
2A(5A−3) and that for A > 3/5, the value of

q̂T will become negative for some finite positive value of kG. For
example, if A � 3/4 then q̂T < 0 if kG > 25/2.

FIGURE 6 | Layzer-drag (LD) bubble velocity and shear function as functions of acceleration parameter kG for various values of the Atwood number.

FIGURE 7 | Scaled curvature as a function of the Atwood number for the
critical (Cr), convergence-limit (CL), Taylor (T), minimum-shear (MS), Layzer-
drag (LD) and Atwood (A) bubbles for kG � 30.
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3.4.4 The Layzer-drag spike
The family of spikes has a solution with velocity v/

			
g/k

√ �
− 										

2A/(1 − A)√
in the limit kG → ∞. We call the spike with

this curvature the Layzer-drag spike solution since the drag
model applies the above velocity rescaling using the Atwood
number to the single-mode Layzer first-order approximation
at A � 1 [38, 55]. Experimental results and numerical
simulations tend to compare well with this re-scaling [32,
38, 55]. For the Layzer-drag spike, the dimensionless
curvature depends on the Atwood number A and satisfies
the quintic equation

4096 1 − A( )ζ̂5 − 1152 1 − A( )ζ̂3 + 64Aζ̂
2 + 33 − 81A( )ζ̂ + 9A � 0.

For fluids of very similar densities, A ≈ 0, the curvature of the
Layzer-drag spike is �ζLD(A � 0) � ( 								

9,−, 4 	
3

√√ )/8; it has the
same magnitude as the Layzer-drag bubble. For fluids of
very different densities, A ≈ 1, the curvature of the
Layzer-drag spike is ζ̂LD(A � 1) � 3/8; its magnitude is
three fold of that of the Layzer-drag bubble. For A ∈ (0,
1) the Layzer-drag spike is more curved than the Layzer-
drag bubble.

The curvature, velocity and shear function of the Layzer-drag
spike are complicated functions on the Atwood number A and
acceleration strength G:

ζ̂LD � ζ̂LD A( ), v̂LD � v̂LD ζ̂LD, A, kG( ),
Γ̂LD � Γ̂LD ζ̂LD, A, kG( ). (37)

For Gk → 0, for the Layzer-drag spike
(ζ̂LD, v̂LD, Γ̂LD) → (ζ̂LD, v̂LD, Γ̂LD)0; we obtain

A → 0, ζ̂LD →
							
9 − 4

	
3

√√
8

, υ̂LD → 2A										
3 9 − 4

	
3

√( )√ ,

Γ̂LD → 3A

2
							
9 − 4

	
3

√√ ;

A → 1, ζ̂LD → 3
8
, υ̂LD → 11

2

					
2

1 − A

√
, Γ̂LD → 11

4 1 − A( ).

For Gk → ∞, for the Layzer-drag spike
(ζ̂LD, v̂LD, Γ̂LD) → (ζ̂LD, v̂LD, Γ̂LD)∞; in agreement with the
classical RTI [6], we obtain

A → 0, ζ̂LD →
							
9 − 4

	
3

√√
8

, υ̂LD → A

3

					
2AGk

√
,

Γ̂LD → A
	
3

√
4

					
2AGk

√
;

A → 1, ζ̂LD → 3
8
, υ̂LD → 1

3

					
2Gk
1 − A

√
, Γ̂LD →

			
Gk

√
6 1 − A( ).

Recall that spike solutions are only valid for curvatures
ζ̂ ∈ (ζ̂ sing, ζ̂cr) where ζ̂ sing/ζ̂cr � (1 − 						

1 − A2
√ )/A.

Figure 9 consists of plots of the velocity and shear function of
the Layzer-drag spike as functions of the acceleration
parameter kG.

Figure 10 is a plot of the scaled curvature ζ̂ � ζ/k as a function
of the Atwood number A for the critical, convergence limit,
Taylor and Layzer-drag spikes. Figure 11 illustrates the plots of
their corresponding velocities and shear functions.

3.4.5 The Atwood Spike
We refer to the fastest spike in the nonlinear family as the
“Atwood spike”. The Atwood spike corresponds to the
singular solution, and the solution is singular at any A and
Gk. For the Atwood spike, the curvature has a finite value

FIGURE 8 | Velocity and shear function as functions of the Atwood number for the critical (Cr), convergence-limit (CL), Taylor (T), minimum-shear (MS), Layzer-drag
(LD) and Atwood (A) bubbles bubbles for kG � 30.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org January 2022 | Volume 7 | Article 73552612

Hill and Abarzhi RT-to-RM Bubbles and Spikes

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


defined by the Atwood number A, whereas the velocity and the
shear function are singular for any A and Gk:

ζ̂A � 3
8

1 − 						
1 − A2

√( )
A

,

v̂A � v̂A ζ̂A, A, kG( ) → ∞, Γ̂A � Γ̂A ζ̂A, A, kG( ) → ∞. (38)

For Gk → 0, for the Atwood spike
(ζ̂A, v̂A, Γ̂A) → (ζ̂A, v̂A, Γ̂A)0; we obtain:

A → 0, ζ̂A → 3
16

A, v̂A → 4
A2

, Γ̂A → 4
A2

;

A → 1, ζ̂A → 3
8
, v̂A → 11

2

					
2

1 − A

√
, Γ̂A → 11

4 1 − A( ).

For Gk → ∞, for the Atwood spike
(ζ̂A, v̂A, Γ̂A) → (ζ̂A, v̂A, Γ̂A)∞, and we obtain:

A → 0, ζ̂A → 3
16

A, v̂A →
				
3Gk
A

√
, Γ̂A →

				
3Gk
A

√
;

A → 1, ζ̂A → 3
8
, v̂A →

					
2Gk
1 − A

√
, Γ̂A →

			
Gk

√
2 1 − A( ).

We emphasize that, independently of the acceleration
strength G, the curvature of the Atwood spike (ζ̂A/ζ̂cr) → 1
for A → 1 and (ζ̂A/ζ̂cr) → 0 for A → 0. This suggests that the
fastest Atwood spike has the same curvature magnitude in RT
and RM cases. For fluids of very similar densities, A → 0 the
Atwood spike curvature is ζ̂ → (3/16)A, whereas for fluids of
very different densities, A→ 1, it is ζ̂ → 3/8. The singular values
of the velocity and the shear function of the Atwood spike
indicate that the nonlinear spikes can move faster and have the
shear increasing with time quicker than ∼ t−1; for instance, the
velocity and shear function of the spike can change with time as
∼ tc with c >−1.

3.5 Qualitative Properties of RT/RM
Dynamics
3.5.1 Interfaciality
Our analysis accurately accounts for the interplay of harmonics
and systematically connects the interfacial velocity and shear. We
find that for RTI and RMI driven by the inverse-quadratic power-
law acceleration, the dynamics is essentially interfacial, has
intense fluid motion in the vicinity of the interface and has
effectively no motion away from it. Shear-driven vortical

FIGURE 9 | Layzer-drag (LD) spike scaled curvature and scaled shear function as functions of acceleration parameter kG for various values of the Atwood number.

FIGURE 10 | Scaled curvature as a function of the Atwood number for
the critical (Cr), convergence-limit (CL), Taylor (T) and Layzer-drag (LD) spikes
for kG � 30.
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structures may appear at the interface due to the interfacial shear.
The velocity field in the bulk of each fluid is potential.

3.5.2 Multiscale Character
Our analysis suggests that for both bubbles and spikes, nonlinear
RT/RM dynamics is multiscale, having two contributing
macroscopic length scales, these being the wavelength and the
amplitude. This multi-scale character can be understood by
interpreting the coherent structure as a standing wave of
growing amplitude.

3.5.3 RT-to-RM Transition
Our analysis finds that for small values of the acceleration
strength, kG ≪ 1, the dynamics is qualitatively similar to that
of classical Richtmyer-Meshkov instability, whereas for large
values of the acceleration strength, kG ≫ 1, the dynamics is
similar to that of classical Rayleigh-Taylor instability.

In the linear regime, RT-to-RM transition occurs with the
decrease of the acceleration strength kG for the bubble and for the
spike. In the nonlinear regime, the fastest RM bubble is the flat
bubble, whereas the fastest RT bubble is a curved bubble with the
curvature value dependent on the Atwood number. For nonlinear
bubbles, a transition from RMdynamics to RT dynamics happens
as the dimensionless parameter kG passes through the separation
value kGsep � (5A2 + 8)/2A3. Our analysis hence provides for
nonlinear bubbles the quantitative dependence of the acceleration
strength on the density ratio, at which RT-to-RM transition
occurs (for the first time, to the best of the authors’ knowledge).

For nonlinear spikes the fastest spike has the same curvature
magnitude in RM and RT cases; it depends on the Atwood
number and is independent of the acceleration strength kG.
The velocity and the shear function of the fastest spike are
singular, suggesting that for any value of the acceleration
strength kG the RT/RM spike can move faster than the
nonlinear asymptotic solutions prescribe; for instance, its

velocity and shear function can change with time as ∼ tc with
c > −1.

3.6 Comparison With Observations
In classical RTI/RMI, RT bubbles and spikes move significantly
faster than RM bubbles and spikes in either linear or nonlinear
regime. Hence, experiments and simulations can differentiate
between RT dynamics and RM dynamics by measuring the
growth-rate of RT/RM bubbles/spikes [18, 20, 21, 27, 32, 33,
45, 52–54]. For variable acceleration g � G/t2 considered in the
present work, RT/RM bubbles and spikes move slowly in the
linear regime, and have nonlinear asymptotic solutions changing
with time as ∼ 1/t in the nonlinear regime. To accurately identify
a pre-factor of a power-law, a substantially span of temporal and
spatial scales is required, which is usually very challenging to
achieve in experiments and simulations [45, 56]. An accurate
implementation of the acceleration with the magnitude g �G/t2 is
also challenging. Nevertheless, since our analysis finds that,
expect for the time-dependence, the properties of RT/RM
dynamics of bubbles/spikes are similar in many regards to
those of classical RTI/RMI, we may compare our analysis with
existing experiments and simulations. Our theoretical results are
in agreement with available observations [18, 20, 21, 27, 32, 33,
45, 52–54].

Particularly, our theory accurately reproduces the
interfaciality of RT/RM dynamics, which is observed in
experiments and simulations. This includes the velocity field
with intense motion of the fluids in a vicinity of the interface,
with effectively no motion away from the interface, and with
vortical structures produced by shear at the interface [20–22, 27,
45]. Our analysis further finds that in the nonlinear regime RT
bubbles are curved and RM bubbles are flat. The flattening of RM
bubble front and the curved shape of RT bubble are distinct
feature of nonlinear RMI and RTI, respectively; they are observed
in experiments and simulations in fluids and plasmas [18, 20, 21,

FIGURE 11 | Velocity and shear function as functions of the Atwood number for the critical (Cr), convergence-limit (CL), Taylor (T) and Layzer-drag (LD) spikes for
kG � 30.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org January 2022 | Volume 7 | Article 73552614

Hill and Abarzhi RT-to-RM Bubbles and Spikes

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


27, 32, 33, 45, 52–54]. Our analysis also finds that, at any density
ratio and acceleration strength, nonlinear RT/RM spikes can
achieve a finite curvature magnitude and can move with a
time-dependence faster than that of nonlinear RT/RM bubbles,
in agreement with observations [18, 20, 21, 27, 32, 33, 45, 52–54].

In RTI, experiments and simulations tend to compare well
with the velocity of nonlinear Layzer-drag bubble			
g/k

√ 										
2A/(1 + A)√

and the velocity of nonlinear Layzer-drag
spike

			
g/k

√ 										
2A/(1 − A)√

[32]. Our group theory approach
provides the (only one, to the best of the authors’ knowledge)
rigorous derivation of the Layzer-drag solutions for bubbles and
spikes in RTI with variable acceleration, which have physically
justifiable velocity fields and which are fully consistent with the
complete set of the governing equations, Eqs 1–3). Furthermore,
we find that curvatures of the Layzer-drag bubble and spike
depend on the density ratio. The Layzer-drag spike is more
curved than the bubble for fluids with very different densities,
A→ 1, and has the same curvature magnitude for fluids with very
similar densities, A → 0. These results can be applied for
verification and validation of numerical models and for
comparison with experiments [7, 18, 32].

The group theory approach also provides the (first, to the best
of the authors’ knowledge) rigorous derivation of the Layzer-drag
solutions for bubbles and spikes in RMI with variable acceleration
[32, 33, 53]. Particularly, in RMI, we define the Layzer-drag
bubble and spike as solutions which have, for a given Atwood
number A, the same respective curvature values as the Layzer-
drag bubble and spike in RTI. We further transition in RT/RM
family of nonlinear solutions with variable acceleration, g � Gta

and a � − 2, from the RT limit, kG→∞, to the RM limit, kG→ 0.
Our group theory approach explains why in RTI simulations,

for nonlinear bubble the velocity magnitude can be somewhat
slower and the curvature magnitude can be somewhat larger
compared to those corresponding to the fastest theoretical
solutions. These departures can be understood by recalling
that the theory studies the dynamics of ideal fluids and finds a
family of nonlinear solutions parameterized by the interfacial
shear, whereas numerical simulations usually model viscous
fluids with a shear-free velocity at the interface. Due to the
presence of finite viscosity in the simulations, a larger shear
and a more curved surface of RT bubble is required to
maintain the pressure at the interface, in agreement with our
theory. For nonlinear RMI, the fastest bubble with the largest
shear is the flat bubble, and the flattening of the bubble front is
observed in RMI simulations, in agreement with our theory [18,
20, 21, 27, 32, 33, 45, 52–54].

RT/RM experiments and simulations are usually focused on
the diagnostics of the growth of the amplitude in the linear and
nonlinear regimes [18, 20, 21, 27, 32, 45, 52–54]. We identify the
growth and the growth-rate of the amplitude, and we also the
elaborate the properties of the linear and nonlinear RT/RM
solutions, which were not diagnosed before and which can be
applied for design of future experiments and simulations. These
include: the dependence of the velocity and the morphology of
RT/RM bubbles/spikes on the density ratio and the acceleration
strength; the properties of RT-to-RM transition for linear/
nonlinear bubbles/spikes; the dependence of the interfacial

shear and the interfacial vortical structures on the acceleration
parameters and density ratio; the qualitative and quantitative
properties of the velocity and pressure fields. According to our
theoretical results, in realistic environments and for variable
acceleration g � Gta with a � −2, for an accurate
quantification of the linear and nonlinear stages of RTI/RMI,
new approaches are required to achieve the high accuracy, high
precision and the large span of spatial and temporal scales in the
observational data in experiments and simulations [56].

4 DISCUSSION

We have studied RT/RM instabilities induced by an acceleration
having an inverse-quadratic power-law time dependence, and
considered a broad range of acceleration strengths and density
ratios, for a three-dimensional spatially extended period flowwith
square symmetry in the plane normal to the acceleration. By
applying the group theory approach, we have found solutions for
the early-time linear and late-time nonlinear dynamics of RT/RM
coherent structures of bubbles and spikes, and have thoroughly
investigated the dependence of the solutions on the acceleration
parameters and initial conditions. Our analysis reveals that the
dynamics is of RT type for strong accelerations and is of RM type
for weak accelerations, and investigates the dependence of RT-to-
RM transition on the acceleration magnitude and fluid density
ratio. To our knowledge, this detailed analysis has never been
performed before.

In the early-time regime, RT/RM dynamics is single-scale
and is set by the structure’s spatial period. The dynamics is well
captured by the lowest-order harmonics, the solution is being
unique for given spatial period, acceleration, fluid density ratio,
and initial conditions. The formation of RT/RM bubbles/spike is
determined by the initial conditions, with the bubble (spike)
moving up (down) and being concave down (up). In the late-
time regime RT/RM dynamics of bubbles/spikes is multi-scale
and is set by the structure’s spatial period and amplitude. The
nonlinear dynamics requires one to account for multiple
harmonics. For given values of the spatial period,
acceleration strength, fluid density ratio and initial growth-
rate, there is a continuous family of nonlinear solutions for
RT/RM bubbles/spikes. This non-uniqueness is due to the
interfacial shear. The family of solutions can be
parameterised by the interface morphology (i.e., the principal
curvature at the bubble/spike tip) and/or by the interfacial shear.
The dynamics of RT/RM bubbles/spikes is essentially interfacial,
with intense fluid motion near the interface and effectively no
fluid motion away from it. The velocity field is potential in the
bulk, and vortical structures are produced by shear at the
interface. These results are in excellent qualitative agreement
with available observations [20, 23–33].

In the early-time regime, RT/RM bubbles and spikes evolve
“symmetrically”. In the late-time regime, bubbles are regular
whereas spikes can be singular and move faster than the
nonlinear asymptotic solutions prescribes. A number of special
solutions are identified in the family of nonlinear solutions for
RT/RM bubbles/spikes, including critical solutions with largest
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curvature values, the convergence limit solutions, the Taylor
solutions with constant curvature magnitudes, the minimum
shear solutions, the Layzer-drag solutions and the fastest
Atwood solutions. We define the Layzer-drag solutions by
using the velocity re-scaling of RT bubbles/spikes with which
observations tend to compare well, and we elaborate the
dependence of the curvature and the velocity magnitudes
on the fluid density ratio over a broad range of acceleration
magnitudes, including the RT type limit of large accelerations
and the RM type limit of small accelerations. For RT/RM
bubbles, the fastest Atwood solution corresponds to the
curved bubble in the RT limit of strong accelerations and
to the flat bubble in the RM limit of weak accelerations. For
RT/RM spikes, the fastest Atwood solution corresponds to the
curved spike with singular velocity and shear and with the
same curvature value in the RT and RM limits. These results
can be compared with future observations [6–8, 18, 20,
23–33].

Our analysis captures the physics of linear and nonlinear RT/
RM dynamics induced by variable acceleration and also RT-to-
RM transition. Our theory can be extended to higher orders,
including spatial expansion of the governing equations and the
Fourier harmonics of the heavy and light fluids, leading to minor
quantitative corrections, similarly to previous work [40, 41]. Our
analysis can also be extended to other symmetries and
dimensionalities, including two-dimensional flows and three-
dimensional flows with, e.g., hexagonal, rhombic and
rectangular symmetries in the plane normal to the acceleration
direction [6, 8]. This permits the systematic investigation of linear
and nonlinear RT/RM dynamics and RT-to-RM transition as well
as properties of the dimensional 3D-to-2D crossover, to be done
in the future.

Our present work is focused on RT/RM dynamics driven by
variable accelerationa g � Gta with a � −2 and RT-to-RM
transition for ideal incompressible fluids. While this
approximation is reasonable and is held even for strong-
shock-driven RMI [20, 22, 27], a systematic theoretical study
is required of RT/RM dynamics and RT-to-RM transition for
compressible and viscous fluids. The study is especially
important for purposes of comparison of the theory with
the simulations. We address to the future the systematic

investigations of the effect of compressibility and viscosity
on RT/RM dynamics.

Our analysis has investigated the dependence of RT-to-RM
transition on the fluid density ratio and on the acceleration
strength for both linear and nonlinear dynamics, it agrees
qualitatively with available observations [20, 23–33], and
elaborates extensive theory benchmarks, not diagnosed
before, for future experiments and simulations. These
include, for instance, the velocity and pressure fields, the
interface morphology and bubble/spike curvatures, the
interfacial shear and its link to the bubble/spike velocities
and curvatures, the spectral properties of the velocity and
pressure, along with the interface growth and growth rate. By
identifying these properties and comparing them to data
obtained for actual fluids, we may further enhance our
knowledge of RT/RM dynamics in realistic environments
[8–18]. And hence achieve a better understanding of RT/
RM relevant processes in Nature and technology [8–18]. We
can also help to improve numerical modeling and
experimental diagnostics of the interfacial dynamics of
fluids, plasmas and materials [20, 23–33].
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