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Abstract

Panel count data frequently occurs in follow-up studies, such as medical research, social

sciences, reliability studies, and tumorigenicity experiences. This type data has been exten-

sively studied by various statistical models with time-invariant regression coefficients. How-

ever, the assumption of invariant coefficients may be violated in some reality, and the

temporal covariate effects would be of great interest in research studies. This motivates us

to consider a more flexible time-varying coefficient model. For statistical inference of the

unknown functions, the quantile regression approach based on the B-spline approximation

is developed. Asymptotic results on the convergence of the estimators are provided. Some

simulation studies are presented to assess the finite-sample performance of the estimators.

Finally, two applications of bladder cancer data and US flight delay data are analyzed by the

proposed method.

Introduction

In longitudinal follow-up studies, panel count data is frequently encountered in many fields

such as medical research, social sciences, reliability studies, and tumorigenicity experiences,

which has been widely analyzed by many authors. This type data is usually collected from the

discrete observations in recurrent event process, as the continuous observations might be too

expensive to be carried out. Thus, we can only obtain the cumulative occurrence numbers of

the events of interest at these discrete observation times.

For the analysis of panel count data, [1, 2] developed the regression analysis approaches to

the panel count data model. [3] studied the clustered mixed nonhomogeneous Poisson models

of panel count data. [4] considered the spline-based likelihood estimation of the proportional

mean model. To describe the potential correlations of the recurrent event process, [5–7] devel-

oped some joint models of panel count data by employing some frailty parameters to discuss

these correlations. Recently, semiparametric transformation models with informative observa-

tion times were studied by many authors, such as [8–10]. More comprehensive introductions

about this type data can be referred to the book of [11].
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In general, the existing approaches in modeling panel count data are based on the time-

invariant coefficients assumption, but which may be violated in practice. In some applications,

coefficients may be time-varying, and sometimes it is more vital to detect the temporal impacts

on the recurrent event process. For example, in medical studies, we are interested in detecting

the temporal impacts of one new drug. Recently, [12, 13] proposed the varying coefficient

models for recurrent events. However, the analysis of panel count data with varying coeffi-

cients is very limited. Most recently, [14] proposed a partially varying coefficient model of

panel count data to account for the nonlinear interactions between covariates. [15] proposed a

nonparametric proportional mean model of the panel count data with time-varying

coefficients.

Quantile regression is widely used in the analysis of longitudinal data. It can provide more

information about the distribution shape of the response and can be used to measure the effect

of variables under different percentiles of the distribution. However, quantile regression meth-

odologies for the panel count data are lagging. As the discreteness of the panel count data,

quantile regression cannot be directly used. For the first, a smoothing technique (“jitter”) is

used for this type data, then the quantile regression can be applied to the smooth data.

In this paper, a semiparametric time-varying coefficient model is formulated. For the infer-

ence of the unknown functions, quantile regression method is used for the panel count data,

with the unknown functions approximated by the B-spline basis functions. Furthermore, the

asymptotic results on the convergence of the estimators are established as well. The main con-

tribution of the paper is that we propose a new spline-based quantile estimation procedure for

the time-varying coefficient panel count data model, which has not been discussed in the

literature.

Model specification

Suppose that n independent subjects are observed over time. Ni(t) denotes the cumulative total

number of recurrent event occurring at or before time t for subject i. ~HiðtÞ is a counting pro-

cess with jumps at the discrete observation times, ti,1 < ti,2 < � � �. We assume that t is in a fix

interval < of finite length. Besides, two follow-up times are existed: the potential censoring

time C�i and the observation endpoint Ti. Thus, only Ci ¼ minðC�i ;TiÞ can be observed in the

process, with di ¼ IðCi ¼ C�i Þ. C
�
i is assumed to be independent with Ni(t) and ~HiðtÞ. Let

HiðtÞ ¼ ~Hifminðt;CiÞg denote the real observation process of subject i, and mi ¼
~HiðCiÞ,

i = 1, � � �, n. Then, Ni(t) can be only acquired at the time points where Hi(t) jumps. The total

number of the observations is defined as m ¼
Pn

i¼1
mi. Let Zi be a p × 1 vector of covariates.

So we can have the independent and identically distributed dataset {Hi(t), Ni(t)dHi(t), Ci, δi, Zi;
t� 0, i = 1, � � �, n}.

To describe the possible time-varying effects of covariates on Ni(t), the time-varying coeffi-

cient model is proposed as follows.

• (1) Given Zi, the conditional mean function of Ni(t) is

EfNiðtÞjZig ¼
Z t

0

l0ðuÞexpfbðuÞ
>Zigdu; ð1Þ

where λ0(u) is an unspecified smooth baseline intensity function, and β(u) is an unknown p
× 1 vector of time-varying regression coefficients.

• (2) Conditional on Zi, fCi;NiðtÞ; ~HiðtÞg are mutually independent.
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For the model defined above, [15] developed the likelihood and pseudo-likelihood methods

to get the estimation of the baseline intensity function λ0(u) and the varying coefficient func-

tions β(u) based on the Poisson distribution assumption on Ni(t). However, no distribution

assumption is specified in this paper and the existed methods cannot be used. In the next sec-

tion, the spline-based quantile regression is proposed to acquire the estimation of the

unknown functions. In the first step, the unknown baseline intensity function and the coeffi-

cients are approximated by B-splines. And then, the discrete panel count data become continu-

ous by a smoothing technique. Quantile regression is developed for the inference in the last

step.

Estimation procedure

For the inference of Eq (1), the model can be rewritten as,

EfNiðtÞjXig ¼

Z t

0

expfX>i ZðuÞgdu;

where Xi ¼ ðZ>i ; 1Þ
>

, η(u) = (β(u)>, log{λ0(u)})>.

Approximations of baseline and varying coefficients

Similar as [16], we use the basis expansion method to get the estimation of the unknown func-

tions in this paper. Suppose ηk(u), k = 1, 2, � � �, p + 1, can be approximated by a basis expan-

sion, that is

ZkðuÞ �
XLk

l¼1

gklBklðuÞ ¼ BkðuÞ
>
gk;

where BkðuÞ ¼ fBk1ðuÞ; . . . ;BkLkðuÞg
>

are basis functions, gk ¼ ðgk1; . . . ; gkLkÞ
>

and Lk is the

number of basis functions. Various basis functions can be used in the expansion such as Fou-

rier basis functions, polynomial basis functions and B-spline functions. In this paper, the B-

spline basis is selected in the estimation procedure for calculation simplicity.

The tuning parameter Lk is selected by Lk = nk + qk + 1, where nk is the number of interior

knots and qk is the degree of the B-spline functions. The interior knots of the splines are

equally spaced or placed on the sample quantiles of the data in all simulations and applications.

The tuning parameter Lk may be different for different k. In this paper, we assume that Lk = L
and qk = q for all ηk(u). Thus, we define Bk(u) = B(u) for simplicity presentation.

Quantile regression

As quantile regression is a good alternative to the conditional mean models, the quantile

regression is considered for the panel count data model. However, quantile regression cannot

be directly used as the discreteness of the data Ni(t). According to the method developed in

[17], the “jitter” method is applied to construct continuous random variables. By adding Uij,
which is generated from a [0, 1) uniform distribution, we can have

N�i ðtijÞ ¼ NiðtijÞ þ Uij;

where the noise Uij is independent of Ni(tij) and Zi. The uniform distribution is used because it

allows computational simplifications. The uniform noise, however, is by no means a necessity

to jitter the data. The noise may be generated by any continuous distribution with support on

[0, 1). Thus, we can get the continuous data N�i ðtijÞ and there exists a one-to-one link between
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the quantiles of Ni(tij) and N�i ðtijÞ. The regression model of N�i can be written as

N�i ðtijÞ ¼
Z t

0

expfX>i ZðuÞgduþ �ij;

where �ij are assumed to be independent of tij with unknown cumulative distribution function

(cdf) G(�) and density function g(�). Besides, the τ-th conditional quantile of �ij is bτ.
The quantile regression loss function is defined as ρτ(u) = u[τ − I(u< 0)], τ 2 (0, 1). Then

the quantile regression is applied on the smooth data N�i ðtijÞ to obtain the estimation of the

unknown parameters. Thus, the unknown parameters ϕ = (γ>, bτ)> can be estimated by mini-

mizing the following objective function C(ϕ), that is

Cð�Þ ¼
Xn

i¼1

Xmi

j¼1

rtfNiðtijÞ �
Z tij

0

expfWðu;XiÞ
>
ggdu � btg;

whereW(u, Xi) = Ip+1� B(u) � Xi and g ¼ ðg>
1
; . . . ; g>pþ1

Þ
>

.

For the ease of calculation, Gauss-Legendre formula is used to approximate the integral.

Thus, we have

Z tij

0

expfWðu;XiÞ
>
gg du �

tij
2

XS

s¼1

os exp W

(
tij
2
ð1þ DsÞ;Xi

)>

g

" #

;

where ωs is the Gauss coefficient, S is the number of the Gauss points and Δs is the Gauss

point. The Gauss-Legendre approximation of the objective function C(ϕ) can be defined as

Cð�Þ �
Xn

i¼1

Xmi

j¼1

rt

(

NiðtijÞ �
tij
2

XS

s¼1

os exp W

(
tij
2
ð1þ DsÞ;Xi

)>

g

" #

� bt

)

:

Define �̂ ¼ ðĝ>; b̂tÞ
>

be the minimizers of the approximation of the objective function C

(ϕ). It is nature to get the estimation of the varying coefficient βk(u), k = 1, � � �, p,

b̂kðuÞ �
XL

l¼1

ĝklBlðuÞ ¼ BðuÞ>ĝk;

and the baseline intensity function of λ0(u) can be obtained by

l̂0ðuÞ � exp
�
XL

l¼1

ĝpþ1;lBlðuÞ
�

¼ expfBðuÞ>ĝpþ1g:

Next, we discuss how to select the tuning parameter L and the Gauss point number S. As

proposed by [16], we use the leave-one-subject-out cross-validation (CV) to choose L and S.

Let ĝð� iÞ and b̂ð� iÞ
t

denote the estimators from the data with the i-th subject deleted. So the

leave-one-subject-out CV can be written as

CVðL; SÞ ¼
Xn

i¼1

Xmi

j¼1

rt

(

N�i ðtijÞ �
tij
2

XS

s¼1

osexp W

(
tij
2
ð1þ DsÞ;Xi

)>

gð� iÞ

" #

� bð� iÞ
t

)

:
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Thus, the tuning parameter L and S can be selected as

ðLCV ; SCVÞ ¼ min
L;S

CVðL; SÞ:

Remark 1 The number Lk of the basis expansion of βk may be different from each other. How-
ever, we assume Lk = L for all k, for simplicity.

Asymptotic results

The asymptotic results are concluded in this section. Before presenting the results, some regu-

larity conditions are introduced for the first.

(C1) Zi is uniformly bounded.

(C2) The observation number mi is bounded by a constant.

(C3) λ0(u) and βk(u), k = 1, � � �, p, are l-th differentiable and bounded.

(C4) There exists an open subset O� RpL+1, which contains the true parameter ϕ�. The second

derivative matrixr2 h(tij, Xi;ϕ) of h(tij, Xi;ϕ) with respect to ϕ, satisfies

k r2hðtij;Xi;�1Þ � r
2hðtij;Xi;�2Þ k� M1ðtij;XiÞ k �1 � �2 k;

@
2hðtij;Xi;�Þ

@�j@�k

�
�
�
�
�

�
�
�
�
�
� M2jkðtij;ZiÞ;

for all ϕ 2 O, with E½M2
1
ðtij;XiÞ� <1, E½M2

2jkðtij;XiÞ� <1 for all j, k.

(C5) Varðrh�ijÞ ¼ M > 0, Efðrh�ijÞ
�2
g ¼ G, and 0< d1 < λmin(Γ)� λmax(Γ) < d2 <1,

where λmin(Γ) and λmax(Γ) denote the smallest and the largest eigenvalues of Γ.

(C6) �ij is independent with unknown distribution function G(�) and density g(�). Besides, the

τ-th conditional quantile of �ij is ℓτ.

Under these above regularity conditions, the asymptotic results on the convergence of the

estimators are displayed in the following theory. For the need of the proofs, a lemma of spline

function of [18] is presented. First, define

Skn ¼ fZkn : Zkn ¼
XL

l¼1

gklBlðuÞ; ðgk1; � � � ; gkLÞ 2 R
Lg:

Let Skn be the space of splines of degree q consisting of functions ηkn satisfying: (i) the func-

tion ηkn to each subinterval is a polynomial spline of degree q; (ii) for q� 1 and 0� q0 � q, ηkn
is q0 times continuously differentiable on the support. Besides, ηk is assumed to satisfy the fol-

lowing regularity condition. Let l1 2 [0, q] be a nonnegative integer. The l1-th derivative,

denoted as Z
ðl1Þ
k , exists and satisfies the Lipschitz condition of order v 2 (0, 1] such that ρ = l1 +

v> 0.5 and jZ
ðl1Þ
k ðsÞ � Z

ðl1Þ
k ðtÞj � djs � tj

v
, for s, t 2 [0, C], where δ is a positive constant.

Lemma 1 There exists ηkn 2 Skn such that kηkn − ηkk2 = Op(L−ρ + L1/2 m−1/2). If

L = O{m1/(2ρ+1)}, then we have kηkn − ηkk2 = Op{(L/m)1/2} = Op{m−ρ/(2ρ+1)}.

Theorem 1 Suppose the conditions (C1)–(C6) hold and if L = O{m1/(2ρ+1)}, then we have
ffiffiffiffi
m
p
ð�̂ � �

�
Þ!dNf0; gðb�tÞ

� 2
tð1 � tÞðG� 1Þg:
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Furthermore, we have

k b̂kðuÞ � bkðuÞ k2 ¼ OpfðL=mÞ
1=2
g; k ¼ 1; � � � ; p;

k log l̂0ðuÞ � log l0ðuÞ k2 ¼ OpfðL=mÞ
1=2
g:

Ignoring the approximation error in the B-spline basis approximation of βk(u), k = 1, � � �, p,

we can have the 100(1 − α)% pointwise confidence interval of βk(u) under quantile τ,

b̂kðuÞ � z2=a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covfb̂kðuÞg
q

;

where z2/α is the 100(1 − α)% percentile of the standard normal distribution and

covfb̂kðuÞg ¼ BðuÞ>covðĝkÞBðuÞ. Similar as the baseline function λ0(u).

Simulation studies

Three simulation studies are carried out to evaluate the performance of the method developed

in this paper. We generated 200 datasets from the time-varying coefficient model, each of size

n = 100 or 200 independent subjects. For each subject i, the endpoint of observation Ti is

assumed to be 6 and the censoring time C�i follows the uniform distribution of [Ti/2, 3Ti/2].

The number of observation times mi is generated from a discrete uniform distribution {1, 2, 3,

4, 5}. And the observed event times, fti1; . . . ; timig, are the order statistics of a random sample

size mi from the uniform distribution over (0, Ci). Given mi and fti1; . . . ; timig, the panel count

data Ni(tij) can be obtained by the following formula

NiðtijÞ ¼ N�i ½lNðti1Þ� þ N
�
i ½lNðti2Þ � lNðti1Þ�

þ � � � þ N�i ½lNðtijÞ � lNðtij� 1Þ�;

for j = 1, � � �mi and i = 1, � � �n. N�i ½lNðtijÞ� is the random number generated from the Poisson

distribution with mean

Z tij

0

l0ðuÞexpfbðuÞ
>Zigdu:

The following three cases are considered:

• Case I: p = 1 and the covariate Zi is generated independently from the [0, 1] uniform distri-

bution. The baseline function is taken as λ0(u) = 2u + 1 and the varying coefficient β(u) = sin

(−πu/6).

• Case II: p = 1 and the covariate Zi is generated independently from the [0, 1] uniform distri-

bution. The baseline function is taken as λ0(u) = 2(u + τ) and the varying coefficient β(u) =

sin(−τπu/6).

• Case III: p = 2 and the covariates Zi are generated from the [0, 1]2 uniform distribution with

correlation cor(Zik, Zil) = 0.5|k−l|. The baseline function is taken as λ0(u) = 2u + 1 and the

varying coefficient β1(u) = sin(−πu/6) and β2(u) = 2sin(−τπu/6).

To estimate the smooth functions logλ0(u) and β(u), the cubic B-spline functions are

selected. Under different quantiles τ = {0.25, 0.5, 0.75}, the estimations of Case I–III are pre-

sented with sample size n = 100 or 200 in Tables 1–3, respectively. The results include the aver-

age of the absolute bias values based 100 grid points (BIAS), the average of sampling standard

errors based 100 grid points (SSE), the average of the bootstrap standard errors based 100 grid
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points (BSE) and the average of the estimated 95% coverage probabilities based 100 grid points

(CP). It can be seen that the estimations are unbiased under different quantiles. The values of

SSE and BSE are close and decrease with the increasing sample size n. Besides, from the results

of CP, we can note that the Gaussian approximation is appropriate for the estimators.

Figs 1–3 display the estimation curves of the unknown functions log λ0(t) and β(t) with

n = 200. In the figures, the point lines represent the estimated curves, the solid lines represent

the true curves and the dotted lines represent the 95% confidence intervals. Based the figures,

it is easy to find that the real curves and the estimated curves are very close, which indicates

the B-spline estimations of the unknown functions work well. From the simulation results, we

note that the estimations under different quantiles are reasonable for log λ0(t) and β(t).

Applications

Bladder cancer data

Bladder cancer data was collected by the Veterans Administration Cooperative Urological

Research Group. In this study, 85 patients were randomly assigned to two treatment groups:

placebo group (47) and thiotepa group (38). For each patient, the observation times and the

cumulative numbers of the bladder tumors that occurring at or before the observation times

Table 1. BIAS, SSE, BSE and CP of the estimated functions in Case I at different τ.

τ n Estimated function BIAS SSE BSE CP

0.25 100 β(t) 0.0558 0.8329 0.8355 0.9640

log λ0(t) 0.1276 0.4150 0.4453 0.9548

200 β(t) 0.0319 0.6826 0.5999 0.9355

log λ0(t) 0.1044 0.3853 0.3377 0.9470

0.5 100 β(t) 0.0598 0.4472 0.4184 0.9623

log λ0(t) 0.0341 0.2460 0.2264 0.9750

200 β(t) 0.0197 0.3905 0.3684 0.9611

log λ0(t) 0.0280 0.1886 0.1725 0.9525

0.75 100 β(t) 0.0789 0.8014 0.9118 0.9701

log λ0(t) 0.0751 0.4935 0.4955 0.9640

200 β(t) 0.0553 0.6901 0.6785 0.9368

log λ0(t) 0.0599 0.4079 0.3808 0.9472

https://doi.org/10.1371/journal.pone.0261224.t001

Table 2. BIAS, SSE, BSE and CP of the estimated functions in Case II at different τ.

τ n Estimated function BIAS SSE BSE CP

0.25 100 β(t) 0.0768 0.9830 0.9890 0.9592

log λ0(t) 0.1501 0.4924 0.5356 0.9661

200 β(t) 0.0214 0.7345 0.6980 0.9365

log λ0(t) 0.1099 0.4021 0.3875 0.9480

0.5 100 β(t) 0.0455 0.7163 0.6937 0.9250

log λ0(t) 0.0746 0.4082 0.4277 0.9425

200 β(t) 0.0380 0.4600 0.4511 0.9389

log λ0(t) 0.0514 0.2633 0.2601 0.9694

0.75 100 β(t) 0.0552 0.8944 0.8558 0.9697

log λ0(t) 0.0722 0.5191 0.4701 0.9406

200 β(t) 0.0398 0.6906 0.6721 0.9355

log λ0(t) 0.0529 0.3553 0.3284 0.9640

https://doi.org/10.1371/journal.pone.0261224.t002
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are recorded. The observation endpoint is 53 month. What’s more, the initial number of the

bladder tumors and the largest initial tumor size for each patient are also recorded. In the liter-

ature, the dataset has been discussed by many authors such as [5, 7, 19]. However, time-vary-

ing coefficient panel count data model is not considered for this dataset.

In order to describe the temporal impacts of the covariates on the bladder cancer data, the

time-varying coefficient model proposed in this paper is applied to these data. For each patient

i, Ni(t) is denoted as the cumulative bladder tumors number occurring up to time t, and Hi(t)
is denoted as the cumulative observation number up to time t, i = 1, � � �, 85. Furthermore, let

Zi1 = 1 if the patient i is belonged to the thiotepa group and Zi1 = 0 otherwise. Zi2 is denoted as

the initial tumor number and Zi3 is the natural logarithm of the largest initial tumour size plus

1 for each patient i. Therefore, we have the model

EfNiðtÞjZig ¼
Z t

0

l0ðuÞ exp fb1ðuÞZi1 þ b2ðuÞZi2 þ b3ðuÞZi3gdu:

Then quantile regression estimation is applied to this data. 100 samples are drawn from the

data every time and 200 times are repeated in the estimation. Similar to the numerical studies,

the unknown functions λ0(t) and βk(t), k = 1, 2, 3 are approximated by Cubic B-spline func-

tions. The estimation is implemented under quantiles τ 2 {0.25, 0.5, 0.75}.

The estimation curves of log λ0(t) and βk(t), k = 1, 2, 3 are displayed in Fig 4. In general, the

thiotepa treatment and the tumor recurrence rate are negatively correlated at different quan-

tiles. Patients in the thiotepa group tend to have less tumor recurrence rate than those in the

placebo group. The initial tumor number is positively correlated with the recurrence rate and

the largest initial tumor size is negatively correlated with the recurrence rate. These above con-

clusions are consistent with [19]. Furthermore, we can find the covariates impacts are varying

during the observation time and the impacts are different at different quantiles. Thus, more

information can be obtained from the quantile regression of the time-varying coefficient panel

count data model than the other analysis in the existing literature.

Table 3. BIAS, SSE, BSE and CP of the estimated functions in Case III at different τ.

τ n Estimated function BIAS SSE BSE CP

0.25 100 β1(t) 0.0553 1.0039 0.9841 0.9560

β2(t) 0.1272 0.9849 0.9762 0.9262

log λ0(t) 0.1694 0.7364 0.6911 0.9735

200 β1(t) 0.0404 0.7205 0.6835 0.9436

β2(t) 0.0795 0.7557 0.7422 0.9677

log λ0(t) 0.1271 0.5135 0.4974 0.9595

0.5 100 β1(t) 0.1330 0.8475 0.8618 0.9205

β2(t) 0.1641 0.9111 0.8852 0.9455

log λ0(t) 0.0431 0.5986 0.5748 0.9625

200 β1(t) 0.0927 0.6934 0.6520 0.9380

β2(t) 0.0518 0.7482 0.7249 0.9628

log λ0(t) 0.0445 0.4225 0.4418 0.9561

0.75 100 β1(t) 0.1235 0.9436 0.8869 0.9256

β2(t) 0.1282 0.9478 0.9648 0.9460

log λ0(t) 0.0695 0.8331 0.8160 0.9335

200 β1(t) 0.0383 0.7438 0.7409 0.9510

β2(t) 0.0825 0.8510 0.8325 0.9246

log λ0(t) 0.0507 0.5684 0.5348 0.9714

https://doi.org/10.1371/journal.pone.0261224.t003
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US flight delay data

In this subsection, 2015 US flight delay data (available from https://www.kaggle.com/usdot/

flight-delays) is analyzed with the time-varying coefficient panel count data model. This data-

set was collected from the U.S. Department of Transportation’s (DOT) monthly Air Travel

Consumer Report. The report contained information about the numbers of on-time, delayed,

canceled, and diverted flights. The dataset included 9794 flights which were observed during 3

months in the year of 2015. The numbers of delays for each flight are recorded between the

observation times. The observation times of each flight are the same and the observation inter-

val is 7 days. Besides, the average departure delay time and the average flight distance of each

flight are also recorded.

In order to describe the temporal covariates impacts on the flight delays, the time-varying

coefficient model proposed in this paper is used to these data. For each flight i, Ni(t) is denoted

as the cumulative flight delay number that had occurred up to time t,Hi(t) is denoted as the

Fig 1. Estimated curves of time-varying functions in case I at different τ with n = 200.

https://doi.org/10.1371/journal.pone.0261224.g001
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cumulative observation number up to time t, i = 1, � � �, 9794. Furthermore, we define Zi1 as the

average time of the departure delay and Zi2 as the average distance of the flight i. Therefore, we

have the model

EfNiðtÞjZig ¼
Z t

0

l0ðuÞ exp fb1ðuÞZi1 þ b2ðuÞZi2gdu:

Then spline-based quantile estimation is applied to this data. Similarly, the unknown func-

tions λ0(t) and βk(t), k = 1, 2 are also approximated by Cubic B-spline functions. The estima-

tion is implemented under quantiles τ 2 {0.25, 0.5, 0.75}.

As the sample size of the dataset is large, it is time-consuming or even not possible to read

the entire dataset in practice due to the limited memory. Besides, the direct analysis can be

infeasible, mainly due to the computing memory or computing time. In order to deal with the

massive data, parallel computing method is developed by [20, 21]. In parallel computing

method, we split the original dataset into a family of disjoint sub-sample blocks with equal size

Fig 2. Estimated curves of time-varying functions in case II at different τ with n = 200.

https://doi.org/10.1371/journal.pone.0261224.g002
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for the first. More precisely, the data structure can be defined as the following form:

S ¼ ½Sk ¼ fHkiðtÞ;NkiðtÞdHkiðtÞ;Zki; t � 0; i ¼ 1; � � � ;mg; k ¼ 1; � � � ;K�;

where the original dataset S is of size n = K ×m which is partitioned to K subsample blocks Sk
each consist m samples which are randomly picked up from the dataset S.

Thus, the estimation procedure proposed can be implemented for every block Sk, k = 1, � � �,

K and the estimated values of unknown parameters for each block Sk is denoted as fẐðtÞgk.

Fig 3. Estimated curves of time-varying functions in case III at different τ with n = 200.

https://doi.org/10.1371/journal.pone.0261224.g003
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Similar to the method introduced in [21], the final full-sample estimators can be generated by

ẐðtÞ ¼
XK

k¼1

fẐðtÞgk:

Fig 4. Estimated curves of time-varying functions for bladder cancer data at different τ.

https://doi.org/10.1371/journal.pone.0261224.g004
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The estimation curves of log λ0(t) and βk(t), k = 1, 2, under different quantiles τ 2 {0.25, 0.5,

0.75} are displayed in Fig 5. From Fig 5, we can find that the departure delay time is positively

correlated with the cumulative flight delay numbers. Besides, the impact of the departure delay

time is varying over the time under different quantiles and the impact is different at different

quantiles. However, the effect of the flight distance is not significant on the flight delay numbers.

Fig 5. Estimated curves of time-varying functions for US flight delay data at different τ.

https://doi.org/10.1371/journal.pone.0261224.g005
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Concluding remarks

In this paper, we proposed a spline-based quantile regression estimation method in the time-

varying coefficient panel count data model. This model discussed in our paper is more general

than [15], with no Poisson restriction on the recurrent event process. To get the estimations,

B-splines are used to approximate the unknown functions log λ0(t) and β(t) for the first, and

then a smoothing technique is applied to obtain the continuation of the discrete panel count

data. Finally, the spline-based quantile regression approach is developed at different quantiles.

Some simulations are presented to evaluate the performance of the proposed approach and

two applications are analyzed to demonstrate its effectiveness in this paper.

Recently, the Enron e-mail corpus which was a massive set of the e-mail messages, have

been discussed by many authors, such as [22]. If we are interested in the number of interac-

tions of all pairs of individuals in this longitudinal observations, as usual in network analysis,

the snapshots are applied to model this longitudinal networks, then, this is a standard panel

count dataset with massive observations. Furthermore, in this paper, we only considered the

situation with low dimensional covariates, which may be not unpracticable in the applications.

As the high-dimensional covariates may be existed, variable selection methods can be consid-

ered for the time-varying coefficient model. This will be an important topic for our further

studies. Besides, reliability data and traffic data have been studied by many authors, such as

[23–26]. This will be interesting to study the quantile regression estimation of such data.

Proof of Theorem 1

Define g�; b�
t

as the true but unknown values of g; b�
t
, u1 ¼

ffiffiffiffi
m
p
ðg � g�Þ, u2 ¼

ffiffiffiffi
m
p
ðbt � b�tÞ,

u ¼ ðu>
1
; u2Þ

>
, ϕ = (γ>, bτ)> and hðtij;Xi;�Þ ¼

R tij
0
expfWðu;XiÞ

>
ggduþ bt:

Let

Hð��Þ ¼
Xn

i¼1

Xmi

j¼1

rt

�

N�i ðtijÞ �
Z tij

0

expfWðu;XiÞ
>
g�gdu � b�

t

�

¼
Xn

i¼1

Xmi

j¼1

rt

�

�ij � b
�

t
þ

Z tij

0

expfX>i ZðuÞgdu �
Z tij

0

expfWðu;XiÞ
>
g�gdu

�

¼
Xn

i¼1

Xmi

j¼1

rtð�ij � b
�

t
þ rijÞ;

where

rij ¼
Z tij

0

expfX>i ZðuÞgdu �
Z tij

0

expfWðu;XiÞ
>
g�gdu:

By the Taylor expansion, we can have rij = op(1). Besides,

Hð�� þ u=
ffiffiffiffi
m
p
Þ ¼

Xn

i¼1

Xmi

j¼1

rtfN
�

i ðtijÞ � hðtij;Xi;�
�
þ u=

ffiffiffiffi
m
p
Þg

¼
Xn

i¼1

Xmi

j¼1

rtf�ij � b
�

t
þ rij � rhðtij;Xi;

~�Þ
>u=

ffiffiffiffi
m
p
g

¼
Xn

i¼1

Xmi

j¼1

rtf�ij � b
�

t
þ rij � zijg;

PLOS ONE Quantile estimation of panel count data

PLOS ONE | https://doi.org/10.1371/journal.pone.0261224 December 13, 2021 14 / 18

https://doi.org/10.1371/journal.pone.0261224


where zij ¼ rhðtij;Xi;
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By condition (C5), E[{rh(tij, Xi;ϕ�)}�2] = Γ, we can have
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Thus κ1!p κ. By Slutsky’s theorem, κ1!d N{0, τ(1 − τ)Γ}. Then, we can have that
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By the epi-convergence results of [28], û!d � gðb�tÞ
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G� 1k1. Finally, the asymptotic nor-
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Since k ẐkðuÞ � ZkðuÞ k2 � k ẐkðuÞ � g>k BðuÞ k2 þ k g
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>BðuÞBðuÞ>ðĝk � gkÞ�g�

1=2

¼ ½trfEðBðuÞBðuÞ>ÞEðĝk � gkÞðĝk � gkÞ
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By the Lemma 1, k ẐkðuÞ � ZkðuÞ k2 ¼ OpfðL=mÞ
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g; k ¼ 1; . . . ; pþ 1. Thus, we can get
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and
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