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Abstract: Electromagnetic expulsion acts on a body suspended in a conducting fluid or plasma,
which is subject to the influence of electric and magnetic fields. Physically, the effect is a magneto-
hydrodynamic analogue of the buoyancy (Archimedean) force, which is caused by the nonequal
electric conductivities inside and outside the body. It is suggested that electromagnetic expulsion can
drive the observed plasma counter-streaming flows in solar filaments. Exact analytical solutions and
scaling arguments for a characteristic plasma flow speed are reviewed, and their applicability in the
limit of large magnetic Reynolds numbers, relevant in the solar corona, is discussed.
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1. Introduction

Solar filaments are sheets of dense and cool plasma, surrounded by the much hotter
plasma of the solar corona. The relatively low temperatures and high densities of the
filament material suggest that filaments are supported against gravity by a strong magnetic
field B in the solar atmosphere [1].

Early models of solar filaments postulated static or quasi-steady equilibria and ana-
lyzed simplified magnetohydrodynamic (MHD) equations [2,3]. More recent theoretical
models employed a force-free approximation, (∇× B)× B ≈ 0, to successfully describe
the overall filament structure [4,5].

Realistic theoretical models should satisfy a number of observational conditions for
the formation and maintenance of filaments [6]. The modeling of plasma flows in filaments
appears to be of particular interest in relation to their structure and evolution. Observations
clearly demonstrated that even quiescent filaments are not static formations but rather are
systems of jets streaming along the filaments with speeds up to 30 km s−1 [7]. Thermal
nonequilibrium is typically invoked to explain the observed flows [8,9]. However, one of
the puzzles of the small-scale dynamics in filaments is the physical mechanism of counter-
streaming—the observed simultaneous flows with speeds of 5–20 km s−1 in opposite
directions in filament barbs (feet) [10,11].

The purpose of this paper is to advocate the electromagnetic expulsion force, whose
effects are well-known in engineering and industrial applications, as a mechanism of
counter-streaming in solar filaments.

2. Electromagnetically Generated Vortical Flows

Following the original argument of [12], consider an incompressible conducting fluid
(plasma) with density ρ0, temperature T0, and electric conductivity σ0 in a magnetic field
B0. Provided B0 � 4πaj0/c, where c is the speed of light, both B0 and the electric current
density j0 can be assumed to be locally uniform (a is a typical length scale of the problem).
The resulting Lorentz force is also uniform:

f0 =
1
c

j0 × B0. (1)

Physics 2021, 3, 1046–1050. https://doi.org/10.3390/physics3040065 https://www.mdpi.com/journal/physics

https://www.mdpi.com/journal/physics
https://www.mdpi.com
https://orcid.org/0000-0002-1845-5877
https://doi.org/10.3390/physics3040065
https://doi.org/10.3390/physics3040065
https://doi.org/10.3390/physics3040065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/physics3040065
https://www.mdpi.com/journal/physics
https://www.mdpi.com/article/10.3390/physics3040065?type=check_update&version=3


Physics 2021, 3 1047

Depending on the relative orientations of the gravity force ρ0g, where g is the body
accelerations, and f0, the Lorentz force makes the fluid effectively heavier or lighter. In
either case, the uniform volume force is potential, ∇× f0 = 0, and, just like the gravity
force ρ0g, will be balanced by the pressure gradient:

∇p0 = ρ0g + f0. (2)

Now consider a body (filament) of volume V, with a temperature T1 6= T0 and the
corresponding electric conductivity σ1 6= σ0, submerged in the plasma. The total force
acting on the body is as follows:

F =
∫
V

(ρ1g + f1)dV +
∮
S

p0n dS. (3)

Here,

f1 =
1
c

j1 × B0 (4)

is the Lorentz force inside the filament, ρ1 is the density of the filament, j1 is the current
density inside the filament, n is the inward normal to the surface S, p0 is the gas pressure.
If the current j0 remains uniform in the presence of the body and B0 remains approximately
uniform, then F could be expressed as

F =
∫
V

(ρ1g + f1)dV −
∫
V

∇p0 dV, (5)

and so
F =

∫
V

(ρ1 − ρ0)g dV +
1
c

∫
V

(j1 − j0)× B0 dV. (6)

Here, the first integral is the usual buoyancy (Archimedean) force. The second integral
describes the electromagnetic expulsion force. It vanishes only if the electric current density
remains uniform, j1 = j0, which happens only if σ1 = σ0.

Although the MHD expulsion force is formally similar to the Archimedean force in
hydrodynamics, it is different from the well-known magnetic buoyancy force [13]. The
magnetic buoyancy force is the usual buoyancy force, associated with the density difference
caused by the pressure difference in a magnetostatic equilibrium. By contrast, the expulsion
force is independent of the presence of gravity.

The key point for the following is that the static description is purely illustrative. In
reality, the expulsion force will almost always drive plasma flows. As the current density
is not uniform in the presence of a filament with conductivity σ1 6= σ0, the resulting
Lorentz force j× B/c is generally not potential. Hence, it cannot be balanced by potential
forces such as the gas pressure gradient ∇p0. This is why in general the convective term
ρ0(v · ∇)v, where v is the plasma velocity, and the viscous term η∇2v, where η is the scalar
viscosity, must be taken into account in the equation of motion. Physically, this means that
electromagnetically generated vortical flows must appear in the vicinity of a submerged
body [12]. It is these flows that may naturally explain the plasma counter-streaming in
solar filaments. Assuming an incompressible steady plasma flow, the equation of motion is
as follows:

ρ0(v · ∇)v = −∇p + ρ0g + η∇2v +
1
c

j× B. (7)

The electromagnetic expulsion force, also known as electro-magneto-phoresis, has
been extensively studied under laboratory conditions, motivated by such engineering
applications as the extraction of impurities in liquid metals and the separation of mechanical
mixtures and biological cells [14–16].



Physics 2021, 3 1048

3. Counter-Streaming in Solar Filaments

Although the parameter regime in the solar atmosphere differs significantly from
that under laboratory conditions, the expulsion force might play a role in the filament
dynamics. Solar filaments consist of numerous fine and dense threads with a typical radius
a ≈ 107 cm and temperature T1 ≈ 104 K [1]. For the coronal temperature T0 ≈ 106 K, the
ratio of conductivities inside and outside the filament is

σ1

σ0
=

(
T1

T0

)3/2
≈ 10−3 � 1. (8)

As the electric current density j1 � j0, expected effects of the expulsion force in
filaments should be significant.

The calculation of the general expressions for the electromagnetic expulsion force
and the associated vortical flows is a complicated nonlinear problem. Several particular
cases, however, can be studied in detail. Analytical progress was achieved in the limit
of small ordinary Re = ρ0v0a/η and magnetic Rem = 4πσ0v0a/c2 Reynolds numbers
and a small Hartmann number M = (aB0/c)(4πσ0/η)1/2. In this limit, the convective
derivative can be ignored in the equation of motion, the electromagnetic and dynamic
problems decouple, and exact analytical expressions for the plasma flows and the expulsion
force can be obtained for a sphere and a cylinder with radius a [12,17]. Further analytical
progress was achieved for particles of other shapes by using symmetry considerations and
asymptotic methods [18,19].

As a potentially relevant example, consider a solution to the problem of electromag-
netically driven flows near a cylinder with radius a and electric conductivity σ1 surrounded
by the plasma with conductivity σ0 � σ1 and viscosity η, given the uniform electric current
j0 = (j⊥, 0, j‖) and an approximately uniform magnetic field B0 = (Bx, By, Bz) outside the
cylinder. If the cylinder is co-aligned with the z-axis, the solution for the plasma velocity
outside the cylinder (r > a) is as follows:

vx = 0, vy = 0, (9)

vz(r, φ) =
a2 j⊥
4cη

(Bx sin 2φ− By cos 2φ)

(
1− a2

r2

)
. (10)

Here, r = (x2 + y2)1/2 and φ = tan−1(y/x) is the polar angle (the counterclockwise
angle from the x-axis in the xy-plane). The solution for a viscous fluid satisfies the standard
boundary condition of vanishing velocity on the surface of the cylinder [17]. The expression
for vz(r, φ) is basically a product of two functions: (Bx sin 2φ− By cos 2φ) describes the
alternating flow directions in the neighboring sectors of the xy-plane, whereas (1− a2/r2)
for r > a describes a monotonic increase in the speed with distance from the surface of the
cylinder.

Two points are worth stressing. First, the trigonometric dependence of vz on the polar
angle φ means that the oppositely directed flows are naturally predicted by the model.
Second, the flows are generated even when the external magnetic field and electric current
are co-aligned (By = 0 and j⊥Bz = j‖Bx), corresponding to a large-scale force-free magnetic
field in the solar corona, j× B = 0. This is a clear illustration of how the action of the
expulsion force differs from that of the standard j× B force.

The presented velocity profile provides strong motivation for modeling counter-
streaming in solar filaments as electromagnetically generated plasma flows. As far as
characteristic values of the key dimensionless parameters are concerned, for typically
observed flow speeds in solar filaments of order v0 ≈ 10 km s−1, the ordinary Reynolds
number is of the order 10−2, and thus Re � 1 as in the solution above. By contrast, the
magnetic Reynolds number is large, Rem ' 109 � 1. This is why the solution above
cannot be directly applied to describe flows along the filament threads in the solar corona.
Dimensional arguments, however, suggest a simple formula for the expulsion force density:
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f = −f0Φ(Re, Rem). (11)

The dimensionless function Φ has the following asymptotic behavior [20]:

Φ ≈
{

1, Rem < 1,
1/Rem, Rem > 1.

(12)

These expressions lead to an estimate for the typical plasma speed v0, which is consistent
with observations of counter-streaming in solar filaments in the limit Rem � 1 [21].

To put the qualitative dimensional arguments on a firmer footing, it would be neces-
sary to derive an expression for the plasma velocity in the vicinity of a cylindrical filament
thread, which would remain valid for both small and large values of Rem. Symmetry
dictates that the sought-after solution in cylindrical geometry is independent of z if the
cylinder is oriented along the z-axis, in which case MHD equations reduce to two second-
order partial differential equations with the only parameter being the Hartmann number
M. Solutions of the resulting boundary value problem for particular orientations of the
magnetic field have been constructed [22]. Further analytical progress for arbitrary ori-
entations of the electric current and magnetic field near the filament may be achieved by
deriving asymptotic analytical solutions in the limits of small and large M and by matching
the solutions for M ≈ 1.

4. Discussion

Theoretical and numerical studies of solar filaments traditionally consider idealized,
nearly force-free magnetic field configurations [4,5]. The boundary conditions are con-
trolled by the photospheric plasma flows and magnetic flux emergence. The gas pressure
gradient and the gravity force are among the local forces acting on a filament in the corona,
whose effects can be described by perturbing a large-scale force-free model [23].

Whereas the equilibrium in filaments is primarily determined by a balance between
the Lorentz and gravity forces, the observed counter-streaming remains an unsolved
problem [24]. It is worth stressing that even quiescent filaments are highly dynamic
formations, characterized by mass flows and changes of shape on multiple scales [7].

As argued above, what appears to be missing in the available models of solar fila-
ments is an evaluation of the role of the electromagnetic expulsion force in the filament
dynamics. The expulsion force is an MHD analogue of the usual buoyancy (Archimedean)
force [12,25], which provides a well-known method for engineering applications such as
impurity extraction and the separation of bioparticles [16,26]. A nonuniform distribution
of temperature in filaments leads to a nonuniform electric conductivity and hence to a
nonuniform Lorentz force. The resulting electromagnetic expulsion force is generally non-
potential and naturally drives vortical plasma flows that may correspond to the observed
counter-streaming flows in filaments [21].

Since the model calculation of the counter-streaming flows is performed in an idealized
geometry, it is difficult to speculate whether the model might predict different features for
the flows in different parts of a filament. It is reasonable to expect though that, as long as
the flows are generated in filament barbs, they should also be sustained in the main body
of the filament (along the filament spine) whose mass is supported against gravity by a
magnetic force.

The proposed mechanism may provide an explanation for the observed counter-
streaming in filaments. More generally, the electromagnetic expulsion force may play a
role in the dynamics of cosmic plasma with nonuniform distributions of temperature and
electric conductivity.
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