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We present a fast and accurate numerical scheme for approximating hypersingular integrals with highly oscillatory Hankel kernels.
The main idea is to first change the integration path by Cauchy’s theorem, transform the original integral into an integral on ½a,
+∞�, and then use the generalized Gauss Laguerre integral formula to calculate the corresponding integral. This method has the
advantages of high-efficiency, fast convergence speed. Numerical examples show the effect of this method.

1. Introduction

In time-harmonic electromagnetic scattering, the following
integral equations arise frequently [1, 2]:

us ρð Þ = −
ik
4

ð
C
q ρ′
� �

H 1ð Þ
0 k ρ − ρ′

�� ��� �
dl′, ð1Þ

where Hð1Þ
0 ðxÞ is the Hankel function of order 0 and qðxÞ is

the unknown function.
For scatterers with sharp edges or corners, the unknown

qðxÞ should be sought in the following form [3]:

q xð Þ =w xð Þϕ xð Þ,w xð Þ = 1 − xð Þα 1 + xð Þβ, ð2Þ

where ϕðxÞ is smooth on ð−1, 1Þ, which leads to the following
integral:

ð1
−1
w xð ÞH 1ð Þ

0 kφ xð Þð Þϕ xð Þdx: ð3Þ

In addition, the following integral appears frequently in
the fields of physics and engineering [4, 5]:

I (f, w; c, m, k) = 
b w(x)eikx

(x − c)m+1
a

f (x)dx, c ∈ (a, b), ð4Þ

which is equivalent to the following form:

I (f, w; c, m, k) = 
b

am!

1 dm

dcm
w(x)eikx

(x − c)
f (x)dx, ð5Þ

where wðxÞ = ðx − aÞαðb − xÞβ and α > −1, β > −1 and f ðxÞ is
a given function. In order to ensure the existence of integrals,
we need to assume that the m − 1-th order derivative of f is
continuous and f ðmÞ is Hölder continuous on ½a, b�.

In the case wðxÞ ≡ 1 and k = 0, many calculation methods
have been proposed for (4), such as the Gauss-type method,
the (composite) Newton-Cotes method, and others [6–10].
A popular method is using the Taylor formula and eliminates
the singularity at c by the following formula [7, 8, 11]:
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I (f, w; c, m, k) = 
b f(x) − ∑

f(j)(c)
j!

(x − c)m+1

(x − c)j m

j=0

m

j=0

a

f(j)(c) dx
.

j!

b

a (x − c)m+1− j
ð6Þ

Although these methods are simple and generally feasi-
ble, they also have some disadvantages (e.g., numerical can-
cellations and computation of the higher derivatives). By
using Chebyshev interpolants of f ðxÞ, Hasegawa and Torii
presented an efficiently uniform approximation algorithms
for following integrals [12, 13].

I (f, w; c, m) = 
b f(x) − ∑

f(j)(c)
j!

(x − c)m+1

(x − c)j m

j=0

m
j=0

a

f(j)(c) dx
.

j!

b

a (x − c)m+1− j
ð7Þ

However, it requires OðN2Þ operations, where N − 1 is
the degree of Chebyshev interpolants. There is a traditional
method of calculating these integrals.

In the case wðxÞ ≡ 1, k≫ 1, the integrand is highly oscil-
latory. The traditional calculation methods of these integrals
have the disadvantages of low efficiency and poor accuracy
and will encounter difficulties (4). Xiang et al. presented an
efficiently uniform approximation scheme for this case [14].
The principle is to establish the following new approximate
formula:

I (f; c, m, k) ≈ 
1 pN (x) − pN (c)
eikx

1
m!

dm

dcm x − c−1
dx+ f(c)

dm eikx1
dcmm!

dx
x − c−1

1

, ð8Þ

where pNðxÞ = ða0/2ÞT0ðxÞ +∑N−1
j=1 ajT jðxÞ + ðaN/2ÞTNðxÞ

and T jðxÞ is the Chebyshev polynomial of the first kind.
Moreover, by rewriting ðpNðxÞ − pNðcÞÞ/ðx − cÞ in terms

of T jðxÞ as follows:

pN xð Þ − pN cð Þ
x − c

= 〠
N−1

j=0
′djT j xð Þ: ð9Þ

Equation (8) is transferred to

I (f; c, m, k) ≈ 1 ′M
j (k) dm

dcm
dm

dcm
(dj)m!

1
m!

N − 1

j = 0
+ f(c)

eikx
dx

x − c−1

1

, ð10Þ

where the prime denotes the summation whose first term is
halved and MjðkÞ =

Ð 1
−1 T jðxÞeikxdx can be calculated using

a recursive formula.
However, when wðxÞ = ðx + 1Þαð1 − xÞβ and α > −1, β >

−1, the recursion formula for MjðkÞ and dj is complicated.
In [15], using the numerical steepest descent method, the fol-
lowing Cauchy principal value integral is calculated:

b

a

(x − a)a (b − x)𝛽 ln(x − a)
x − c f (x)eikx dx. ð11Þ

Numerical results show that the calculation effect of the
proposed method is better, but the situation of hypersingular
is not considered in the article. In [16], using Hermite inter-
polation and a recurrence formula, Liu and Xiang present a
method for calculating integrals (4) in combination with
the numerical steepest descent method and gave the error
analysis. For more details on singular integrals with oscilla-
tory function, see Ref. [15, 17–22] and references therein.

In this paper, we study the direct steepest descent method
for a class of hypersingular integral.

I (f, w, G; c, m, k) = 
b w(x)G(kx)

f(x)dx, c ∈ (a, b),
(x − c)m+1

a
ð12Þ

where GðkxÞ = eikx or Hð1Þ
v ðkxÞ,Hð1Þ

v denotes Hankel func-
tions of the first kind of order v(v ≤ 1).

This paper is organized as follows: in Section 2, we review
the basic formula for the steepest descent methods. In Section
3, the performance of the method is demonstrated by numer-
ical examples, which verify the efficiency and accuracy of the
algorithm.

2. Direct Steepest Descent Methods for
Approximating the Integral (12)

In this section, we focus on the steepest descent method on
the evaluation of the following integral:

I (f, w, H; c, m, k) = 
b w(x)Hv

(1)(kx)
f(x)dx, c ∈ (a, b).

(x − c)m+1
a

ð13Þ

In the case GðkxÞ = eikx , the method is similar except for
deleting an integral path around 0.

Set D = fz ∈ℂ ∣ a ≤RðzÞ ≤ b, 0 ≤IðzÞ ≤ Rg, D1 = fz ∈ℂ
∣ jz − aj ≤ r, 0 ≤ arg ðz − aÞ ≤ π/2g, D2 = fz ∈ℂ ∣ jz − bj ≤ r, π
/2 ≤ arg ðz − aÞ ≤ πg, D3 = fz ∈ℂ ∣ jz − cj ≤ r, 0 ≤ arg ðz − cÞ
≤ πg, D4 = fz ∈ℂ ∣ jzj ≤ r, 0 ≤ arg ðzÞ ≤ πg, and D′ =D1

S

R

D–D´

𝛤3

𝛤4
𝛤2

𝛤8
0 c b

(z)

(z)

b-ra + ra

𝛤5

𝛤10

𝛤9
𝛤7𝛤6

𝛤1

Figure 1: The integration paths.
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D2
S

D3SD4, where R is a large number and r is small
enough such that D′ ⊂D (see Figure 1).

Theorem 1. Suppose that f ðzÞ is an analytic function in the
half-strip of the complex plane, a ≤RðzÞ ≤ b, and IðzÞ ≥ 0.
If there are two constants M and k0 such that for 0 ≤ k0 < k

ðb
a
f x + iRð Þj jdx ≤Mek0R, ð14Þ

then the hypersingular integral with highly oscillatory kernels
Ið f ,w,H ; c,m, kÞ can be calculated by the following formula:

where

Sa f ,w ; c,m, k½ � = iα+1
ð∞
0

xα b − a − ixð Þβ
a + ix − sð Þm+1 H

1ð Þ
v

� ka + ikxð Þf a + ixð Þdx,

Sb f ,w ; c,m, k½ � = −ið Þβ+1
ð∞
0

xβ b − a + ixð Þα
b + ix − sð Þm+1 H

1ð Þ
v

� kb + ikxð Þf b + ixð Þdx:

ð16Þ

Proof. Since ðwðxÞHð1Þ
v ðkxÞÞ/ððx − cÞm+1Þf ðxÞ is analytic in

the region D −D′, using the Cauchy’s theorem, the following
formula can be obtained:

ð
Γ1+Γ2+Γ3+Γ4+Γ5−Γ6−Γ7−Γ8−Γ9−Γ10

w zð ÞH 1ð Þ
v kxð Þ

z − cð Þm+1 f zð Þdz = 0:

ð17Þ

Setting

I j =
ð
Γ j

w zð ÞH 1ð Þ
v kxð Þ

z − cð Þm+1 f zð Þdz, j = 1, 2,⋯, 10, ð18Þ

it derives that

I1 + I2 + I3 + I4 + I5 − I7 − I9 = I6 + I8 + I10, ð19Þ

with all the contours shown in Figure 1.

Let z − a = reiθ, θ ∈ ½0, π/2�, then

I1j j = ir
ðπ/2
0

reiθ
� �α

b − a − reiθ
� �β

a + reiθ − c
� �m+1 H 1ð Þ

v

�����
� k a + reiθ
� �� �

f a + reiθ
� �

eiθdθ

�����
≤ rj j1+α

ðπ/2
0

b − a − reiθ
�� ��β
a + reiθ − c
�� ��m+1 H 1ð Þ

v k a + reiθ
� �� �

f
���

� a + reiθ
� ����dθ⟶ 0, as r⟶ 0:

ð20Þ

Similarly, we have jI5j⟶ 0 as r⟶ 0 and

I3j j =
ðb
a

iR + x − að Þα b − iR − xð Þβ
iR + x − cð Þm+1 H 1ð Þ

v k iR + xð Þð Þf iR + xð Þdx
�����

�����:
ð21Þ

For large arguments, the Hankel functions behave like an
oscillatory complex exponential with a decaying amplitude:

H 1ð Þ
v zð Þ ~

ffiffiffiffiffi
2
πz

r
ei z− 1/2ð Þvπ− 1/4ð Þπð Þ,  − π < arg z < π, zj j⟶∞:

ð22Þ

As can be seen from the asymptotic behavior (22), for
complex arguments with a positive imaginary part, the Han-
kel function decays exponentially, which follows that

∣I3∣⟶ 0, asR⟶ +∞: ð23Þ

I f ,w,H ; c,m, kð Þ =

Sa f ,w ; c,m, k½ � + Sb f ,w ; c,m, k½ � − 1
m!

dm

dcm
−iπw cð Þf cð ÞH 1ð Þ

v kcð Þ
� �

, 0 ≤ v < 1,

Sa f ,w ; c,m, k½ � + Sb f ,w ; c,m, k½ � − 1
m!

dm

dcm
−iπw cð Þf cð ÞH 1ð Þ

v kcð Þ
� �

, v = 1,

+ i
k
πw 0ð Þf 0ð Þ lim

r⟶0
H 1ð Þ

v krerθ
� �

krerθ
� �v

,

8>>>>>>><
>>>>>>>:

ð15Þ
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In addition, I2 and I4 can be represented as

I2 = iα+1
ðR
r

xα b − a − ixð Þβ
a + ix − sð Þm+1 H

1ð Þ
v ka + ikxð Þf a + ixð Þdx,

I4 = −ið Þβ+1
ðR
r

xβ b − a + ixð Þα
b + ix − sð Þm+1 H

1ð Þ
v kb + ikxð Þf b + ixð Þdx,

I9 =
1
m!

dm

dcm

ð
Γ9

z − að Þα b − zð Þβ
z − c

f zð ÞH 1ð Þ
v kzð Þdz

 !

= 1
m!

dm

dcm
−i
ðπ
0

c + 1 + reiθ
� �α

b − c − reiθ
� �β

f
�

� c + reiθ
� �

H 1ð Þ
v k c + reikθ

� �� �
dθ
�

⟶
1
m!

dm

dcm
−iπw cð Þf cð ÞH 1ð Þ

v kcð Þ
� �

, as r⟶ 0:

ð24Þ

Due to the Hankel function of order zero Hð1Þ
0 ðzÞ having

a logarithmic singularity at z = 0 and Hankel functions of
higher order having algebraic singularities of the form 1/zv ,
z⟶ 0 [23], we achieve

I7 =
ð
Γ7

z − að Þα b − zð Þβ
kzð Þv z − cð Þm+1 f zð ÞH 1ð Þ

v kzð Þ kzð Þvdz

= −ir
ðπ
0

reiθ − a
� �α

b − reiθ
� �β

kreiθ
� �v reiθ − s

� �m+1 f reiθ
� �

H 1ð Þ
v

� k reikθ
� �� �

kreiθ
� �v

eiθdθ

⟶

0, 0 ≤ v < 1,

−
i
k
πw 0ð Þf 0ð Þ lim

r⟶0
H 1ð Þ

v krerθ
� �

krerθ
� �v

, v = 1,

8<
: as r⟶ 0:

ð25Þ

Thus, we obtain

Formula (16) shows the integrals defined on ½0,∞�, and
the integrand function decays exponentially. It can be calcu-
lated by the generalized Gauss-Laguerre quadrature rule.

Suppose that fxðαÞl ,wðαÞ
l gNl=1 and fxðβÞl ,wðβÞ

l gNl=1 are the nodes
and corresponding weights of generalized Gauss-Laguerre
quadrature rule, where the generalized weight functions are
defined as xαe−x and xβe−x, respectively. Then, integrals in
(16) can be approximated by

Sa f ,w ; c,m, k½ � ≈ i
k

� 	α+1
〠
N

l=1
w αð Þ

l

b − a − ix αð Þ
l /k

� �β
a + ix αð Þ

l /k − c
� �m+1 f

� a + ix αð Þ
l

k

 !
H 1ð Þ

v ka + ix αð Þ
l

� �
ex

αð Þ
l ,

Sb f ,w ; c,m, k½ � ≈ −
i
k

� 	β+1
〠
N

l=1
w βð Þ

l

b − a + ix βð Þ
l /k

� �α
b + ix βð Þ

l /k − c
� �m+1 f

� b + ix βð Þ
l

k

 !
H 1ð Þ

v kb + ix αð Þ
l

� �
ex

αð Þ
l

ð27Þ

☐

3. Numerical Examples

In this section, we illustrate the accuracy and efficiency of the
method described in this paper with several numerical exam-
ples. All the calculations are done on Matlab R2016b, and all
the exact values of the integrals are calculated by Maple with
32-digit arithmetic. The number of nodes used in generalized
Gauss-Laguerre quadrature rule is set to 32. For the detail of
the algorithm, see Appendix.

Example 1. Consider the calculation of the following Hada-
mard finite part integrals:

I = 
1 eikw

cos (x)dx,
(x − s)2−1

ð28Þ

where “MP” indicates that the error has reached the accu-
racy of the machine in Matlab. Numerical results are illus-
trated in Table 1.

It can be seen from Table 1 that the calculated result has
an error of order Oð10−15Þ, which indicates the accuracy of
the proposed method is very high.

I f ,w ; c,m, kð Þ = lim
r⟶0,R⟶∞

I1 + I2 + I3 + I4 + I5 − I7 − I9

=

Sa f ,w ; c,m, k½ � + Sb f ,w ; c,m, k½ � − 1
m!

dm

dcm
−iπw cð Þf cð ÞH 1ð Þ

v kcð Þ
� �

, 0 ≤ v < 1,

Sa f ,w ; c,m, k½ � + Sb f ,w ; c,m, k½ � − 1
m!

dm

dcm
−iπw cð Þf cð ÞH 1ð Þ

v kcð Þ
� �

, v = 1,

+ i
k
πw 0ð Þf 0ð Þ lim

r⟶0
H 1ð Þ

v krerθ
� �

krerθ
� �v

:

8>>>>>>>><
>>>>>>>>:

ð26Þ
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Example 2. Consider the computation of the hypersingular
integral

I = 
1

−1

eikx

(x − c)2
cos(x)dx, c = 0. ð29Þ

Its exact value can be expressed as follows [14]:

I = i
4
dm

dcm
es 1+ikð Þ E1 1 − cð Þ 1 + ikð Þð Þ − E1 − 1 + sð Þ 1 + ikð Þð Þ½
n

+ ln −1 − ikð Þ − ln 1 + ikð Þ� + e−c −1+ikð Þ E1 1 + cð Þ −1 + ikð Þð Þ½
− E1 1 − cð Þ 1 − ikð Þð Þ + ln 1 − ikð Þ − ln −1 + ikð Þ�

o
:

ð30Þ

It can be seen from Table 2 that the calculation effect of
the new method is very good, and as the frequency k
increases, the calculation accuracy also increases.

Example 3. Consider the computation of the Cauchy princi-
ple integral

I = sin (kx)
(x − c)m+1 ex dx.

1

−1
ð31Þ

Its exact value can be expressed by the following formula:

I = πk1F2
1
2 ; 1, 32 ;−

k2

4

 !
, ð32Þ

where 1F2ða ; b, c ; zÞ is the hypergeometric function.

Table 1: Relative errors of the direct steepest descent method for .

Relative errors
k = 10 k = 102 k = 103 k = 105

7:1 × 10−15 MP MP MP

Exact values -31.44003099 -314.16506211 -3141.5917622 -314159.2653

(Maple) 497279 2116602 3182537 5859263

Table 2: Relative errors of the direct steepest descent method for .

Relative errors
k = 10 k = 102 k = 103 k = 105

2:8 × 10−14 MP MP 1:2 × 10−16

Exact values -156.34590751 15707.459596 -1570795.8045 -15707963267.4

(Maple) 00816 74907 23146 25343

Table 3: Relative errors of the direct steepest descent method for .

Relative errors
k = 10 k = 50 k = 100 k = 150
MP 4:4 × 10−16 8:9 × 10−16 4:4 × 10−16

Exact values 3.352114873 2.8318697021 2.8986299106 2.9369583887

(Maple) 80775 59874 88431 22875

Table 4: Relative errors of the direct steepest descent method for .

Relative errors
k = 10 k = 20 k = 30 k = 40

1:02 × 10−15 3:09 × 10−16 2:62 × 10−16 5:88 × 10−16

Exact values -0.8208250958210744 -1.134059952837425 -0.2146909049936769 0.5217520845428135

(Maple) 1.062845269936712i 0.0389775446769420i 0.8319561170161881i 0.1919435601126078i
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Example 4. Consider the computation of the Cauchy princi-
ple integral

I = sin (kx)
(x − c)3 ex dx, c = 0

1

−1
ð33Þ

For more general cases, Tables 3–5 show that the accu-
racy of the algorithm is very high, and it is very effective.

Appendix

The following is the main matlab code:
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