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In this paper, we examine a nonlinear fractional diffusion equation containing viscosity terms with derivative in the sense of
Caputo-Fabrizio. First, we establish the local existence and uniqueness of lightweight solutions under some assumptions about
the input data. Then, we get the global solution using some new techniques. Our main idea is to combine theories of Banach’s
fixed point theorem, Hilbert scale theory of space, and some Sobolev embedding.

1. Introduction

The fractional calculation has a long history and plays an
important role in the simulation of physical phenomena or
real life, for example, mechanics, electricity, chemistry, biol-
ogy, economics, notably control theory, and images. It should
be noted that the standard mathematical models of integer
derivatives, including nonlinear models, do not work fully
in many cases. Therefore, the advent of fractional calculus
was significant in modeling physical and engineering pro-
cesses, and it can be said that it is one of the best descriptors
using fractional differential equations. In a series of research
directions on fractional differential equations (FDE), the
most prominent is the appearance of two derivatives: Caputo
derivative and Riemann-Liouville derivative. Some works are
attracting the attention of the community, like Debbouche
and his group [1–3], Karapinar et al. [4–11], Inc and his
group [12–16], Tuan and his group [17–20], and the refer-
ences as follows: [21–23].

In this paper, we consider the fractional Sobolev equation:

CFD
α
t u = Δu + G uð Þ +

ðt
0
ψ t − zð ÞK u zð Þð Þdz, x, tð Þ ∈M × 0, Tð Þ,

u = 0, x, tð Þ ∈ ∂M × 0, Tð Þ,
u x, 0ð Þ = u0 xð Þ,

8>>>><
>>>>:

ð1Þ

where CFD
α
t is the Caputo-Fabrizio operator for fractional

derivatives of order α which is defined as (see [24])

CFD
α
t v tð Þ = H αð Þ

1 − α

ðt
0
Dα t − νð Þ ∂v νð Þ

∂ν
dν, for t ≥ 0, ð2Þ

where we denote by the kernel DαðzÞ = exp ð−ðα/ð1 − αÞÞzÞ
and HðαÞ satisfies Hð0Þ =Hð1Þ = 1 (see, e.g., [25, 26]).
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The Caputo-Fabrizio fractional derivative was presented
in 2015 [25] with the aim of avoiding singular kernels. It is
also the convolution of the exponential function and the
first-order derivative. The Caputo-Fabrizio fraction deriva-
tive is an operator that has been widely applied to several
derivative modes in many fields, such as biology, physics,
control systems, materials science, dynamics, and liquid
learning [27–32].

Our main aim in this paper is to provide the local and
global existence for problem (1) under some various assump-
tions on the input data. The difficulty in studying this prob-
lem is from the memory viscoelastic model appearing in the
main equation. This term makes some of the assessments
more complicated. Another difficulty is the study of the exis-
tence of global solutions. The topic of the existence of global
solutions is still challenging for many mathematicians today.
In the paper, we have to use a new norm in weighted space,
thanks to the work of [33], to establish the global solution.
The two main results in the paper are shown as follows:

(i) The first result is related to the existence of local solu-
tions. The main technique is to apply Banach’s fixed
point theorem

(ii) The second result is very interesting, proving the
existence of a global solution. To do this, we have to
thank a lemma in [33], where we have chosen suit-
able assumptions for functions G and K , to obtain
our purpose

The paper is organized as follows. In Section 2, we give
preliminaries which are useful for the next results. Section 3
shows the local existence results. In Section 4, we provide
global existence results.

2. Preliminaries

We recall the Hilbert scale space, which is given as follows:

Hr Mð Þ = f ∈ L2 Mð Þ, 〠
∞

n=1
λrn f , enh i2L2 Mð Þ<∞

( )
, ð3Þ

for any r ≥ 0. Here, the symbol h·, · iL2ðMÞ denotes the inner
product in L2ðMÞ. It is well known that H rðMÞ is a Hilbert
space corresponding to the following norm:

fk kHr Mð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

n=1
λrn f , enh i2L2 Mð Þ

s
, f ∈H r Mð Þ: ð4Þ

HνðΩÞ ≡Dðð−LÞνÞ is a Hilbert space. Then, Dðð−LÞ−νÞ is
a Hilbert space with the norm:

vk kD −Lð Þ−νð Þ = 〠
∞

j=1
v, ej
� ��� ��2λ−2νj

 !1/2

, ð5Þ

where h·, · i in the latter equality denotes the duality between
Dðð−LÞ−νÞ and Dðð−LÞνÞ.

Definition 1. The function v is called a mild solution of
problem (1) if it satisfies that

θ tð Þ = Pα tð Þu0 +
ðt
0
Pα t − τð ÞG θ τð Þð Þdτ

+
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ ξð Þð Þdξdτ,

ð6Þ

where PαðtÞ is defined by

Pα tð Þw = 1 + �αλnð Þ−1 exp −αλn
1 + �αλn

t
� �

w, enh iL2 Mð Þen xð Þ, �α

= 1 − α,
ð7Þ

for any w ∈ L2ðMÞ.

Lemma 1. Let θ ∈Hr−2ðMÞ ∩Hr−2−2βðMÞ. Then,

Pα tð Þθk kHr Mð Þ ≤ �C1,α,βt
−β θk kHr−2 Mð Þ + �C2,α,βt

−β θk kHr−2−2β Mð Þ,
ð8Þ

for any 0 < β < 1.

Proof. By the definitions of the norm inHrðMÞ and using the
inequality e−y ≤ C − βy−β for β > 0, we get the following con-
firmation:

Pα tð Þθk kHr Mð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

n=1
λrn 1 + �αλnð Þ−2 exp −2αλn

1 + �αλn
t

� �
θ, enh i2L2 Mð Þ

s

≤ Cβ 1 − αð Þ−1t−β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

n=1
λr−2n

1 + 1 − αð Þλn
αλn

� �2β
θ, enh i2L2 Mð Þ

s
:

ð9Þ

Since 0 < β < 1, we know that

1 + 1 − αð Þλn
αλn

� �2β
≤

1 − αð Þ2
α2

+ 1
α2λ2n

 !β

≤
1 − αð Þ2β
α2β

+ α−2βλ−2βn

 !
:

ð10Þ

This follows from (9) that

Pα tð Þθk kHr Mð Þ ≤ Cβ 1 − αð Þ−1t−β 1 − αð Þβ
αβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

n=1
λr−2n θ, enh i2L2 Mð Þ

s

+ Cβ 1 − αð Þ−1α−βt−β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
∞

n=1
λr−2−2βn θ, enh i2L2 Mð Þ

s

≤ �C1,α,βt
−β θk kHr−2 Mð Þ + �C2,α,βt

−β θk kHr−2−2β Mð Þ:

ð11Þ

☐
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3. Local Existence Results

In this section, we give the following theorem which shows
the local existence result.

Theorem 1. Let the two functions G and K be

G θ1ð Þ −G θ2ð Þk kL2 Mð Þ ≤ BG θ1 − θ2k kL2 Mð Þ,

K θ1ð Þ − K θ2ð Þk kL2 Mð Þ ≤ BK θ1 − θ2k kL2 Mð Þ,
ð12Þ

for constants BG, BK ≥ 0. Let us assume that there exists δ
such that

ψ zð Þj j ≤Dz−δ, δ < 1: ð13Þ

Let u0 ∈Hp−2ðMÞ ∩Hp−2−2βðMÞ. Then, problem (1) has
a local mild solution:

u ∈ L∞ϑ 0, T ;Hp Mð Þð Þ, ð14Þ

where

0 < β ≤ ϑ < 1, 0 ≤ p ≤ 2: ð15Þ

Proof. Let the function F be as follows:

Fθ tð Þ = Pα tð Þu0 +
ðt
0
Pα t − τð ÞG θ τð Þð Þdτ

+
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ ξð Þð Þdξdτ

= Pα tð Þu0 +F1θ tð Þ +F2θ tð Þ:

ð16Þ

Step 1. Estimate kF1θ1 −F1θ2kHpðMÞ for any θ1, θ2 that
belongs to the space HpðMÞ.

From the definition of F1 as in (16), we find that

F1θ1 −F1θ2k kHp Mð Þ =
ðt
0
Pα t − τð ÞG θ1 τð Þð Þdτ −

ðt
0
Pα t − τð ÞG θ2 τð Þð Þdτ

����
����
Hp Mð Þ

≤ �C1,α,β

ðt
0
t − τð Þ−β G θ1 τð Þð Þ −G θ2 τð Þð Þk kHp−2 Mð Þdτ

+ �C2,α,β

ðt
0
t − τð Þ−β G θ1 τð Þð Þ −G θ2 τð Þð Þk kHp−2−2β Mð Þdτ:

ð17Þ

Since p ≤ 2, we know the Sobolev embedding L2ðMÞ°
Hp−2ðMÞ, and so we get

G θ1 τð Þð Þ −G θ2 τð Þð Þk kHp−2 Mð Þ ≤ C1 G θ1 τð Þð Þ −G θ2 τð Þð Þk kL2 Mð Þ
≤ C1BG θ1 τð Þ − θ2 τð Þk kL2 Mð Þ,

G θ1 τð Þð Þ −G θ2 τð Þð Þk kHp−2−2β Mð Þ ≤ C1,β G θ1 τð Þð Þ −G θ2 τð Þð Þk kL2 Mð Þ
≤ C1,βBK θ1 τð Þ − θ2 τð Þk kL2 Mð Þ:

ð18Þ

From two above observations, we deduce that

tϑ F1θ1 −F1θ2k kHp Mð Þ ≤ �C1,α,βC1BG + �C2,α,βC1BK

	 

tϑ
ðt
0
t − τð Þ−β θ1 τð Þk

− θ2 τð ÞkL2 Mð Þdτ

≤ �C3,p,α,βt
ϑ
ðt
0
t − τð Þ−βτ−ϑτϑ θ1 τð Þ − θ2 τð Þk kHp Mð Þdτ

≤ �C3,p,α,βt
ϑ
ðt
0
t − τð Þ−βτ−ϑdτ

� �
θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ

= �C3,p,α,βt
1−βB 1 − β, 1 − ϑð Þ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ

≤ �C3,p,α,βT
1−βB 1 − β, 1 − ϑð Þ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ:

ð19Þ

Because the right side of the above expression does not
depend on t, we have the following assertion:

F1θ1 −F1θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ

≤ �C3,p,α,βT
1−βB 1 − β, 1 − ϑð Þ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ:

ð20Þ

Step 2. Estimate kF2θ1 −F2θ2kHpðMÞ for any θ1, θ2 that
belongs to the space HpðMÞ.

From the definition of F1 as in (16), we find that

F2θ1 −F2θ2k kHp Mð Þ =
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξdτ

����
−
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξdτ

����
Hp Mð Þ

≤ �C1,α,β

ðt
0
t − τð Þ−β

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ

����
−
ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
Hp−2 Mð Þ

dτ

+ �C2,α,β

ðt
0
t − τð Þ−β

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ

����
−
ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
Hp−2−2β Mð Þ

dτ:

ð21Þ

It is easy to see that

�C1,α,β

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ −

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
����
Hp−2 Mð Þ

≤ �C1,α,βC1BGD

ðτ
0
τ − ξð Þ−δ θ1 ξð Þ − θ2 ξð Þk kL2 Mð Þdξ

≤ �C1,α,βC1BGD

ðτ
0
τ − ξð Þ−δξ−ϑξϑ θ1 ξð Þ − θ2 ξð Þk kL2 Mð Þdξ

≤ �C1,α,βC1BGD

ðτ
0
τ − ξð Þ−δξ−ϑdξ

� �
θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ

= �C1,α,βC1BGDτ1−δ−ϑB 1 − δ, 1 − ϑð Þ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ:

ð22Þ
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By a similar way as above, we also obtain that

�C2,α,β

ðt
0
t − τð Þ−β

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ −

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
����
Hp−2−2β Mð Þ

dτ

≤ �C2,α,βC1,βBKDτ1−δ−ϑB 1 − δ, 1 − ϑð Þ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ:

ð23Þ

From two recent observations and noting that β + δ < 2,
we find that

where

�C3 = �C1,α,βC1BGD + �C2,α,βC1,βBKD: ð25Þ

Due to the right hand side of (24) being independent of t,
we can deduce that

Combining (20) and (26), we derive that

Fθ1 −Fθ2k kL∞ϑ 0,T ;Hp Mð Þð Þ ≤ F1θ1 −F1θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ
+ F2θ1 −F2θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ

≤ �C3,p,α,βT
1−βB 1 − β, 1 − ϑð Þ θ1k

− θ2kL∞ϑ 0,T ;Hp Mð Þð Þ
+ �C3B 1 − δ, 1 − ϑð ÞB 1 − β, 2 − δð
− ϑÞT2−β−δ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ:

ð27Þ

Moreover, by applying Lemma 1 and noting that ϑ ≥ β,
we can confirm the following results:

tϑ Pα tð Þu0k kHp Mð Þ ≤ tϑ �C1,α,βt
−β u0k kHp−2 Mð Þ + �C2,α,βt

−β u0k kHp−2−2β Mð Þ
� �

≤ �C1,α,βt
ϑ−β u0k kHp−2 Mð Þ + �C2,α,βt

ϑ−β u0k kHp−2−2β Mð Þ
≤ �C1,α,βT

ϑ−β u0k kHp−2 Mð Þ + �C2,α,βT
ϑ−β u0k kHp−2−2β Mð Þ:

ð28Þ

☐

4. Global Existence Results under a Global
Lipschitz Case

In this section, we derive the global results under the assump-
tion of the nonlinear source function F, a global Lipschitz.

Let F and g satisfy that

G uð Þ − F vð Þk kHs Mð Þ ≤ Lg u − vk kHq Mð Þ, 1 ≤ s ≤ q, ð29Þ

K uð Þ − K vð Þk kHs Mð Þ ≤ Lk u − vk kHq Mð Þ, 1 ≤ s ≤ q, ð30Þ
where Kf , Kg are postive constants. Our results in this
section are to present the well-posedness of the problem.
Let ν > 0 and q ≥ 1. In order to establish the existence of the
mild solution, we need to define the following space:

Xd,m 0, Tð � ;Hq Mð Þð Þ = f : M × 0, T½ �⟶ℝ : tde−mt∥ w ·:,tð Þk kHq Mð Þ
n

<∞,t ∈ 0, T½ �
o
,

ð31Þ

associated with the following norm:

fk kXd,m 0,Tð �;Hq Mð Þð Þ = sup
0≤t≤T

tde−mt w ·:,tð Þk kHq Mð Þ: ð32Þ

Let us provide the following results that will be valuable
in justifying our key results. We can find and view it in
Lemma 8 of [33] (page 9).

Lemma 2. Let c > −1, d > −1 such that c + d ≥ −1, h > 0 and
t ∈ ½0, T�. For ε > 0, the following limit holds:

lim
ε⟶∞

sup
t∈ 0,T½ �

th
ð1
0
τc 1 − τð Þde−εt 1−τð Þdτ

 !
= 0: ð33Þ

tϑ F2θ1 −F2θ2k kHp Mð Þ = �C3B 1 − δ, 1 − ϑð ÞB 1 − β, 2 − δ − ϑð Þt2−β−δ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ

≤ �C3B 1 − δ, 1 − ϑð ÞB 1 − β, 2 − δ − ϑð ÞT2−β−δ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ,
ð24Þ

F2θ1 −F2θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ ≤ �C3B 1 − δ, 1 − ϑð ÞB 1 − β, 2 − δ − ϑð ÞT2−β−δ θ1 − θ2k kL∞ϑ 0,T ;Hp Mð Þð Þ: ð26Þ

4 Advances in Mathematical Physics



Now, we are in the position to introduce the main contri-
butions of this work. Our main results address the global exis-
tence of the mild solution.

Theorem 2. Let 0 < α < 1. Let us assume that

θ tð Þj j ≤ Cθt
−δ: ð34Þ

Let u0 ∈Hq−2−2βðMÞ ∩Hq−2ðMÞ. Then, there exists a pos-
itive number m0 such that problem (1) has a unique solution
in Xd,m0

ðð0, T� ;HqðMÞÞ. Here, β, d, δ satisfy that

0 < β ≤ d < 1, β + d < 1, β + δ < 2, δ < 1: ð35Þ

Proof. Let the function F : Xd,mðð0, T� ;HqðMÞÞ⟶
Xd,mðð0, T� ;HqðMÞÞ be as follows:

Fθ tð Þ = Pα tð Þu0 +
ðt
0
Pα t − τð ÞG θ τð Þð Þdτ

+
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ ξð Þð Þdξdτ

= Pα tð Þu0 +F1θ tð Þ +F2θ tð Þ:

ð36Þ

First, we have the following observation:

Pα tð Þu0k kHq Mð Þ ≤ �C1,α,βt
−β u0k kHq−2 Mð Þ + �C2,α,βt

−β u0k kHq−2−2β Mð Þ:

ð37Þ

By multiplying the two sides of the above
inequality by tde−mt and noting that e−mt ≤ 1, one has

tde−mt Pα tð Þu0k kHq Mð Þ ≤ �C1,α,βt
d−β u0k kHq−2 Mð Þ

+ �C2,α,βt
d−β u0k kHq−2−2β Mð Þ:

ð38Þ

Noting that d ≥ β, we deduce that if u0 ∈Hq−2−2β

ðMÞ ∩Hq−2ðMÞ, then the following holds:

Pα tð Þu0 ∈ Xd,m 0h , T� ;Hq Mð Þð Þ: ð39Þ

Take two functions θ1, θ2 ∈Xd,mðð0, T� ;HqðMÞÞ.
First, we need to derive the estimation for the term:

Ið Þ =
ðt
0
Pα t − τð ÞG θ1 τð Þð Þdτ −

ðt
0
Pα t − τð ÞG θ2 τð Þð Þdτ

����
����
Hq Mð Þ

:

ð40Þ

Using Lemma 1 and Sobolev embedding HsðMÞ°
Hq−2ðMÞ and HsðMÞ°Hq−2−2βðMÞ (since s ≥ q − 2), we
arrive at

Ið Þ =
ðt
0
Pα t − τð ÞG θ1 τð Þð Þdτ −

ðt
0
Pα t − τð ÞG θ2 τð Þð Þdτ

����
����
Hq Mð Þ

≤ �C1,α,β

ðt
0
t − τð Þ−β G θ1 τð Þð Þ −G θ2 τð Þð Þk kHq−2 Mð Þdτ

+ �C2,α,β

ðt
0
t − τð Þ−β G θ1 τð Þð Þ −G θ2 τð Þð Þk kHq−2−2β Mð Þdτ

≤ ~C1,α,β + ~C2,α,β
� �ðt

0
t − τð Þ−β G θ1 τð Þð Þ −G θ2 τð Þð Þk kHs Mð Þdτ:

ð41Þ

Since the assumption (29), we know that

ðt
0
t − τð Þ−β G θ1 τð Þð Þ −G θ2 τð Þð Þk kHs Mð Þdτ

≤ Lg

ðt
0
t − τð Þ−β θ1 τð Þ − θ2 τð Þk kHq Mð Þdτ

= Lg

ðt
0
t − τð Þ−βτ−demτ

� �
θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ:

ð42Þ

Combining (40) and (41), we find that

tde−mt
ðt
0
Pα t − τð ÞG θ1 τð Þð Þdτ −

ðt
0
Pα t − τð ÞG θ2 τð Þð Þdτ

����
����
Hq Mð Þ

≤ ~C1,α,β + ~C2,α,β
� �

Lgt
d

�
ðt
0
t − τð Þ−βτ−de−m t−τð Þdτ

� �
θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ

= ~C1,α,β + ~C2,α,β
� �

Lgt
1−β

�
ð1
0
1 − ξð Þ−βξ−de−mt 1−ξð Þdξ

� �
θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ,

ð43Þ

where we have used the fact that

td
ðt
0
t − τð Þ−βτ−de−m t−τð Þdτ = t1−β

ð1
0
1 − ξð Þ−βξ−de−mt 1−ξð Þdξ:

ð44Þ

Let us continue to treat the term. First, we need
to derive the estimation for the term:

IIð Þ =
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξdτ

����
−
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξdτ

����
Hq Mð Þ

:

ð45Þ

Using Lemma 1 and Sobolev embedding HsðMÞ°
Hq−2ðMÞ and HsðMÞ°Hq−2−2βðMÞ (since s ≥ q − 2), we
get the following bound:
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IIð Þ =
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξdτ

����
−
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξdτ

����
Hq Mð Þ

≤ �C1,α,β

ðt
0
t − τð Þ−β

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ

����
−
ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
Hq−2 Mð Þ

dτ

+ �C2,α,β

ðt
0
t − τð Þ−β

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ

����
−
ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
Hq−2−2β Mð Þ

dτ

≤ ~C1,α,β + ~C2,α,β
� �ðt

0
t − τð Þ−β

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ

����
−
ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
Hs Mð Þ

dτ:

ð46Þ

Using the Lipschitz property of K , we know that

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ −

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
����
Hq Mð Þ

≤ CθLk

ðτ
0
τ − ξð Þ−δ θ1 ξð Þ − θ2 ξð Þk kHq Mð Þdξ

= CθLk

ðτ
0
τ − ξð Þ−δξ−demξξde−mξ θ1 ξð Þ − θ2 ξð Þk kHq Mð Þdξ

≤ CθLk

ðτ
0
τ − ξð Þ−δξ−demξdξ

� �
θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ:

ð47Þ

It is obvious to see that

ðτ
0
τ − ξð Þ−δξ−demξdξ ≤ emτ

ðτ
0
τ − ξð Þ−δξ−ddξ

= emττ1−δ−dB 1 − δ, 1 − dð Þ:
ð48Þ

This implies that the following estimation is for
the integral term on the right hand side of (45):

ðt
0
t − τð Þ−β

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξ −

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξ

����
����
Hq Mð Þ

dτ

≤ CθLkB 1 − δ, 1 − dð Þ
�

ðt
0
t − τð Þ−βτ1−δ−demτdτ

� �
θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ:

ð49Þ

This implies that

tde−mt
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξdτ

����
−
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξdτ

����
Hq Mð Þ

≤ C3t
d
ðt
0
t − τð Þ−βτ1−δ−de−m t−τð Þdτ

� �
θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ

= C3t
2−β−δ

ð1
0
1 − ξð Þ−βξ1−d−δe−mt 1−ξð Þdξ θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ,

ð50Þ

where we note that

C3 = ~C1,α,β + ~C2,α,β
� �

CθLkB 1 − δ, 1 − dð Þ,

td
ðt
0
t − τð Þ−βτ1−δ−de−m t−τð Þdτ = t2−β−δ

ð1
0
1 − ξð Þ−βξ1−d−δe−mt 1−ξð Þdξ:

ð51Þ

Combining (42) and (49), we obtain the following
bound:

tde−mt Fθ1 tð Þ −Fθ2 tð Þk kHq Mð Þ ≤ tde−mt
ðt
0
Pα t − τð ÞG θ1 τð Þð Þdτ

����
−
ðt
0
Pα t − τð ÞG θ2 τð Þð Þdτ

����
Hq Mð Þ

+ tde−mt
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ1 ξð Þð Þdξdτ

����
−
ðt
0
Pα t − τð Þ

ðτ
0
ψ τ − ξð ÞK θ2 ξð Þð Þdξdτ

����
Hq Mð Þ

≤ ~C1,α,β + ~C2,α,β
� �

Lgt
1−β

�
ð1
0
1 − ξð Þ−βξ−de−mt 1−ξð Þdξ

� �
θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ

+ C3t
2−β−δ

ð1
0
1 − ξð Þ−βξ1−d−δe−mt 1−ξð Þdξ θ1 − θ2k kXd,m 0,Tð �;Hq Mð Þð Þ:

ð52Þ

From the condition (34), we can verify the fol-
lowing condition:

1 − β > 0,
−β>−1,−d>−1,−β − d>−1,
β + δ < 2,
1 − d − δ>−1, ‘ − β + 1 − d − δ>−1:

8>>>>><
>>>>>:

ð53Þ

By using Lemma 2, we have two statements
immediately:
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lim
m⟶∞

sup
t∈ 0,T½ �

t1−β
ð1
0
1 − ξð Þ−βξ−de−mt 1−ξð Þdξ

� � !
= 0,

lim
m⟶∞

sup
t∈ 0,T½ �

t2−β−δ
ð1
0
1 − ξð Þ−βξ1−d−δe−mt 1−ξð Þdξ

 !
= 0:

ð54Þ

From the last two observations, we can find that
the positive number m0 such that

~C1,α,β + ~C2,α,β
� �

Lgt
1−β

ð1
0
1 − ξð Þ−βξ−de−mt 1−ξð Þdξ

� �

+ C3t
2−β−δ

ð1
0
1 − ξð Þ−βξ1−d−δe−mt 1−ξð Þdξ

ð55Þ

is less than 1. By applying the Banach fixed point
theorem, we know that problem (1) has a unique
solution in Xd,m0

ðð0, T� ;HqðMÞÞ. ☐

5. Conclusion

The result of the paper is one of the first works on the topic of
memory for equations with Caputo-Fabrizio derivatives. We
obtain the following results: first, prove the existence of local
solutions. The second is a survey of the global solution. The
main technique is to use the Banach fixed point theorem in
combination with Sobolev embeddings.
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