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In this article, the effect of electromagnetic force with the effect of thermal radiation on the Williamson nanofluid on a stretching
surface through a porous medium was studied considering the effect of both heat generation/absorption and Joule heating. On the
other hand, the effect of Brownian motion and thermophoresis coefficients was considered. The system of nonlinear partial
differential equations governing the study of fluid flow has transformed into a system of ordinary differential equations using
similarity transformations and nondimensional variables which were subsequently solved numerically by using the Rung-Kutta
fourth-order method with shooting technique. Moreover, the effect of the resulting physical parameters on the distributions of
velocity, temperature, and concentration of nanoparticles has been studied by using graphical forms with an interest in
providing physical meanings to each parameter. Finally, special diagrams were made to explain the study of the effect of some
physical parameters on the skin friction coefficient and the local Nusselt number; these results led to reinforcement in the values
of the skin friction coefficient for the increased values of the magnetic field and the Darcy number while the effect on the local
Nusselt number by thermal radiation as well as the heat generation/absorption coefficients became negative.

1. Introduction

In recent years, the study of non-Newtonian fluids has
received the attention of researchers in the field of hydrody-
namics around the world due to the enormous scientific
developments in their applications. The Williamson fluid is
one of the most important non-Newtonian fluids character-
ized by less viscosity with an increase in the rate of shear
stress and very similar in its properties of polymeric solu-
tions, for example. In another meaning, in the Williamson
fluid model, the effective viscosity should lessen indefinitely

with the rising shear rate, which is nothing but infinite vis-
cosity at stationary and nil viscosity as the shear rate tends
to infinity. A model of Williamson has been discovered by
Williamson [1] in 1929, while Subbarayudu et al. [2] investi-
gated the assessment of time-dependent flow of Williamson
fluid with radiative blood flow against a wedge. On the other
hand, Lyubimova et al. [3] analyzed the stability of quasiequi-
librium states and supercritical regimes of thermal vibra-
tional convection of Williamson fluid in zero gravity
conditions, but multiple solutions for MHD transient flow
of Williamson nanofluids with convective heat transport
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were studied by Hashim et al. [4]. Hamid et al. [5] discussed
an investigation of thermal and solutal stratification effects
on mixed convection flow and heat transfer of Williamson
nanofluid.

Nanofluids are a modern class of fluids discovered by
Choi [6]. Researchers in the field of studying fluids around
the world have paid attention to this type of fluids, which
plays an important role in many modern technological appli-
cations that serve life. On the other hand, nanofluids enter
many industries, for example, the satellite industry. Nano-
fluids also have an important role in the medical fields, for
example, also in the use of nanoparticles of gold in the treat-
ment of cancerous tumors, as well as the manufacture of
microscopic bombs that are used to eliminate cancerous
tumors as well. Sajadifar et al. [7] examined fluid flow and
heat transfer of non-Newtonian nanofluid in a microtube
considering slip velocity and temperature jump boundary
conditions, while Khan and Pop [8] investigated boundary-
layer flow of a nanofluid past a stretching sheet, and at the
same time, Farooq et al. [9] analyzed MHD stagnation point
flow of viscoelastic nanofluid with nonlinear radiation effects.
Very recently, Ahmed et al. [10] explained magnetohydrody-
namic Maxwell nanofluid flow over a stretching surface
through a porous medium: effects of nonlinear thermal radi-
ation, convective boundary conditions, and heat generatio-
n/absorption. Alshomrani [11] studied generalized Fourier’s
and Fick’s laws in bioconvection flow of magnetized Burgers
nanofluid utilizing motile microorganisms. Alshomrani [12]
investigated numerical investigation for bioconvection flow
of viscoelastic nanofluid with magnetic dipole and motile
microorganisms. Loganathan and Rajan [13] excogited an
entropy approach of Williamson nanofluid flow with Joule
heating and zero nanoparticle mass flux. It was found from
this study that the velocity distribution decreases with
increasing the values of the magnetic field parameter while
the temperature distribution increases with increasing the
values of this parameter. Khan et al. [14] illustrated evaluat-
ing the characteristics of the magnetic dipole for shear-
thinning Williamson nanofluid with thermal radiation. Khan
et al. [15] represented changes in viscosity of Williamson
nanofluid flow due to thermal and solutal stratification. Hayat
et al. [16] explained mixed convective three-dimensional flow
ofWilliamson nanofluid subject to chemical reaction. Ramzan
et al. [17] analyzed Darcy-Forchheimer 3DWilliamson nano-
fluid flow with generalized Fourier and Fick’s laws in a strati-
fied medium. It was observed from this study that the velocity
distribution was decreased by the influence of the magnetic
field parameter and also by the influence of the Williamson
fluid parameter.

Electromagnetic fluid dynamics (magnetohydrodynamic
fluid) is the study of fluids that have the characteristic of elec-
tromagnetic conductivity such as plasma fluids, metal fluids,
and salt water, and the first to start studying this field is Alf-
vén [18] in 1942. Mohamed et al. [19] studied MHD Jeffrey
nanofluid flow over a stretching sheet through a porous
medium in the presence of nonlinear thermal radiation and
heat generation/absorption. Also, Chandrashekar et al. [20]
examined a discontinuous Galerkin method for a two-
dimensional reduced resistive MHD model. A numerical

study of MHD mixed convection under volumetric heat
source in a vertical square duct with wall effects investigated
by Liu et al. [21]. Tassone et al. [22] excogitated MHDmixed
convection flow in the WCLL: heat transfer analysis and
cooling system optimization. Motsa et al. [23] illuminated
the spectral relaxation method and spectral quasilineariza-
tion. Khan et al. [24] studied peristaltic transport of a Jeffrey
fluid with variable viscosity through a porous medium in an
asymmetric channel. Ellahi [25] elucidated a study on the
convergence of series solutions of non-Newtonian third-
grade fluid with variable viscosity by means of the homotopy
analysis method. Umar et al. [26] investigated numerical
treatment for the three-dimensional Eyring-Powell fluid flow
over a stretching sheet with velocity slip and activation
energy. Ramesh et al. [27] explained heat transfer in MHD
dusty boundary layer flow over an inclined stretching sheet
with nonuniform heat source/sink.

Joule heating (also referred to as resistive or ohmic heat-
ing) describes the process where the energy of an electric cur-
rent is converted into heat as it flows through a resistance.
The explanation for this is that when electrical current flows
through solid or liquid materials that conduct electricity,
electrical energy is converted into heat energy through the
occurrence of resistances inside the conductor. In this case,
free electrons transfer energy by collisions. Ramzan et al.
[28] studied radiative and Joule heating effects in the MHD
flow of a micropolar fluid with partial slip and convective
boundary condition. Mohamed et al. [29] discussed the ther-
mal radiation and MHD effects on free convective flow of a
polar fluid through a porous medium in the presence of
internal heat generation and chemical reaction. Also, Tetbirt
et al. [30] discussed a numerical study of magnetic effect on
the velocity distribution field in a macro-/microscale of a
micropolar and viscous fluid in a vertical channel. At some
time, Ghadikolaei et al. [31] investigated numerical study
on magnetohydrodynamic CNT-water nanofluids as a
micropolar dusty fluid influenced by nonlinear thermal radi-
ation and joule heating effect. It is worth noting that Gireesha
et al. [32] investigated hall effects on dusty nanofluid two-
phase transient flow past a stretching sheet using the KVL
model. It was also reported that Aghanajafi et al. [33]
explained numerical simulation of laminar forced convection
of water-CuO nanofluid inside a triangular duct. But Hussain
et al. [34] examined the effects of viscous dissipation and
Joule heating on MHD Sisko nanofluid over a stretching
cylinder. Moreover, free convective heat and mass transfer
of MHD non-Newtonian nanofluids over a cone in the
presence of a nonuniform heat source/sink was studied
by Raju et al. [35]. Hayat et al. [36] excogitated radiative
flow of Jeffrey fluid in a porous medium with power law
heat flux and heat source. Meanwhile, Hartnett and Kostic
[37] analyzed heat transfer to Newtonian and non-
Newtonian fluids in rectangular ducts.

The main objective of the present work is to study the flow
of a non-NewtonianWilliamson fluid that contains nanopar-
ticles on a stretching sheet through a porous medium under
the influences of the magnetic field, nonlinear thermal radia-
tion, and Joule heating in the presence of heat generation/ab-
sorption and chemical reaction on the distributions of
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velocity, temperature, and concentration of nanoparticles
taking into account studying effects of the Brownian motion
coefficient and thermophoresis coefficient. On the other
hand, the similarity transformations and nondimensional
variables were used in converting the system of partial differ-
ential equations governing the movement of flow into a sys-
tem of ordinary differential equations, which were solved by
using the Runge-Kutta numerical method with a shooting
technique. The graphs were used to study the effects of all
physical parameters on the distributions of velocity, temper-
ature, and concentration of nanoparticles.

2. Formulation of the Problem

In the beginning, the study of Williamson nanofluid flow can
be shown in several steps: the first step is the fluid flow being
steady and incompressible, the second step is that the flowing
process is two-dimensional flow on a stretching surface
through a porous medium, and the third step is the plate is
stretched along the x-axis with a velocity Uw ðxÞ = Bx, where
B is the stretching rate. The basic equations for the balance of
mass, momentum, energy, and nanoparticle volume fraction
of the flow problem can be expressed in vector form as
follows.

2.1. Continuity Equation. The continuity equation for con-
servation of mass becomes

∇·q! = 0, ð1Þ

where ∇ is the differential operator and q! is the flow velocity
vector.

2.2. Conservation of Momentum Equation. The Navier-
Stokes equation for the balance of linear momentum is given
by

ρf
∂q!

∂t
+ q! · ∇
� �

q!
" #

= ∇ · �S + F
!
e −

μ

K
q!, ð2Þ

where ρf is the density of the nanofluid, t is the time, �S is the
Cauchy stress tensor, μ is the coefficient of dynamic viscosity,

F
!

e = J
!
× B

!
is the Lorentz force produced by the interaction

of the applied magnetic field with velocity of fluid, J
!
= σðE!

+ q! × B
!Þ is the current density, B

!
is the external magnetic

field, σ is the electrical conductivity, and K is the permeability
of the porous medium.

2.3. Conservation of Energy Equation. In the absence of vis-
cous dissipation effects, the conservation of energy for heat
transfer is given by the constitutive equation as

ρcPð Þf
∂T
∂t

+ q! · ∇
� �

T
� �

= ∇ · k∇Tð Þ + ρcPð Þp DB∇C · ∇T + DT

T∞
∇T · ∇Tð Þ

� �

− ∇qr + Jh +Q T − T∞ð Þ,

ð3Þ

where cP is the specific heat at constant pressure; ðρcPÞf and
ðρcPÞp are the specific heat of the nanofluid and the nanopar-
ticles, respectively; T is the temperature of the nanofluid; k is
the thermal conductivity; DB is the Brownian diffusion coef-
ficient; DT is the thermophoresis diffusion coefficient; T∞ is

the ambient temperature; qr is the radiative heat flux; Jh =
F
!

e · q
!
is the Joule heating, and Q is the uniform volumetric

heat generation/absorption.

2.4. Conservation of Nanoparticle Concentration Equation.
For a homogeneous chemical reaction [38], the concentra-
tion equation of nanoparticle volume fraction becomes

∂C
∂t

+ q! · ∇
� �

C =DB∇
2C + DT

T∞
∇2T − R∗ C − C∞ð Þ, ð4Þ

where C is the nanoparticle volume fraction and the rates
R∗ > 0 and R∗ < 0 denote destructive and constructive reac-
tion rates, respectively.

For the Williamson fluid model, Cauchy stress tensor �S is
defined as [26]

�S = −P�I + �τ, ð5Þ

�τ = μ∞ + μ0 − μ∞
1 − Γ γ

:

� �
�A1, ð6Þ

where P is pressure, �I is the unit tensor, �τ is the extra stress
tensor, μ0 is limiting viscosity at zero shear rate, μ∞ is limit-
ing viscosity at the infinite shear rate, Γ > 0 is a time constant,
�A1 is the first Rivlin-Erickson tensor, and γ: is defined as fol-
lows:

γ
: = π

2
� �1/2

, π = trace �A1
� 	2

: ð7Þ

Here, it is considered the case for μ∞ = 0 and Γ γ: < 1; thus,
Equation (6) can be written as follows:

�τ = μ0
1 − Γ γ

:

� �
�A1 = μ0 1 + Γ γ

:� 	
�A1: ð8Þ

The right-hand side of Equation (8) is done by using
binomial expansion. Making use of Equations (5) and (8)
into Equations (1) to (4), the two-dimensional boundary
layer equations governing the flow can be written as follows
[39]:

∂u
∂x

+ ∂u
∂y

= 0, ð9Þ
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u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2

+
ffiffiffi
2

p
νΓ

∂u
∂y

∂2u
∂y2

−
σB2

0
ρ

u −
ν

K
u, ð10Þ

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

−
1

ρcPð Þf
∂qr
∂y

+
ρcPð Þp
ρcPð Þf

� DB
∂C
∂y

∂T
∂y

� �
+ DT

T∞

� �
∂T
∂y

� �2
" #

+ σB2
o

ρcPð Þf
u2 + Q

ρcPð Þf
T − T∞ð Þ,

ð11Þ

u
∂C
∂x

+ v
∂C
∂y

=DB
∂2C
∂y2

+ DT

T∞

∂2T
∂y2

− R∗ C − C∞ð Þ, ð12Þ

where u is the velocity components in the direction of the x
-axis and v is the velocity components in the direction of
the y-axis; in addition, α represent the thermal diffusivity, ρ
refer to density of the fluid, and ν is the kinematic viscosity
of fluid; also, T and T∞, respectively, are fluid temperature
and ambient fluid temperature. A uniform magnetic field of
strength B0 is applied in the transverse direction of the flow;
due to the small magnetic Reynolds number, it is not neces-
sary to introduce the effect of the induced magnetic field. It
should be noted that DB, DT , σ, cP, and R∗ are, respectively,
the Brownian diffusion coefficient, the thermophoresis diffu-
sion coefficient, the electrical conductivity, the specific heat at
constant pressure, and destructive and constructive reaction
rates. Here, C and C∞ are the concentration of nanoparticles
and ambient nanoparticle concentration. It is worth noting
that the effect of nonlinear thermal radiation, heat source/-
sink, and Joule heating is taken in the energy equation. The
viscous dissipation is assumed to be negligibly small in the
energy equation. The effects of the homogenous chemical
reaction are taken in the concentration equation.

The boundary conditions for the present investigation
problem can be written in the formula:

u =Uw xð Þ, v = 0, T = Tw,DB
∂C
∂y

+ DT

T∞

∂T
∂y

= 0, at y = 0,

ð13Þ

u⟶ 0, v⟶ 0, T ⟶ T∞, C⟶ C∞, as y⟶∞,
ð14Þ

where UwðxÞ = Bx represent the stretching surface velocity
and B > 0 is the stretching rate, and the radiation heat flux
qr can be written as follows:

qr = −
4σ∗
3k∗

∂T4

∂y
= −

16σ∗
3k∗ T3 ∂T

∂y
, ð15Þ

∴
1

ρcPð Þf
∂
∂y

qrð Þ = 1
ρcPð Þf

∂
∂y

−
4σ∗

3k∗
∂T4

∂y

� �

= −
16σ∗

3k∗ ρcPð Þf
∂
∂y

T3 ∂T
∂y

� �
;

ð16Þ

when substituting by Equation (16) into Equation (11), the
energy equation takes the following form:

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

+ 16σ∗

3k∗ ρcPð Þf
∂
∂y

T3 ∂T
∂y

� �

+
ρcPð Þp
ρcPð Þf

DB
∂C
∂y

∂T
∂y

� �
+ DT

T∞

� �
∂T
∂y

� �2
" #

+ σB2
o

ρcPð Þf
u2 + Q

ρcPð Þf
T − T∞ð Þ,

ð17Þ

where σ∗ and k∗ are the Stefan-Boltzmann constant and
mean absorption coefficient; the similarity transformations
and nondimensional variables can be written as follows:

η =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uw xð Þ
νx

r
y, u = Bxf ′ ηð Þ, v = −

ffiffiffiffiffiffi
Bν

p
f ηð Þ, θ ηð Þ

= T − T∞
Tw − T∞

, ϕ ηð Þ = C − C∞
C∞

,
ð18Þ

where η is the similarity variable and f ðηÞ, θðηÞ, and ϕðηÞ,
respectively, are the dimensionless stream function, temper-
ature, and concentration of nanoparticles; the similarity
transformations and the nondimensional variables (18) were
used to convert the boundary layer governing partial differ-
ential Equations (10), (12), and (17) to a set of ordinary dif-
ferential equations taking the mathematical formulas:

f ″′ ηð Þ − f ′ ηð Þ
� �2

+ f ηð Þf ″ ηð Þ
+ λf ″ ηð Þf ″′ ηð Þ −Mf ′ ηð Þ −Daf ′ ηð Þ = 0,

ð19Þ

θ″ ηð Þ + Pr
�
R 1 + θw − 1ð Þθ ηð Þð Þ3θ′ ηð Þ
� �

′

+ Nbθ′ ηð Þϕ′ ηð Þ + Sθ ηð Þ + Nt θ′ ηð Þ
� �2

+MEc f ′ ηð Þ
� �2

+ θ′ ηð Þf ηð Þ
�
= 0,

ð20Þ

ϕ″ ηð Þ + Leϕ′ ηð Þf ηð Þ − Leγϕ ηð Þ + Nt
Nb

� �
θ″ ηð Þ = 0,

ð21Þ
where the boundary conditions (13) and (14) can be written
after converting as new follows:

f 0ð Þ = 0, f ′ 0ð Þ = 1, θ ηð Þ = 1, Nbϕ′ 0ð Þ + Ntθ′ 0ð Þ = 0, ð22Þ

f ′ ∞ð Þ⟶ 0, θ ∞ð Þ⟶ 0, ϕ ∞ð Þ⟶ 0, ð23Þ
with the knowledge that M = σB0

2/ρB is the magnetic field
parameter, R = 16σ∗T3

∞/3kk∗ is the nonlinear thermal radia-
tion parameter, Pr = ν/α is the Prandtl number, Nb = ðρcPÞp
DBC∞/νðρcPÞf is the Brownian motion parameter, Nt =
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ðρcPÞpDTðTw − T∞Þ/ðρcPÞf νT∞ is the thermophoresis
parameter, Le = ν/DB is the Lewis number, Da = μ/ρBK
is the Darcy number, S =Q/ðρcPÞf B is the heat generation
ðS > 0Þor absorption ðS < 0Þ parameter, γ = R∗/B is the chem-
ical reaction parameter, Ec =U2

wðxÞ/cPðTw − T∞Þ is the Eck-
ert number, and finally λ = Γx

ffiffiffiffiffiffiffiffiffiffiffi
2B3/υ

p
is the non-Newtonian

Williamson parameter.
Expression for the local Nusselt numberNux and the skin

friction coefficient Cf are defined as

Nux =
xqw
k

Tw − T∞ð Þ, ð24Þ

Cf =
τw

ρU2
w xð Þ : ð25Þ

And the reader will note that the dimensionless mass flux
represented by a Sherwood number Shx is now identically
zero and qw and τw are the heat flux and the shear stress
along the stretching surface, respectively, on the following
mathematical formulas:

qw = −α
∂T
∂y

� �
y=0

+ qrð Þy=0, ð26Þ

τw = μ
∂u
∂y

+ Γffiffiffi
2

p ∂u
∂y

� �2
" #

y=0

: ð27Þ

When substituting Equations (26) and (27) into Equa-
tions (24) and (25), the mathematical nondimensional for-
mulas of Equations (24) and (25) are

NuxffiffiffiffiffiffiffiRex
p = − 1 + Rθw

3� 	
θ′ 0ð Þ, ð28Þ

ffiffiffiffiffiffiffi
Rex

p
Cf = f ″ 0ð Þ 1 + λ

2 f
″ 0ð Þ

� �
, ð29Þ

where Rex = xUwðxÞ/ν is the local Reynolds number based
on the stretching velocity UwðxÞ. It should be noted that in
the absence of a magnetic field, porous medium, nonlinear
thermal radiation, heat generation/absorption, and finally
the chemical reaction, the work is due to Nadeem and Hus-
sain [39].

Table 1: A comparison between the numerical results of Khan and Pop [8] and the results of the current study through the values of −θ′ð0Þ in
the case of Pr = Le = 10 and in the absence of both M, Da, Ec, γ, S, and λ.

Nt
Nb = 0:1 Nb = 0:2 Nb = 0:3
−θ′ 0ð Þ −θ′ 0ð Þ −θ′ 0ð Þ

Khan and Pop [8] Present study Khan and Pop [8] Present study Khan and Pop [8] Present study

0.1 0.9524 0.9501 0.5056 0.5065 0.2522 0.2534

0.2 0.6932 0.6910 0.3654 0.3646 0.1816 0.1912

0.3 0.5201 0.5237 0.2731 0.2735 0.1355 0.1382

0.4 0.4026 0.4083 0.2110 0.2124 0.1046 0.1086

0.5 0.3211 0.3270 0.1681 0.1710 0.0833 0.0880

0
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f
′(
𝜂
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Ec = 0.4 = 𝜆 = 0.2

𝜃w =1.2, S = –0.1

6 7 8 9 10
𝜂

Figure 1: The velocity profile for different values of M.
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Figure 2: The velocity profile for different values of Da.
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3. Numerical Solution

The Runge-Kutta numerical method is one of the most
important numerical analysis methods that are used in solv-
ing a system of ordinary differential equations through
which the differential equation is reduced degree to make
it easier and simpler to solve. On the other hand, there are
different formulas for the solution by the numerical method
of Runge-Kutta method; for example, there is the Runge-
Kutta method of the fourth order and also the Runge-
Kutta method of the fifth order, and the most used method
is the Runge-Kutta method of the fourth order because it
gives accurate results and is easy to use, and its derivation
depends on the Euler method. The numerical solutions of
the current study are listed in several steps. In the first step,
the system of partial differential Equations (10), (12), and

(17) for the current study has been converted into a system
of ordinary differential Equations (19)–(21) using the simi-
larity transformation and nondimensional variables (18);
also, the boundary conditions (13) and (14) have been con-
verted into the new forms (22) and (23). In the second step,
the appropriate numerical method used in solving the new
system of prior equations is the Runge-Kutta fourth-order
with shooting technique, and by the way, this method was
used to reduce the order of differential equations. In the
third step, the program used to solve the system of ordinary
differential equations is MATLAB, and the step size Δη =
0:001 is used to obtain the numerical solution with ηmax =
10; also, it used the bvp4c function in solving these equa-
tions. Differential Equations (19)–(21) can be rewritten in
the simplest form as follows:

In the last step, Equations (30)–(32) have been written
inside the MATLAB program on the following formulas:

f ″′ ηð Þ =
f ′ ηð Þ

� �2
− f ηð Þf ″ ηð Þ +Mf ′ ηð Þ + Daf ′ ηð Þ

� �

1 + λf ″ ηð Þ
� � , ð30Þ

θ″ ηð Þ = −
Pr Sθ ηð Þ + f ηð Þθ′ ηð Þ + 3R θw − 1ð Þ 1 + θw − 1ð Þθ ηð Þð Þ2 θ′ ηð Þ

� �2
+ Nbθ′ ηð Þϕ′ ηð Þ + Nt θ′ ηð Þ

� �2
+MEc f ′ ηð Þ

� �2
� �

1 + Pr R 1 + θw − 1ð Þθ ηð Þð Þ3� 	 ,

ð31Þ
ϕ″ ηð Þ = −Leϕ′ ηð Þf ηð Þ + Leγϕ ηð Þ − Nt

Nb

� �
θ″ ηð Þ: ð32Þ

F 1ð Þ = ξ 2ð Þ,
F 2ð Þ = ξ 3ð Þ,

F 3ð Þ = ξ 2ð Þ2 − ξ 1ð Þξ 3ð Þ +Mξ 2ð Þ + Daξ 2ð Þ� 	
1 + λξ 3ð Þ ,

F 4ð Þ = ξ 5ð Þ,

F 5ð Þ = −
Pr Sξ 4ð Þ + ξ 1ð Þξ 5ð Þ + Nbξ 5ð Þξ 7ð Þ + Nt ξ 5ð Þð Þ2 +MEc ξ 2ð Þð Þ2 + 3R ξ 5ð Þð Þ2 θw − 1ð Þ 1 + θw − 1ð Þξ 4ð Þð Þ2

� �

1 + Pr R 1 + θw − 1ð Þξ 4ð Þð Þ3
� � ,

F 6ð Þ = ξ 7ð Þ,

F 7ð Þ = −Leξ 7ð Þξ 1ð Þ + Leγξ 6ð Þ − Nt
Nb

� �
ξ 5ð Þ:

ð33Þ
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With the boundary conditions:

ξa 1ð Þ = 0, ξa 2ð Þ = 1, ξa 4ð Þ = 1, Nbξa 7ð Þ + Ntξa 5ð Þ = 0,
ξb 2ð Þ = 0, ξb 4ð Þ = 0, ξb 6ð Þ = 0:

ð34Þ

Taking into account both:

f ηð Þ = ξ 1ð Þ, f ′ ηð Þ = ξ 2ð Þ, f ″ ηð Þ = ξ 3ð Þ, f ″′ ηð Þ
= F 3ð Þ, θ ηð Þ = ξ 4ð Þ, θ′ ηð Þ = ξ 5ð Þ,

θ″ ηð Þ = F 5ð Þ, ϕ ηð Þ = ξ 6ð Þ, ϕ′ ηð Þ = ξ 7ð Þ, ϕ″ ηð Þ
= F 7ð Þ, f 0ð Þ = ξa 1ð Þ, f ′ 0ð Þ = ξa 1ð Þ,

θ 0ð Þ = ξa 4ð Þ, θ′ 0ð Þ = ξa 5ð Þ, ϕ′ 0ð Þ = ξa 7ð Þ, f ′ ∞ð Þ
= ξb 2ð Þ, θ ∞ð Þ = ξb 4ð Þ, ϕ ∞ð Þ = ξb 6ð Þ:

ð35Þ

To ensure the accuracy and correctness of the numerical
solutions of the current study, a numerical comparison was
made between the numerical values and results of the current
study with the numerical values and results of the work pub-
lished by Khan and Pop [8] in Table 1. The great convergence
between the two studies was noted, which gives high credibil-
ity to the current study.

4. Results and Discussion

After converting the system of partial differential equations
ruling to study the flow of fluid into a system of ordinary dif-
ferential equations, it has a set of important parameters that
we list in the following order M, Da, and λ which are the
magnetic field, the Darcy number, and non-Newtonian Wil-
liamson parameters, respectively, while R, θw, and S repre-
sent the nonlinear thermal radiation, the ratio temperature,
and the heat generation/absorption parameters, respectively;
also, Pr is the Prandtl number and Nt is the thermophoresis
parameter, while Ec, γ, Le, and Nb are the Eckert number,
the chemical reaction, the Lewis number, and Brownian
motion parameters, respectively. The effect of all the previous
physical parameters on the velocity, temperature, and con-
centration of nanoparticle distributions has been studied by
making graphical figures that clarify this and by showing
the physical meanings of each parameter and its importance
in this study, and we can list the results of this study in detail.

4.1. Velocity Distributions. It is known that the rate at which
the fluid flows onto a specific surface is entirely determined
by the distribution of velocity; therefore, velocity distribu-
tions play an important role in studying the changes that
occur in the flow rate of the fluid. On the other hand, when
affecting the flowing fluid with external forces, the behavior
of the fluid’s movement is changing, and one of these types
of external forces is the magnetic field. Figure 1 shows the
effect of the strength of the magnetic field parameter M on
the fluid velocity distribution f ′ðηÞ. It is noticeable that the
result of this effect is negative in the sense that the relation-
ship between the magnetic field and the velocity distribution

is inverse; the increase in the values of the magnetic field
means a decrease in the velocity of the fluid. Physically, when
influencing a moving fluid by the magnetic field, the fluid
particles are stimulated, which creates a kind of counter force
that slows and reduces the fluid’s motion; moreover, this
force is perpendicular to the velocity vector on the one hand
and also perpendicular to the magnetic field vector on the
other hand which is originally a resistance force called
Lorentz force, while highlighting that the increase in the
magnetic field reduces the thickness of the boundary layer.
If you want to know the effect of the Darcy number Da on
the velocity distribution, you should look at Figure 2. It
becomes clear to you that the velocity distribution decreases
under the influence of the large values that the Darcy number
Da takes. Physically, the porous medium is the medium that
contains a group of small voids called pores that are inter-
rupted by the fluid when it moves on this medium. On the
other hand, the permeability of the fluid through the porous
medium is related to its porosity.

Also, the greater the values of the Darcy number Da, the
greater the resistance of the porous medium to the move-
ment of the fluid on it on the one hand, in addition to the
fluid viscosity on the other hand, which leads to a decrease
in the fluid velocity. Moving to Figure 3, it reviews the effect
of the non-Newtonian Williamson coefficient λ on the
velocity distribution, and it clears that this effect is negative
in the sense that the increase in the values of this coefficient
is followed by a decrease in velocity of the fluid, which
makes its movement slow.

4.2. Temperature Distributions. The change in the fluid tem-
perature plays an important role in the fluid’s behavior in
addition to its effect also on the particles inside the fluid.
Now, we will study the effect of some physical parameters
on the fluid temperature distribution θðηÞ and note the
changes taking place; for example, Figures 4 and 5 illustrate
the effects of the nonlinear thermal radiation parameter R
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Figure 3: The velocity profile for different values of λ.
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and the ratio temperature parameter θw on the temperature
distribution θðηÞ; it was noticed that the large values taken
by the nonlinear thermal radiation parameter R and ratio
temperature parameter θw work to enhance the heat transfer
inside the fluid and work to stimulate it. Physically, the pos-
itive effect of the nonlinear thermal radiation parameter R on
the temperature of the nanofluid leads to three things. Firstly,
the heat transfer of all distances of the boundary layer is sup-
ported, or in other words, it raises the temperature of the
boundary layer regularly. Secondly, it makes the nanoparti-
cles inside the fluid gain thermal energy, which improves
the transfer and thermal diffusion within the fluid due to
the thermal conductivity of the nanoparticles.

Thirdly, it works to enhance the thermal transfer
methods of the nanofluid, which is the thermal transfer
method by conduction and the method of thermal transfer
by load. On the other hand, the effect of the ratio temperature
increases the boundary layer temperature and increases its
thickness. When talking about the effect of the heat genera-
tion/absorption parameter S on the fluid temperature distri-
bution θðηÞ, as shown in Figure 6, there is a significant
enhancement in the distribution of the fluid temperature
due to the enhancement in the values of parameter S.

Physically, in the case of the phenomenon of heat gener-
ation, there is an enhancement in the transfer and thermal
spread of the fluids, which raises temperature of fluid and
also raises the temperature and thickness of the boundary
layer with the increase in the values of the heat source type
ðS > 0Þ, while the exact opposite occurs in the case of the heat
absorption type ðS < 0Þ, but when moving upward from the
state of heat absorption type to the state of heat generation
type, there is an improvement in the rate of thermal diffusion
and the thickness of the boundary layer. Figure 7 displays the
impact of Prandtl number Pr on the temperature distribution
θðηÞ; when this parameter takes a large value, the fluid tem-
perature distribution is decreased. Physically, Prandtl num-
ber Pr is defined as the ratio of momentum diffusivity to
thermal diffusivity; on the other hand, there are two types
of Prandtl number Pr: the first type is Pr > 1; this means that
the rate of momentum diffusion dominates the rate of ther-
mal diffusion, and the second type is Pr < 1 which urges the
opposite, and Figure 7 shows the case in which Pr > 1 such
that the thermal diffusion within the fluid becomes small;
thus, the fluid temperature and thickness of the boundary
layer become decreasing. The distribution of the fluid tem-
perature θðηÞ changes with the effect of the thermophoresis
parameter Nt values; as shown in Figure 8, the direct rela-
tionship between them refers to the enhancement in the
values of the thermophoresis parameter Nt leading to an
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increase in the fluid temperature distribution θðηÞ. Physi-
cally, there are two different sources: the first is hot and the
other is cold; the particles close to the hot medium absorb
heat energy, which makes them move from the hot medium
to the cold medium and raises its temperature by means of
convection; this process is called the process of thermal
potential difference; this is exactly what happens inside the
fluid when it is exposed to a heat source. The fluid particles
absorb heat energy that makes it spread throughout the fluid,
raising its temperature as well as enhancing the thickness of
the boundary layer of the fluid. Figure 9 studies the effect of
the Eckert number Ec on the temperature distribution θðηÞ,
so it was noted that the large values that take by this param-
eter affect the temperature distribution making this effect
positive in the sense that it enhances the effect of tempera-
ture. Finally, the influence of the coefficient of the magnetic
field M as well as the effect of the Darcy number Da on the

temperature distribution θðηÞ is shown graphically in
Figures 10 and 11, respectively; it is very clear from the study
of the two figures that the fluid temperature and the bound-
ary layer thickness increase with increasing values of these
two parameters.

4.3. Concentration of Nanoparticle Distributions. The study
of the concentration of nanoparticles within a fluid plays an
important role in the properties and applications of this fluid
from several sides; for example, the degree and efficiency of
the thermal conductivity of a nanofluid are related to the
concentration of nanoparticles inside it, and also, the degree
and efficiency of its electrical conductivity are related to the
concentration of nanoparticles. Figures 12 and 13 display
the effect of both the magnetic field parameter M and the
Darcy number Da on the distribution of the concentration
of nanoparticles ϕðηÞ, and it is clear from the two figures that
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the effect is very positive. Physically, firstly, the effect of the
magnetic fieldM on the fluid works to reduce the movement
of the fluid accompanied slowly in the movement of the
nanofluid particles, which makes its concentration large.
Secondly, the effect of the Darcy number Da on the fluid
movement gives a great opportunity for collision of the nano-
particles with the pores of the porous medium, which causes
it to accumulate inside the pores and the porous medium
itself, and accordingly, the concentration of nanoparticles
becomes increasing. On the other hand, Figures 14 and 15
show the effects of the nonlinear thermal radiation parameter
R and the ratio temperature parameter θw on the concentra-
tion of nanoparticle distribution ϕðηÞ within the fluid. It was
noted that the reinforcement in the values of these two
parameters works to strengthen the temperature of the nano-
particles and thickness of the boundary layer of the fluid, as it

works on a significant increase in the spread of the tempera-
ture in all parts of the fluid. Physically, nanoparticle fluid
molecules are greatly affected by the radiation source that
generates heat, which causes fluid particles to interact posi-
tively with this heat, which increases the mechanical energy
of the nanoparticles, and this actually leads to their stimula-
tion and increased concentration. The concentration of
nanoparticles gives a good or positive impression in the event
that it is affected by the heat generation/absorption parame-
ter S because the mechanism of action of this parameter is
very similar to the mechanism of nonlinear thermal radiation
parameter R only in the case of heat generation; on the other
side, the heat generation works to stimulate the temperature
of nanoparticles and thus increases the concentration of
nanoparticles ϕðηÞ and adds to the positive effect on the
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boundary layer in terms of thickness, while in the case of heat
absorption, the opposite occurs, and this is shown in
Figure 16. As for Figure 17, it shows the negative effect of
Prandtl number Pr on the concentration of nanoparticle
distribution ϕðηÞ because in the case where Pr > 1, thermal
diffusion equipment is very small compared to the momen-
tum diffusion rate, and accordingly, the concentration of
nanoparticles becomes small that is the physical meaning.
Figures 18 and 19 show the effects of both the Eckert number
Ec and the thermophoresis parameter Nt on the distribution
of the concentration of nanoparticles ϕðηÞ within the fluid; it
was found that the increase in this parameters gives a large
concentration of the nanofluid particles, at a time when the
effects of both Lewis number Le and chemical reaction

parameter γ on the concentration of nanoparticles ϕðηÞ
inside the fluid were negative; this is illustrated in
Figures 20 and 21. Finally, Figure 22 clears the effect of the
Brownian motion parameter Nb on the distribution of the
concentration of nanoparticles ϕðηÞ within the fluid. It is
noticeable that the distribution of the concentration of nano-
particles ϕðηÞ decreases in the event that this parameter is
enhanced. Physically, the Brownian motion of the nanofluid
is a random motion of the nanoparticles present in this fluid
in the absence of any external effects so that the movement of
these particles is free in all directions, but in the case of a large
thermal diffusion resulting from the effect of thermal radia-
tion and the coefficient of thermophoresis, it becomes that
the random movement of the nanoparticles is limited.
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of S.
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4.4. Skin Friction and Local Nusselt Number Profiles.
Figure 23 shows the change in the coefficient of skin friction
when affecting it by the coefficient of the magnetic field M
and the Darcy number Da. It is clear that the coefficient of
skin friction decreases with increasing values of these param-
eters, meaning that the increase in both the values of the
magnetic field and the Darcy number increases the rate of
fluid velocity gradient regularly. On the other hand,
Figures 24 and 25 show the effects of nonlinear thermal radi-
ation parameter R, heat generation/absorption parameter S,
and ratio temperature parameter θw on the local Nusselt
number Nux/

ffiffiffiffiffiffiffiRex
p

; it is clear that this effect is negative in
the sense of an increase in the values of previous parameters
leading to a decrease in the local Nusselt number, and that

means that the ratio of convective to conductive heat transfer
at a boundary in a fluid becomes small. Tables 2 and 3 show
the numerical values of the local Nusselt number Nux/

ffiffiffiffiffiffiffiRex
p

and skin friction coefficient
ffiffiffiffiffiffiffiRex

p
Cf for all physical param-

eters resulting from the current numerical study of the Wil-
liamson fluid flow process that contains nanoparticles on
an expanding surface in the presence of a porous medium.
The following was observed that the skin friction coefficientffiffiffiffiffiffiffiRex
p

Cf has become a constant value for all physical param-
eters with the exception of each of the magnetic field param-
eter M, Darcy number Da, and non-Newtonian Williamson
parameter λ, whereas the values of the local Nusselt number
Nux/

ffiffiffiffiffiffiffiRex
p

decrease under the influence of all physical
parameters.

0
–0.35

–0.25

–0.3

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1
𝜙

(𝜂
)

1 2 3 4 5

S = –0.1

Ec = 0.4
M = 0.5

Nb = 0.5

Da = 0.5

Le = 2
𝛾 = 0.6

𝜃w = 1.2
Pr = 5

R = 1.2

𝜆 = 0.2

6 7 8 9 10
𝜂

Nt = 0.1, 0.3, 0.5, 0.7, 1

Figure 19: Concentration of nanoparticle profile for different values
of Nt.
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Figure 20: Concentration of nanoparticle profile for different values
of S.
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Figure 21: Concentration of nanoparticle profile for different values
of γ.
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5. Conclusion

In this article, the two-dimensional electromagnetic flow of
the Williamson nanofluid has been studied on a stretching
sheet through a porous medium; on the other hand, the gov-
erning partial differential equations were converted into a
system of ordinary differential equations using the similarity
transformations and the nondimensional variable under the
effects of nonlinear thermal radiation, heat generation/ab-
sorption, chemical reaction, Brownian motion parameter,
thermophoresis parameter, magnetic field, Darcy number,
Joule heating, Lewis number, Prandtl number, and William-
son non-Newtonian parameter on distribution of velocity,
temperature, and concentration of nanoparticles; the most
important points drawn from this study are the following:

(i) The velocity distribution f ′ðηÞ of the fluid is nega-
tively affected by the influence of the magnetic field
parameter M, the Darcy number Da, and the non-
Newtonian Williamson parameter λ at the time
when their influence on the distributions of the tem-
perature θðηÞ and concentration of the nanoparticles
ϕðηÞ becomes positive

(ii) The enhancement in the values of nonlinear thermal
radiation R parameter and the ratio temperature θw
resulted in the enhancement of both temperature θ
ðηÞ of the fluid and the concentration of the nano-
particles ϕðηÞ, while the opposite occurs when
increasing the values of Prandtl number Pr
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Figure 23: Skin friction profile for different values of M, Da.
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Figure 24: Local Nusselt number profile for different values of S, R.
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Figure 25: Local Nusselt number profile for different values of S, R.

Table 2: The numerical values of the skin friction coefficientffiffiffiffiffiffiffiRex
p

Cf and the local Nusselt number Nux/
ffiffiffiffiffiffiffiRex

p
for values of M,

Da, and λ parameters when R = 1:2, Nb = 0:5, Nt = 0:5, Pr = 5, Le
= 2, S = −0:1, Ec = 0:4, θw = 1:2, and γ = 0:6.

M Da λ
ffiffiffiffiffiffiffi
Rex

p
Cf

NuxffiffiffiffiffiffiffiRex
p

0 0.5 0.2 -1.16630705 0.32673441

0.5 -1.33621158 0.32351790

1 -1.48295534 0.32112657

1.5 -1.61309297 0.31923008

2 -1.73049604 0.31766292

0.5 0 0.2 -1.16630705 0.32463205

0.5 -1.33621158 0.32351790

1 -1.48295534 0.32272607

1.5 -1.61309297 0.32212446

2 -1.73049604 0.32164656

0.5 0.5 0.1 -1.37751997 0.32368673

0.3 -1.28773536 0.32332326

0.5 17.61631263 0.32263272

0.7 0.36239912 0.32190223
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(iii) It was found that the distribution of the concentra-
tion of nanoparticles ϕðηÞ decreased under the influ-
ences of the Lewis number Le, Brownian motion
coefficient Nb, and chemical reaction parameter γ

(iv) The increase and enhancement in the effects of both
heat generation/absorption S parameter and the
Eckert number Ec resulted in an increase and
enhancement in the distributions of both tempera-
ture θðηÞ and concentration of nanoparticles ϕðηÞ

(v) Effects of heat generation/absorption parameter S,
the nonlinear thermal radiation parameter R, and
the ratio temperature parameter θw have a negative
effect on the local Nusselt numberNux/

ffiffiffiffiffiffiffiRex
p

so that
the effects of the magnetic field M and Darcy num-
ber Da on the skin friction coefficient

ffiffiffiffiffiffiffiRex
p

Cf were
negative

Symbols

�A1 : First Rivlin-Erickson tensor

B
!
: External magnetic field

Bo: Uniform magnetic field
B: Stretching parameter
C: Nanoparticle volume fraction
Cw: Nanoparticle fraction at wall
cP: Specific heat at constant pressure
Cf : Skin friction coefficient
DB: Brownian diffusion coefficient
DT : Thermophoresis diffusion coefficient
Da: Darcy number

E
!
: Electric field intensity

Ec: Eckert number

F
!

e:
The Lorentz force

I: Unit vector

J
!
: The current density

Jh: The Joule heating
K : Permeability
k: Thermal conductivity
k∗: Mean absorption coefficient
Le: Lewis number

Table 3: The numerical values of the skin friction coefficient
ffiffiffiffiffiffiffiRex

p
Cf and the local Nusselt number Nux/

ffiffiffiffiffiffiffiRex
p

for all values of physical
parameter when M = Da = 0:5 and λ = 0:2.

R Nb Nt Pr Le S Ec θw γ
ffiffiffiffiffiffiffi
Rex

p
Cf

NuxffiffiffiffiffiffiffiRex
p

0.1 0.5 0.5 5 2 -0.1 0.4 1.2 0.6 -1.33621230 0.64166769

0.5 -1.33621158 0.27220459

0.9 -1.33621158 0.28419960

1.2 0.1 0.5 5 2 -0.1 0.4 1.2 0.6 -1.33621158 0.32351790

0.3 -1.33621158 0.32351790

0.5 -1.33621158 0.32351790

1.2 0.5 0.1 5 2 -0.1 0.4 1.2 0.6 -1.33621158 0.32410873

0.3 -1.33621158 0.32381315

0.5 -1.33621158 0.32351790

1.2 0.5 0.5 5 2 -0.1 0.4 1.2 0.6 -1.33621158 0.32351790

10 -1.33621158 0.31230129

15 -1.33621158 0.30971540

1.2 0.5 0.5 5 1 -0.1 0.4 1.2 0.6 -1.33621158 0.32356291

2 -1.33621158 0.32351790

3 -1.33621158 0.32349773

1.2 0.5 0.5 5 2 -0.3 0.4 1.2 0.6 -1.33621158 0.34389846

-0.2 -1.33621158 0.33376466

-0.1 -1.33621158 0.32351790

1.2 0.5 0.5 5 2 -0.1 0.1 1.2 0.6 -1.33621158 0.32487121

0.4 -1.33621158 0.32351790

0.7 -1.33621158 0.32216467

1.2 0.5 0.5 5 2 -0.1 0.4 0.1 0.6 -1.33621158 0.18104819

0.4 -1.33621158 0.14127077

0.7 -1.33621158 0.16205303

1.2 0.5 0.5 5 2 -0.1 0.4 1.2 1 -1.33621158 0.32350105

2 -1.33621158 0.32347976

3 -1.33621158 0.32346885
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M: Magnetic field parameter
Nb: Brownian motion parameter
Nt: Thermophoresis parameter
Nux : Nusselt number
P: Pressure
Q: Uniform volumetric heat source/sink
q!: Velocity vector
qw: Heat flux
qm: Mass flux
qr : Nonlinear radiative heat flux
R: Thermal radiation parameter
R∗: Constructive reaction rates
Rex: Local Reynolds number
S: Heat source/sink parameter
�S: Cauchy stress tensor
Shx: Local Sherwood number
T : Fluid temperature
Tw: Fluid temperature at wall
T∞: Ambient fluid temperature
t: Time
Uw: Fluid velocity
u, v: Velocity components
x, y: Space coordinates
α: Thermal diffusivity
ν: Kinematic viscosity
ρ: Density of the fluid
�τ: Extra stress tensor
τw: Shear stress along stretching surface
σ∗: Stefan-Boltzmann constant
λ: Non-Newtonian Williamson parameter
η: Similarity variable
ψ: Dimensionless stream function
ϕ: Dimensionless concentration function
θ: Dimensionless temperature
Γ: Time constant
θw: Ratio temperature
ðρcPÞp: Heat capacity of a nanoparticle
ðρcPÞf : Heat capacity of the base fluid
μ0: Limiting viscosity at zero shear rate
μ∞: Limiting viscosity at infinite
γ: Chemical reaction parameter.
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