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Through symbolic computation with Maple, fifty-seven sets of rational wave solutions to the generalized Calogero-Bogoyavlenskii-
Schiff equation are presented by employing the generalized bilinear operator when the parameter p = 2. Via the three-dimensional
plots and contour plots with the help of Maple, the dynamics of these solutions are described very well. These solutions have greatly
enriched the exact solutions of the generalized Calogero-Bogoyavlenskii-Schiff equation on the existing literature. The result will be
widely used to describe many nonlinear scientific phenomena.

1. Introduction

It is well known that nonlinear evolution equations (NLEEs)
play an important and significant role in describing nonlin-
ear scientific phenomena, such as fluid dynamics, plasma
physics, chemistry, marine engineering, optics, and physics.
Rational solutions to NLEEs help us understand the physical
phenomena they describe in nature. Searching for rational
solutions of NLEEs has become a major concern partly due
to the availability of computer symbolic systems like Maple,
which allow us to deal with some complicated and tedious
algebraic calculation. Through the unremitting efforts of
mathematicians, many effective methods for solving NLEEs
have been established and developed, including Lie symme-
try transformation, inverse scattering transformation,
Darboux transformation, and Hirota’s bilinear theory. Par-
ticularly, the Hirota bilinear method was proposed by Hirota,
a Japanese scholar, in 1971 to solve the problem of N soliton
solution of the nonlinear evolution equation [1]. By using a
transformation of the potential function of NLEEs and the
definition and properties of the D operator, NLEEs are writ-
ten in bilinear form, and then, the single-double-multiple

soliton solutions of NLEEs can be obtained by using the small
parameter expansion method. Based on these methods, one
can try to find many interesting analytical solutions of
NLEEs, such as the rogue wave solutions [2–4], the multiple
wave solutions [5, 6], the lump solutions [7–9], the periodic
wave solutions [10–13], the Wronskian solutions [14, 15],
the rational solutions [16, 17], the high-order soliton solu-
tions [18, 19], the solitary wave solutions [20, 21], and the
other solutions [22–27].

The rest of this paper is arranged as follows. We will get
the bilinear form of the gCBS equation in Section 2. In Sec-
tion 3, the rational wave solutions will be gained by using
the polynomial method. A few of conclusion and outlook will
be given in Section 4.

2. Bilinear Form of the gCBS Equation

We consider a generalized Calogero-Bogoyavlenskii-Schiff
(gCBS) equation [28, 29]:

PgCBS u, vð Þ≔ ut + uxxy + 3uuy + 3uxvy + auy + bvyy = 0, ð1Þ

Hindawi
Advances in Mathematical Physics
Volume 2021, Article ID 9295547, 10 pages
https://doi.org/10.1155/2021/9295547

https://orcid.org/0000-0001-9687-5116
https://orcid.org/0000-0003-3546-6751
https://orcid.org/0000-0002-8165-9610
https://orcid.org/0000-0002-8299-2407
https://orcid.org/0000-0003-3584-3131
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9295547


where a and b are two constants, or equivalently,

vtx + vxxxy + 3vxvxy + 3vxxvy + avxy + bvyy = 0, ð2Þ

where u = vx. This is a generalization of a (2 + 1)-dimensional
CBS equation

vtx + vxxxy + 3vxvxy + 3vxxvy = 0, ð3Þ

whose coefficients have a different pattern from the original
one. The CBS equation was first constructed by Bogoyavlens-
kii and Schiff in different ways. Bogoyavlenskii used the
modified Lax formalism, whereas Schiff derived the same
equation by reducing the self-dual Yang-Mills equation.
Recently, the lump solutions of the gCBS equation have been
solved [28].

Under dependent variable transformation,

u = 2 lnfð Þxx, v = 2 lnfð Þx: ð4Þ

Equation (1) is transformed into the following general-
ized bilinear form.

BgCBS fð Þ≔ Dp,tDp,x +D3
p,x Dp,y + aDp,xDp,y + bD2

p,y

� �
f · f ,

ð5Þ

where p being an arbitrarily given natural number [30], often
a prime number

Dn1
p,x1 ⋯DnM

p,xMa ⋅ b x1,⋯,xMð Þ

=
YM
i=1

∂
∂xi

+ α
∂
∂xi′

 !ni

a x1,⋯,xMð Þb x1′ ,⋯,xM′
� �

× x ′=x1,⋯,x ′=xM

��� ,

ð6Þ

where n1,⋯, nM are arbitrary nonnegative integers.
If we take p = 2, we obtain the Hirota bilinear equation

BgCBS fð Þ≔ 2 f tx f − f t f x + f xxxy f − f xxx f y − 3f xxy f x + 3f xx f xy
h

+ a f xy f − f x f y
� �

+ b f yy f − f 2y
� �i

= 0:

ð7Þ

If we take p = 3, we obtained the generalized bilinear equation

BgCBS fð Þ≔ 2 f tx f − f t f x + 3f xx f xy + a f xy f − f x f y
� �h

+ b f yy f − f 2y
� �i

= 0:
ð8Þ

The transform (4) is also a characteristic transformation
for establishing Bell polynomial theory of soliton equation
[31]. Its exact relation is as follows:

PgCBS u, vð Þ = BgCBS fð Þ
f 2

� �
x: ð9Þ

Hence, if f solves the generalized bilinear gCBS equation
(7), the gCBS equation (1) will be solved.

3. Rational Wave Solutions for the
gCBS Equation

In this section, we want to discuss the rational wave solutions
to the gCBS equation by using the polynomial solutions.

Let

f = 〠
2

i=0
〠
2

j=0
〠
2

k=0
Ci,j,kx

iyjtk, ð10Þ

where the Ci,j,k are constants, with the help of the computer
algebra system Maple, and substituting (10) into equation
(7), we obtain a set of algebraic equations. Solving the set of
algebraic equations, we can find 57 solutions, but for lack of
space, we will list only the following solutions:

Case 1.

C0,0,0 =
C1,0,0 aC0,1,1C1,0,0C1,0,1 + bC0,1,1

2C1,0,0 + C0,0,1C1,0,1
2� �

C1,0,1
3 ,

C0,0,2 = −
C0,1,1 aC1,0,1 + C0,1,1bð Þ

C1,0,1
,

C0,1,0 =
C1,0,0C0,1,1

C1,0,1
, C0,1,2 = C0,2,0 = C0,2,1 = C0,2,2 = C1,0,2

= C1,1,0 = C1,1,1, = C1,1,2 = C1,2,0 = 0,

C1,2,1 = C1,2,2 = C2,0,0 = C2,0,1 = C2,0,2 = C2,1,0 = C2,1,1
= C2,1,2 = C2,2,0 = C2,2,1 = C2,2,2 = 0:

ð11Þ

Case 2.

C0,0,0 =
C1,0,0C0,0,2

C1,0,2
, C0,0,1 =

C1,0,1C0,0,2
C1,0,2

, C0,1,0 = −
aC1,0,0

b
,

C0,1,1 = −
aC1,0,1

b
, C0,1,2 = −

aC1,0,2
b

, C0,2,0 = 0,

C0,2,1 = C0,2,2 = C1,1,0 = C1,1,1 = C1,1,2 = C1,2,0 = C1,2,1 = C1,2,2
= C2,0,0 = C2,0,1 = C2,0,2 = C2,1,0 = 0,

C2,1,1 = C2,1,2 = C2,2,0 = C2,2,1 = C2,2,2 = 0: ð12Þ

Case 3.

C0,0,0 = C0,1,0 = 0, C0,1,2 =
C0,0,2C0,1,1

C0,0,1
, C0,2,0 = C0,2,1 = C0,2,2

= C1,0,0 = 0, C1,0,1 = −
bC0,1,1

a
,
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C1,0,2 = −
bC0,1,1C0,0,2

C0,0,1a
, C1,1,0 = C1,1,1 = C1,1,2 = C1,2,0 = C1,2,1

= C1,2,2 = C2,0,0 = C2,0,1 = 0,

C2,0,2 = C2,1,0 = C2,1,1 = C2,1,2 = C2,2,0 = C2,2,1 = C2,2,2 = 0:
ð13Þ

Case 4.

C0,0,1 = C0,1,1 = 0, C0,1,2 =
C0,1,0C0,0,2

C0,0,0
, C0,2,0 = C0,2,1 = C0,2,2

= 0, C1,0,0 = −
bC0,1,0

a
, C1,0,1 = 0,

C1,0,2 = −
bC0,1,0C0,0,2

aC0,0,0
, C1,1,0 = C1,1,1 = C1,1,2 = C1,2,0

= C1,2,1 = C1,2,2 = C2,0,0 = C2,0,1 = 0,

C2,0,2 = C2,1,0 = C2,1,1 = C2,1,2 = C2,2,0 = C2,2,1 = C2,2,2 = 0:
ð14Þ

Case 5.

C0,0,2 = 0, C0,1,1 =
C0,0,1C0,1,0

C0,0,0
, C0,1,2 = C0,2,0 = C0,2,1 = C0,2,2

= 0, C1,0,0 = −
bC0,1,0

a
, C1,0,2 = C1,1,0 = 0,

C1,0,1 = −
C0,0,1C0,1,0b

aC0,0,0
, C1,1,1 = C1,1,2 = C1,2,0 = C1,2,1 = C1,2,2

= C2,0,0 = C2,0,1 = C2,0,2 = C2,1,0 = C2,1,1 = 0,

C2,1,2 = C2,2,0 = C2,2,1 = C2,2,2 = 0: ð15Þ

Case 6.

C0,0,0 =
C0,1,0

2C2,0,0 + C0,2,0C1,0,0
2

4C0,2,0C2,0,0
,

C0,0,1 = −
aC0,1,0C2,0,0 − bC0,2,0C1,0,0

C2,0,0
, C0,1,1 = −2C0,2,0a,

C0,0,2 =
C0,2,0 a2C2,0,0 + b2C0,2,0

� �
C2,0,0

, C0,1,2 = C0,2,1 = C0,2,2

= 0, C1,0,1 = 2bC0,2,0,

C1,2,1 = C1,2,2 = C2,0,1 = C2,0,2 = C2,1,0 = C2,1,1 = C2,1,2
= C2,2,0 = C2,2,1 = C2,2,2 = 0,

C1,0,2 = C1,1,0 = C1,1,1 = C1,1,2 = C1,2,0 = 0: ð16Þ

Case 7.

C0,0,1 =
a2C1,0,1

2 − b2C0,1,1
2

4a2C2,0,1
, C0,0,2 = −

a aC1,0,1 + bC0,1,1ð Þ
b

,

C0,1,2 =
2a3C2,0,1

b2
, C0,2,1 = −

a2C2,0,1
b2

,

C0,0,0 = C0,1,0 = C0,2,0 = 0, C0,2,2 = 0, C1,0,0 = 0, C1,0,2

= −
2a2C2,0,1

b
, C1,1,0 = C1,1,1 = C1,1,2 = 0,

C1,2,0 = C1,2,1 = C1,2,2 = C2,0,0 = C2,0,2 = C2,1,0 = C2,1,1
= C2,1,2 = C2,2,0 = C2,2,1 = C2,2,2 = 0:

ð17Þ

Case 8.

C0,0,0 = C0,1,0 = C0,1,2 = C0,2,0 = C0,2,1 = C0,2,2 = C1,0,0

= 0, C1,0,1 = −
C0,1,1

2b
C0,1,1a + C0,0,2

, C1,0,2 = 0,

C1,1,0 = C1,1,1 = C1,1,2 = C1,2,0 = C1,2,1 = C1,2,2 = C2,0,0
= C2,0,1 = C2,0,2 = C2,1,0 = C2,1,1 = C2,1,2 = 0,

C2,2,0 = C2,2,1 = C2,2,2 = 0: ð18Þ

Case 9.

C0,0,2 = C0,1,1 = C0,1,2 = C0,2,0 = C0,2,1 = C0,2,2 = 0, C1,0,1

= C1,1,0C0,0,1
C0,1,0

, C1,0,2 = C1,1,1 = 0,

C1,0,0 =
a2C0,0,0C0,1,0

2C1,1,0 − abC0,1,0
4 + 2aC0,0,0C0,0,1C0,1,0C1,1,0 − bC0,0,1C0,1,0

3

C0,1,0 a2C0,1,0
2 + 2aC0,0,1C0,1,0 + C0,0,1

2� �

−
6bC0,1,0

2C1,1,0
2 + C0,0,0C0,0,1

2C1,1,0
C0,1,0 a2C0,1,0

2 + 2aC0,0,1C0,1,0 + C0,0,1
2� � ,

C1,1,2 = C1,2,0 = C1,2,1 = C1,2,2 = 0, C2,0,0 = −
bC0,1,0C1,1,0
C0,1,0a + C0,0,1

, C2,0,1

= C2,0,2 = C2,1,0 = C2,1,1 = 0, C2,1,2 = C2,2,0 = C2,2,1 = C2,2,2 = 0:
ð19Þ

Case 10.

C0,0,0 =
C1,1,0 a2C0,1,1C1,0,1 + abC0,1,1

2 + 6bC1,1,1
2� �

a2C1,1,1
2 ,

C0,0,1 =
a2C0,1,1C1,0,1 + abC0,1,1

2 + 6bC1,1,1
2

a2C1,1,1
,

C0,0,2 = 0, C0,1,0 =
C1,1,0C0,1,1

C1,1,1
, C0,1,2 = C0,2,0 = C0,2,1

= C0,2,2 = 0, C1,0,0 =
C1,1,0C1,0,1

C1,1,1
, C1,0,2 = 0,
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Figure 1: Continued.
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C1,1,2 = C1,2,0 = C1,2,1 = C1,2,2 = 0, C2,0,0 = −
bC1,1,0

a
, C2,0,1

= −
bC1,1,1

a
, C2,0,2 = C2,1,0 = C2,1,1 = 0,

C2,1,2 = C2,2,0 = C2,2,1 = C2,2,2 = 0: ð20Þ

The constant Ci,j,k involved are arbitrary as long as the

solution is meaningful, considering the transformation of
the coefficient Ci,j,k.

By observation, we can divide the 57 sets of solutions into
two classes, Cases 1–5 belong to the first class, Cases 6–10
belong to the second class.

Here, let us first discuss the solution of Case 1. Through
the transformation (4), we get the following solution to the
gCBS equation
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Figure 1: 3D plots and contour plots of equation (21) by choosing a = 7, b = 5, C0,0,1 = 6, C0,1,1 = 6, C1,0,0 = 8, C1,0,1 = 10.
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Figure 2: Continued.
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Figure 2: 3D plots and contour plots of equation (24) by choosing a = 2, b = 2, C0,1,0 = 1, C0,2,0 = 1, C1,0,0 = 1, C2,0,0 = 1.
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u = −2 p
2

f 2
, ð21Þ

where the functions p and f are given as follows:

p = C1,0,1t + C1,0,0,

f = C1,0,0 aC0,1,1C1,0,0C1,0,1 + bC0,1,1
2C1,0,0 + C0,0,1C1,0,1

2� �

C1,0,1
3

+ C0,0,1t −
C0,1,1 aC1,0,1 + bC0,1,1ð Þt2

C1,0,1
+ C1,0,0C0,1,1y

C1,0,1

+ C0,1,1yt + C1,0,1xt + C1,0,0x:

ð22Þ

In order to analyze the dynamics properties briefly, we
would like to discuss the evolution characteristic. By choos-
ing appropriate values of these parameters in (21), we set

a = 7, b = 5, C0,0,1 = 6, C0,1,1 = 6, C1,0,0 = 8, C1,0,1 = 10: ð23Þ

The three-dimensional dynamic graphs and correspond-
ing contour plots of the solution were successfully depicted in
Figure 1.

Correspondingly, Figure 1 displays the whole process of
the creation and disappearance of the rogue wave aroused
by solution (21). From the coordinates, that rogue wave is
almost uniform over time. When t = −1:5 in Figure 1(a),
the wave appears gradually, and this obvious wave is moving
diagonally toward the center along the x- and y-axes
(Figures 1(a), 1(c), and 1(e)). When t = 0:9 in Figure 1(g)),
it comes to the center. Then, this wave is moving diagonally
away from the center along the x- and y-axes (Figures 1(f),
1(d), and 1(b)). When t = 3:3 in Figure 1(g), this obvious
wave disappears gradually. As can be seen, when time
approaches zero, the amplitude of rogue wave increases the
maximum and then decreases. So the asymptotic behavior
of u can be obtained, the solution u⟶ 0 as t⟶∞. We
hope our work in this paper contributes to the study of
multidimensional and higher-order rogue waves.

Second, let us discuss the solution of Case 6, and the rest
of the cases are the same, the rational wave solutions to the
gCBS equation read

u = 4C2,0,0
f

− 2 p
2

f 2
, ð24Þ

where the functions p and f are given as follows:

p = 2btC0,2,0 + 2xC2,0,0 + C1,0,0,

f = C0,1,0
2C2,0,0 + C0,2,0C1,0,0

2

4C0,2,0C2,0,0
−

aC0,1,0C2,0,0 − bC0,2,0C1,0,0ð Þt
C2,0,0

+ C0,2,0 a2C2,0,0 + b2C0,2,0
� �

t2

C2,0,0
+ C0,1,0y − 2C0,2,0ayt + C0,2,0y

2

+ 2bC0,2,0xt + C1,0,0x + C2,0,0x
2:

ð25Þ

In order to analyze the dynamics properties briefly, we
would like to discuss the evolution characteristic. By choos-
ing appropriate values of these parameters in (24), we set

a = 2, b = 2, C0,1,0 = 1, C0,2,0 = 1, C1,0,0 = 1, C2,0,0 = 1: ð26Þ

The three-dimensional dynamic graphs of the solution
and corresponding contour plots were successfully depicted
in Figure 2. Correspondingly, Figure 2 displays the whole
motion process of the rogue wave aroused by solution (24).
As can be seen in Figure 2, when t = −5 in Figure 2(a), an
obvious wave starts to appear, and this obvious wave is mov-
ing toward the center along the negative y-axis (Figures 2(a),
2(c), and 2(e)). When t = 0 in Figure 2(g), it comes to the cen-
ter. Then, this wave is moving away from the center along the
positive y-axis (Figures 2(f), 2(d), and 2(b)). When t = 5 in
Figure 2(b), this obvious wave reaches the edge and is about
to disappear. From the coordinates, the rational wave is
almost uniform over time. When the sign of the t is reversed,
we can receive that the waves are centrosymmetric with
respect to coordinates’ origin, and the waves have the same
amplitude.

4. Conclusion and Outlook

In conclusion, based on the generalized bilinear form of the
gCBS equation, we obtained rich rational wave solutions of
the gCBS equation. We obtained fifty-seven sets of rational
wave solutions and list two solutions to analyze. We success-
fully depicted the three-dimensional graphs and the corre-
sponding contour plots of the rational wave solutions. The
3D plots and contour plots in Figures 1 and 2 are given to dis-
play the dynamic process of the rogue wave, and the rational
wave solutions contribute to the study of multidimensional
and higher-order rogue waves. Some researchers have
studied the exact solutions of (2 + 1)-dimensional Calogero-
Bogoyavlenskii-Schiff equation, such as lump solutions
[28], breather wave solutions, and periodic lump soliton solu-
tions [29]. The obtained new rational wave solutions in this
paper are different from the existing solutions. These solutions
will greatly expand the exact solutions of (2 + 1)-dimensional
Calogero-Bogoyavlenskii-Schiff equation on the existing liter-
ature [28, 29]. It is worthwhile to mention that the proposed
method is reliable and effective and gives more solutions.
We can imagine that the bilinear form of the gCBS equation
and such structural solutions will be useful to investigate many
nonlinear dynamics of interaction phenomena in fluids and
plasmas fields.

8 Advances in Mathematical Physics



Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (12061054 and 11661060), the Program
for Young Talents of Science and Technology in Universities
of Inner Mongolia Autonomous Region (NJYT-20-A06), and
the Natural Science Foundation of Inner Mongolia Autono-
mous Region of China (2018LH01013).

References

[1] R. Hirota, The Direct Method in Soliton Theory, Cambridge
University Press, New York, 2009.

[2] J. G. Liu and W. H. Zhu, “Multiple rogue wave, breather wave
and interaction solutions of a generalized (3+1) dimensional
variable-coefficient nonlinear wave equation,” Nonlinear
Dynamics, vol. 103, no. 2, pp. 1841–1850, 2021.

[3] Q. Pan, W. C. Chung, and K. W. Chow, “The coupled Hirota
system as an example displaying discrete breathers: rogue
waves, modulation instability and varying cross-phase modu-
lations,” AIP Advances, vol. 8, no. 9, 2018.

[4] X. Lü, W. X. Ma, J. Yu, and C. M. Khalique, “Solitary waves
with the Madelung fluid description: a generalized derivative
nonlinear Schrödinger equation,” Communications in Nonlin-
ear Science and Numerical Simulation, vol. 31, no. 1-3, pp. 40–
46, 2016.

[5] L. N. Gao, Y. Y. Zi, Y. H. Yin, W. X. Ma, and X. Lü, “Bäcklund
transformation, multiple wave solutions and lump solutions to
a (3+1)-dimensional nonlinear evolution equation,” Nonlinear
Dynamics, vol. 89, no. 3, pp. 2233–2240, 2017.

[6] L. N. Gao, X. Y. Zhao, Y. Y. Zi, J. Yu, and X. Lü, “Resonant
behavior of multiple wave solutions to a Hirota bilinear equa-
tion,” Computers & Mathematics with Applications, vol. 72,
pp. 1225–1229, 2016.

[7] J. G. Liu, “Stripe solitons and lump solutions to a generalized
(3+1)-dimensional B-type Kadomtsev-Petviashvili equation
with variable coefficients in fluid dynamics,” Journal of Math-
ematical Analysis and Applications, vol. 502, 2021.

[8] J. G. Liu, S. M. Osman, W. H. Zhu, L. Zhou, and D. Baleanu,
“The general bilinear techniques for studying the propagation
of mixed-type periodic and lump-type solutions in a
homogenous-dispersive medium,” AIP Advances, vol. 10,
no. 10, 2020.

[9] W. X. Ma and L. Q. Zhang, “Lump solutions with higher-order
rational dispersion relations,” Pramana-Journal of Physics,
vol. 94, no. 1, 2020.

[10] J. G. Liu and Y. Qing, “Exact periodic cross-kink wave solu-
tions for the (2+1)-dimensional Korteweg-de Vries equation,”
Analysis and Mathematical Physics, vol. 10, no. 4, p. 54, 2020.

[11] Y. Z. Li and J. G. Liu, “New periodic solitary wave solutions for
the new (2+1)-dimensional Korteweg-de vries equation,”Non-
linear Dynamics, vol. 91, no. 1, pp. 497–504, 2018.

[12] R. S. Johnson, “Periodic waves over constant vorticity: some
asymptotic results generated by parameter expansions,”Wave
Motion, vol. 46, no. 6, pp. 339–349, 2009.

[13] H. H. Dong and Y. F. Zhang, “Exact periodic wave solution of
extended (2+1)-dimensional shallow water wave equation
with generalized Dp-operators,” Communications in Theoreti-
cal Physics, vol. 63, no. 4, pp. 401–405, 2015.

[14] W. X. Ma and Y. You, “Solving the Korteweg-de Vries equa-
tion by its bilinear form: Wronskian solutions,” Transactions
of the American Mathematical Society, vol. 357, pp. 1753–
1778, 2005.

[15] W. X. Ma, C. X. Li, and J. S. He, “A second Wronskian formu-
lation of the Boussinesq equation,” Nonlinear Analysis: The-
ory, Methods & Applications, vol. 70, no. 12, pp. 4245–4258,
2009.

[16] T. Ak, M. S. Osman, and H. A. Kara, “Polynomial and rational
wave solutions of Kudryashov-Sinelshchikov equation and
numerical simulations for its dynamic motions,” Journal of
Applied Analysis & Computation, vol. 10, no. 5, pp. 2145–
2162, 2020.

[17] X. Lü, W. X. Ma, S. T. Chen, and C. M. Khalique, “A note on
rational solutions to a Hirota-Satsuma-like equation,” Applied
Mathematics Letters, vol. 71, no. 8, pp. 1560–1567, 2016.

[18] B. Yang and Y. Chen, “Dynamics of high-order solitons in the
nonlocal nonlinear Schrödinger equations,” Nonlinear
Dynamics, vol. 94, no. 1, pp. 489–502, 2018.

[19] X. E. Zhang and Y. Chen, “General high-order rogue waves to
nonlinear Schrdinger-Boussinesq equation with the dynamical
analysis,” Nonlinear Dynamics, vol. 93, no. 4, pp. 2169–2184,
2018.

[20] M. Hossen, R. Belal, A. HO, and Z. Md, “Characteristics of the
solitary waves and rogue waves with interaction phenomena in
a (2 + 1)-dimensional Breaking Soliton equation,” Physics Let-
ters A, vol. 382, no. 19, pp. 1268–1274, 2018.

[21] M. Hossen and W. X. Ma, “Dynamics of mixed lump-solitary
waves of an extended (2+1)-dimensional shallow water wave
model,” Physics Letters A, vol. 382, no. 45, pp. 3262–3268,
2018.

[22] X. M.Wang and S. D. Bilige, “Novel interaction phenomena of
the (3+1)-dimensional Jimbo-Miwa equation,” Communica-
tions in Theoretical Physics, vol. 72, no. 4, 2020.

[23] Y. H. Yin, W. X. Ma, J. G. Liu, and X. Lü, “Diversity of exact
solutions to a (3+1)-dimensional nonlinear evolution equation
and its reduction,” Computers & Mathematcs with Applica-
tions, vol. 76, no. 6, pp. 1275–1283, 2018.

[24] T. Xu and Y. Chen, “Mixed interactions of localized waves in
the three-component coupled derivative nonlinear Schrödin-
ger equations,” Nonlinear Dynamics, vol. 92, no. 4, pp. 2133–
2142, 2018.

[25] X. Q. Gao, S. D. Bilige, J. Q. Lü, Y. X. Bai, R. F. Zhang, and
T. Chaolu, “Abundant lump solutions and interaction solu-
tions of the (3+1)-dimensional Kadomtsev-Petviashvili equa-
tion,” Thermal Science, vol. 23, no. 4, pp. 2437–2445, 2019.

[26] X. Y. Wen and D. S. Wang, “Modulational instability and
higher order-rogue wave solutions for the generalized discrete
Hirota equation,” Wave Motion, vol. 79, pp. 84–97, 2018.

[27] F. H. Lin, S. T. Chen, Q. X. Qu, J. P. Wang, X. W. Zhou, and
X. Lü, “Resonant multiple wave solutions to a new (3+1)

9Advances in Mathematical Physics



dimensional generalized Kadomtsev-Petviashvili equation:
linear superposition principle,” Applied Mathematics Letters,
vol. 78, pp. 112–117, 2018.

[28] S. T. Chen and W. X. Ma, “Lump solutions of a generalized
Calogero-Bogoyavlenskii-Schiff equation,” Computers &
Mathematcs with Applications, vol. 76, no. 7, pp. 1680–1685,
2018.

[29] L. H. Han, S. D. Bilige, R. F. Zhang, and M. Y. Li, “Study on
exact solutions of a generalized Calogero-Bogoyavlenskii
Schiff equation,” Partial Differential Equations in Applied
Mathematics, vol. 2, p. 100010, 2020.

[30] W. X. Ma, “Generalized bilinear differential equations,” Stud-
ies in Nonlinear Sciences, vol. 2, pp. 140–144, 2011.

[31] W. X. Ma, “Bilinear equations, Bell polynomials and linear
superposition principle,” Journal of Physics: Conference Series,
vol. 411, 2013.

10 Advances in Mathematical Physics


	Rational Wave Solutions and Dynamics Properties of the Generalized (2+1)-Dimensional Calogero-Bogoyavlenskii-Schiff Equation by Using Bilinear Method
	1. Introduction
	2. Bilinear Form of the gCBS Equation
	3. Rational Wave Solutions for the gCBS Equation
	4. Conclusion and Outlook
	Data Availability
	Conflicts of Interest
	Acknowledgments

