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Abstract 
In this paper, we introduce AK' iteration scheme to approximate fixed point 
for Suzuki generalized nonexpansive mapping satisfying ( ),B δ µ  condition in 

the framework of Banach spaces. Also, an example is given to confirm the ef-
ficiency of AK' iteration scheme. Our results are generalizations in the exist-
ing literature of fixed points in Banach spaces. 
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1. Introduction 

Let s  be a Banach space and b s⊆  . For a mapping : b b→   , a point 

bq∈  is said to be a fixed point if q q= . Also, a mapping : b b→    is 
said to be nonexpansive if  

, .bκ− ≤ − ∀ ∈a b a b a b    

We will refer to the set of natural numbers as   and the set of real numbers 
as   throughout the whole study and the set of all fixed points of   is re-
ferred by p . If a mapping : b b→    then it is said to be quasi-nonexpansive 
mappings if ≠ ∅p  and κ κ− ≤ −a a  b∀ ∈a   and q∈p . Browder [1] 
(also refer [2] [3]), Gohde [4], and Kirk [5] independently scrutinised the signi-
ficance of fixed points for nonexpansive mappings in the framework of Banach 
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spaces. They exemplified that if b  is a nonempty, closed, bounded, and convex 
subset of a uniformly convex Banach space, then each nonexpansive mapping 

: b b→    seems to have at least one fixed point. Several other researchers 
have examined an amount of generalisations of nonexpansive mappings in re-
cent decades. Suzuki introduced a new class of mappings (weaker than nonex-
pansiveness and stronger than quasi-nonexpansiveness) known as Suzuki gene-
ralised nonexpansive mappings, which is really a consequence on mappings re-
garded as Condition (C), and successfully obtained several other convergence 
and existence findings for these kinds of mappings in [6]. A mapping  

: b b→    is said to satisfy Condition (C) (oftentimes Suzuki generalised 
nonexpansive) if  

1 implies ,
2

κ− ≤ − − ≤ −a a a b a b a b    

for each , b∈a b  .  
Suzuki illustrated that Condition (C) is relatively weak than nonexpansion 

and stronger than quasi-nonexpansion. Falset et al. [7] introduced two new classes 
of generalised nonexpansive mappings that are wider than those satisfying the 
(C) condition whilst also retaining their fixed point attributes in 2011. We estab-
lished a novel category of mappings in this paper that is relatively large than the 
class order to satisfy the Condition (C). Including some examples, we scrutinise 
the existence of fixed points for this category of mapping. First, we’ll go over 
some key concepts. Every nonexpansive mapping evidently ensures the Condi-
tion (C).  

Suzuki [6] [7] exemplified that Condition (C) is much more general than 
nonexpansiveness through the following example. 

Example: [8] Define a mapping [ ]: 0,3 →   by  

0 3,
1 3.

≠
=  =

a
a

a
                         (1) 

It is worth noting that   appeases Condition (C), however it is not nonex-
pansive. In 2018, Patir et al. [8] recently standardised the conception of Condi-
tion (C), and is as continues to follow: 

[8] Consider a s  and b s∅ ≠ ⊆  , a mapping   such that : b b→    

is known to achieve ( ),B δ µ  condition if there is an existence of [ ]0,1γ ∈  and 

10,
2

µ  ∈   
 satisfying the condition 2µ γ≤  in such a manner that , b∀ ∈a b  ,  

γ µ− ≤ − + −a a a b b b   

signifies  

( ) ( )1 .γ µ− ≤ − − + − + −a b a b a b b a     

Remark: It is observable that a mapping with Condition (C) achieves the 
( ),B δ µ  condition.  
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Example: [8] Define a mapping [ ]: 0, 2 →   by  

0 2,
1 2,

≠
=  =

a
a

a
                        (2) 

Here,   satisfies ( ),B δ µ  condition, but not Condition (C). 
It is instinctual to investigate the processing of fixed points for known exis-

tence results, and that’s not an easy process. The Picard iteration process is being 
used in the Banach contraction mapping criterion. The Picard iteration process 
is as follows:  

( ) ( )1η η+ =a a  

and is used to the approximate unique fixed point. Mann [9], Ishikawa [10], S 
[11], Noor [12], Abbas [13], Thakur et al. [14], and so forth are other excellently 
iteration techniques. The convergence rate is absolutely essential for an iteration 
process to be favoured over the other iteration process. Rhoades [15] suggested 
that the Mann iteration process converges faster than that of the Ishikawa itera-
tive procedure for significantly decreasing function as well as the Ishikawa itera-
tive model is better for significantly increasing function than that of the Mann 
iterative procedure. The renowned Mann [9] and Ishikawa [10] iteration proce-
dures are described as follows:  

( ) ( )( ) ( ) ( ) ( )

1

1
0 0

,

1 , ,
b

j jη η η η η η+

 ∈


= − + ∈ 

a

a a a




               (3) 

where ( ) ( )0 0,1j η ∈ .  

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

1

1 1

1
0 0

,

(1 ) ,

1 , ,

b

j j

j j

η η η η η

η η η η η η+

 ∈
 = − +
 = − + ∈ 

a

b a a

a a b







               (4) 

where ( ) ( ) ( )0 1, 0,1j jη η ∈ . The following iteration approach, known as S iteration, 
was established by Agarwal et al. [11] in 2007:  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

1

1 1

1
0 0

,

1 ,

1 , ,

b

j j

j j

η η η η η

η η η η η η+

 ∈

 = − +


= − + ∈ 

a

b a a

a a b





 

              (5) 

where ( ) ( )
0 10 , 1j jη η< < . They observed that for the class of contraction map-

pings, the speed of convergence of the (5) iteration process is much like the Pi-
card iteration and speedier than the Mann iteration process. Thakur et al. [14] 
used a modified iterative algorithm, which was described as follows:  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

1

1 1

0 0

1

,

1 ,

1 ,

, ,

b

j j

j j

η η η η η

η η η η η

η η η+

 ∈


= − +



= − +

 = ∈ 

a

c a a

b a c

a b









                 (6) 
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where ( ) ( ) ( )0 1, 0,1j jη η ∈ .  

They asserted that (6) is significantly faster than Picard, Mann, Ishikawa, Agar-
wal, Noor, and Abbas iteration algorithms for the class of Suzuki generalised 
nonexpansive mappings through numerical examples. 

Recently in 2018, Ullah and Arshad [16] introduced K ∗  iteration process:  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

1

1 1

0 0

1

,

1 ,

1 ,

, ,

b

j j

j j

η η η η η

η η η η η

η η η+

 ∈


= − +



= − +

 = ∈ 

a

c a a

b c c

a b





 



                (7) 

where ( ) ( ) ( )0 1, 0,1j jη η ∈ . They contended that iteration (8) had a faster rate of 
convergence than that of the other iteration methods. 

Question. Is it feasible to establish an iteration process that has a faster con-
vergence rate than that of the iteration processes (7)?  

As a response, we propose the AK' iterative approach, which is a newer ver-
sion, and is as follows:  

( ) ( )( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

1

0 0

1 1

1

,

1 ,

1 ,

, ,

b

j j

j j

η η η η η

η η η η η

η η η+

 ∈

 = − +


 = − +

 = ∈ 

a

c a a

b c c

a b



 

 



                (8) 

where ( ) ( ) ( )0 1, 0,1j jη η ∈ . In this way, we approximate fixed points of mapping 
which satisfies condition ( ),B δ µ . We compare the convergence rate of our novel 
AK' iteration approach to current faster iteration schemes using a numerical 
example. 

2. Numerical Example  

In this section, an example is given to support the assertion that AK' iteration 
scheme converges faster than the *K  and S iteration scheme. 

Example Let ( ),s = −∞ ∞  and [ ]1,50b = . Let : b b→    be mapping 

defined as ( ) 1 4
5
+

=
a

a  b∀ ∈a  . Obviously 1=a  is an invariant point of  . 

Let ( )1 40=a  η∀ ∈  and ( )
0 0.95j η = , ( )

1 0.30j η =  and ( )
2 0.90j η = . The 

iterative values for ( )ηa  are given in Table 1 where as the Study of AK’ for ini-

tial value ( )1 0.7=a  for function ( )81−a  with ( )
0

1
1

j η

η
=

+
 and  

( )
1

1
1

j η

η
=

+
 for AK', K ∗  and S iteration processes is studied in Table 2.  

In compared to conventional iteration processes, the proposed AK' iterative 
model clearly converges faster to the fixed point of  .  
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Table 1. Study of AK' for initial value ( )1 40=a .  

Empirical Study of AK' iteration algorithm for initial value ( )1 40=a . 

Iterative Sequence AK' (8) K* (7) S (5) 

( )1a  40 40 40 

( )2a  14.9097 20.0045 30.4216 

( )3a  1.30275 10.2608 23.1957 

( )4a  1.00014 3.19905 13.632 

( )5a  1. 2.07159 10.5296 

( )6a  1. 1.52218 8.1891 

( )7a  1. 1.25446 6.42346 

( )8a  1. 1.124 5.09146 

( )9a  1. 1. 3. 

 
Table 2. Study of AK' for initial value ( )1 0.7=a  for function ( )81− a . 

Empirical Study of AK' iteration algorithm 

Iterative Sequence AK' (8) K* (7) S (5) 

( )1a  0.7 0.7 0.7 

( )2a  1. 1 0.99847 

( )3a  0.244059 0.0637599 0.0627778 

( )4a  0.311435 0.143016 0.285937 

( )5a  0.209555 0.171169 0.161419 

( )6a  0.192273 0.19578 0.240008 

( )7a  0.217227 0.202928 0.170926 

( )8a  0.206056 0.203451 0.241304 

( )9a  0.204142 0.203456 0.163171 

( )10a  0.203397 0.203456 0.258741 

( )11a  0.203465 0.203456 0.141754 

3. Preliminaries 

In this section, we give some preliminaries. Let s  be a Banach space and b  
be a nonempty closed convex subset of s . Let ( ){ }η

a  be a bounded sequence 
in b . For b∈a  , set  

( ){ }( ) ( ), limsup .r η η

η→∞
= −a a a a  

The asymptotic radius of ( ){ }η
a  relative to b  is given by  

( ){ }( ) ( ){ }( ){ }, inf , : .b br rη η= ∈a a a a   

The asymptotic centre of ( ){ }η
a  relative to b  is the set  
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( ){ }( ) ( ){ }( ) ( ){ }( ){ }, : , , .b b bA r rη η η= ∈ =a a a a a    

It’s also commonly acknowledged that ( )( ),bA η
a  encompasses essentially 

one point in a uniformly convex Banach space. Furthermore, when b  is non-
empty and convex in the case when ( )( ),bA ηa  is weakly compact and con-
vex, see [2] [3] [16] [17] [18] also refer [19]-[29] for fixed point based literature.  

So, here are a few effective approaches and consequences. Let s  is a Banach 
space, it is known as uniformly convex if for each ( ]0,2ε ∈ , there is an exis-
tence of 0λ >  in such a manner that for every , s∈a b  , 

( )
1

11 1 .
2

λ

ε

≤ 


≤ ⇒ + ≤ −
− > 

a

b a b

a b

 

Definition [17] A Banach space s  is said to have Opial’s property if for 
each sequence ( ){ }η

a  in b  which weakly converges to s∈a   and for every 

b∈b  , it satisfies the following  
( ) ( )limsup limsup .η η

η η→∞ →∞
− < −a a a b  

Examples of Banach spaces satisfying this condition are Hilbert spaces and all 
pl  spaces (1 p< < b ). 
Definition [17] Let b∅ ≠   be subset of a Banach space s . Let  
: b b→   . A Banach space s  is said to have satisfy Condition (C) if there is 

a function [ ) [ ): 0, 0,g ∞ → ∞  satisfying ( )0 0g =  and ( ) 0g r >  ( )0,r∀ ∈ ∞  
such that  

( )( ),dψ− ≥a a a p                       (9) 

b∀ ∈a  , where ( ),d a p  represents distance of x from p .  
Definition [7] If   is a closed convex and bounded subset of Banach space 

 , and a self-mapping   on   is nonexpansive, then there exists a sequence 
{ }ηa  in   such that 0η η− →a a . Such a sequence is called almost fixed 
point sequence for  .  

We now list some basic facts about Suzuki generalized nonexpansive map-
pings, which can be found in [6]. The following useful Lemma can be found in 
[18]. 

Lemma 1 Let b  be a uniformly convex Banach space and  
( )
00 1p j qη< ≤ ≤ <  for every η ∈ . If { }tη  and { }sη  are two sequences in 

b  such that limsup b
η

η→∞ ≤  , limsup bsηη→∞ ≤   and  

( ) ( )( )0 0lim 1 bj t j sη ηη η
η→∞ + − =   for some 0c ≥  then, lim 0t sη η

η→∞ − = . 

also,let   be a Suzuki generalized nonexpansive mapping defined on a subset 

b  of a Banach space s  with the Opial property. If a sequence ( ){ }η
a  con-

verges weakly to z and ( ) ( )lim 0η η
η→∞ − =a a , then I-  is democlosed at 

zero. 
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The following Lemma gives many examples of mappings with ( ),B δ µ  condi-
tion.  

Lemma 2 [8] Let b ≠ ∅  be subset of a Banach space s . Let   be a self 
mapping on b  . if   satisfies Condition (C), then   satisfies ( ),B δ µ  con-
dition. 

Lemma 3 [8] Let b∅ ≠   be subset of a Banach space s . Let : b b→    
satisfies ( ),B δ µ  condition. if κ  is a fixed point of  , then for each b∈a    

.κ κ− ≤ −a a  

Theorem 4 Let   be a Banach space. b  be a nonempty subset of   and 
:a b bφ →   be a mapping satisfies condition ( ),B δ µ . if ( )

b
η ⊆a   be such that  

1) ( )ηa  converges weakly to κ ;  
2) ( ) ( )lim 0η η

η→∞ − =a a .  

Then, κ κ= .  
Proposition 5 Let   be a Banach space. b  be a nonempty subset of   

and :a b bφ →   be a mapping satisfies condition ( ),B δ µ  on b , then 
, b∀ ∈a b   and [ ]0,1α ∈   

1) 2− ≤ −a a a b     
2) at least one of the following (a) and b)) holds:  
a) 

2
α  − ≤ − 
 

a a a b    

b) 2

2
α  − ≤ − 
 

a a a b    condition a) implies  

( )1
2
α µ  − ≤ − − + − + −  
  

a b a b a b b a     and condition b) implies 

( )2 21
2
α µ  − ≤ − − + − + −  
  

a b a b a b b a      .  

3) 
( )

( )2

3 1
2

2 2

αα

µ

  − ≤ − − + − −  
  

+ − + − + − + −

a b a a a b

a a a b b a a a

 

    

  

Then, κ κ= .  
Lemma 6 Let s  be a uniformly convex Banach space and  

0 1q pηδ< ≤ ≤ <  η∀ ∈ . If { }ηa  and { }ηb  are two sequences in s  such 

that limsup 1η η→∞ ≤a , limsup 1η η→∞ ≤b , and  
( ) ( ) ( ) ( )lim 1 n lη η η

η δ δ→∞ + − =a b  for some 0l ≥  then ( ) ( )lim 0η η
η→∞ − =a b .  

4. Convergence Analysis 

In this section, we study the convergence analysis of AK' iteration scheme for 
which following Lemma plays a significant role.  

Lemma 7 Let b  be a nonempty closed convex subset of a Banach space s  
and : b b→    satisfies condition ( ,Bδ µ ) with ≠ ∅p . Let ( ){ }η

a  be a se-
quence generated by (8), then ( )lim η

η κ→∞ −a  exists for each q∈p .  
Let q∈p . By Proposition (5) part 2), we have  
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( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )

1 1

1 1

1 1

1 1

1

1

1

1

j j

j j

j j

j j

η η η η η

η η η η

η η η η

η η η η

η

κ κ

κ

κ κ

κ κ

κ

− = − + −

≤ − + −

≤ − − + −

≤ − − + −

= −

b c c

c c

c c

c c

c

 



  

( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )

0 0

0 0

0 0

0 0

1

1

1

1

,

j j

j j

j j

j j

η η η η η

η η η η

η η η η

η η η η

η

κ κ

κ

κ κ

κ κ

κ

− = − + −

≤ − + −

≤ − − + −

≤ − − + −

= −

c a c

a a

a a

a a

a

 



  

which implies that  
( ) ( ) ( )1 .η η ηκ κ κ+ − = − ≤ −a b b  

Using the values of ( )η κ−b  and ( )η κ−c , we have  
( ) ( )1 .η ηκ κ+ − ≤ −a a  

Thus, the sequence ( ){ }η κ−a  is bounded. Also, ( ){ }η κ−a  is non in-

creasing. Consequently, ( )lim η
η κ→∞ −a  exists for each q∈p . The following 

Theorem is useful for the next results.  
Theorem 8 Let s  is a uniformly convex Banach space and b  is a non-

empty convex subset of s . Also, the mapping : b b→    satisfies Condition 

( ),B δ µ . Let ( ){ }η
a  be a sequence which is formulated by (8). Then, the set of all 

fixed points i.e. ≠ ∅p  iff ( ){ }η
a  is bounded and limiting value of  

( ) ( ){ }η η−a a  is 0 for η →∞ .  

Let, ≠ ∅p  and q∈p . Consequently, by Lemma (7), there is an existence 

of ( )lim η
η κ→∞ −a  which proves that the sequence ( ){ }η

a  is bounded. Let  

( )lim .cη

η
κ

→∞
− =a                        (10) 

Following the proof of Lemma (3),  
( ) ( )limsup limsup .cη η

η η
κ κ

→∞ →∞
− ≤ − =a a               (11) 

By the proof of Lemma (7). It follows that  
( ) ( ) ( )1η η ηκ κ κ+ − ≤ − ≤ −a b b  

and hence we have  
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( ) ( )1 .η ηκ κ+ − ≤ −a c  

Hence, we have  
( )lim cη

η
κ

→∞
− ≥c                       (12) 

using the Equations (10) and (12)  
( )lim .η

η
κ

→∞
−c                         (13) 

From Equation (13)  
( )

( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )( )

0 0

0 0

0 0

liminf

liminf 1

liminf 1

liminf 1 .

c

j j

j j

j j

η

η

η η η η

η

η η η η

η

η η η η

η

κ

κ

κ

κ κ

→∞

→∞

→∞

→∞

= −

= − + −

≤ − + −

≤ − − + −

c

a a

a a

a a


 

Hence,  
( )( ) ( )( ) ( ) ( )( )0 0liminf 1 .j j cη η η η

η
κ κ

→∞
− − + − =a a            (14) 

Now, using (10) and (12) with (14) with Lemma (6)  
( ) ( )lim 0.η η

η→∞
− =c c                     (15) 

Conversely, let ( )( ),bA ηκ ∈ a . By Proposition (5) 3), for [ ], 0,1
2
αγ α= ∈ ,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) )

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) )

2

3 1 2
2

2

3 1 2
2

2 .

η η η η η η η

η η η η

η η η η η

η η η η η

αα κ µ

κ κ

αα κ µ

κ

 − ≤ − − + − − + − 
 

+ − + − + −

 ≤ − − + − − + − 
 

+ − + − + −

a a a a a a a

a a a a

a a a a a

a a a a a

  

   

 

  

 

By Proposition (5)  

( ) ( ) ( )1 limsup 1 limsup
2

η η

η η

αµ κ µ κ
→∞ →∞

 − − ≤ − + − 
 

a a  

( ) ( ) ( )
1

2limsup limsup limsup .
1

η η η

η η η

α µ
κ κ κ

µ→∞ →∞ →∞

 − + 
− ≤ − ≤ − 

−  
 

a a a  

Since,  

1
2 1, for 2

1 2

α µ αµ γ
µ

− +
≤ ≤ =

−
 

we have  
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( ){ }( ) ( ){ }( ), , ,r rη ηκ κ≤a a  

which confirms that ( )( ),bA ηκ ∈ a  . Since, s  is uniformly convex Banach 
space. Hence, κ κ= . 

Now, we prove our weak convergence result.  
Theorem 9 Let s ≠ ∅  be a uniformly Banach space with Opial’s property. 

b  is closed and convex subset of s  and : b b→    satisfying Condition 

( ),B δ µ  with ≠ ∅p . Then, the sequence ( ){ }η
a  formulated by (8) is a conver-

gent sequence, which converges weakly to κ , where κ ∈p .  
Using aforementioned Theorem (8), the sequence ( ){ }η

a  is bounded and we 
have null sequence as ( ) ( ){ }η η−a a . It is given that, s  is uniformly convex. 
Consequently, b  is reflexive. So, there is an existence of the subsequence { }ina  
of ( ){ }η

a  in such a manner that { }ina  is convergent and converges weakly to 
some 1

bw ∈ . By Proposition (5) part (v), we have ( )1κ ∈p . It is sufficient to 
show that ( ){ }η

a  converges weakly to ( )1κ . In fact, if ( ){ }η
a  does not converges 

weakly to ( )1κ . Then, ∃  a subsequence { }jna  of ( ){ }η
a  and ( )2

bκ ∈  such 
that { }jna  is convergent sequence and converges weakly to ( )2κ  and ( ) ( )2 1κ κ≠ . 
By Theorem (4), 2w ∈p . Considering Opial’s property together with Lemma 
(7), we have  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2

2 1 1

lim lim lim lim

lim lim lim .

i i

j j

i i

j j

η ηη η

η η

η η η

η

κ κ κ κ

κ κ κ

→∞ →∞ →∞ →∞

→∞ →∞ →∞

− = − < − = −

= − < − = −

a a a a

a a a

 

It really is an ambiguity. So, ( ) ( )1 2κ κ= . Thus, ( ){ }η
a  is convergent and con-

verges weakly to ( )1κ ∈p .  
Theorem 10 Let b s⊂  , where s ≠ ∅  be a uniformly Banach space and 
: b b→    be a mapping satisfying ( ),B δ µ . Then, ( ){ }η

a  generated by (8) 
converges to an element of p  iff ( )( )liminf , 0d η

η→∞ =a p  or  
( )( )limsup , 0d η

η→∞ =a p .  
The necessity is self-evident. Assume, however, that  

( )( )liminf , 0d η

η→∞
=a p  

and 0 = κ ∈p , from Lemma (7), ( )liminf ,η
η κ→∞ −a  exists for each κ ∈p . 

Hence, ( )( )liminf ,d η
η→∞ a p , by based on the assumption. We prove that ( ){ }x η  

is a sequence which is Cauchy in b . It is given that ( )( )liminf , 0d η
η→∞ =a p , 

for a given 0ε > , thereis an existence of 0k ∈  sch that for each 0n k≥ ,  

( )( ), ,
2

d η ε
<a p  

implies,  

( )inf : .
2

η εκ κ− ∈ <a p                    (16) 

In particular, ( )inf :
2

η εκ κ− ∈ <a p . It confirms the existence of κ ∈p  
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such that  
( ) ( ) ( ) ( )

( ) ( )

( )

0 0

02 .

k k

k k

k

η η η ηκ κ

κ κ

κ ε

+ +− ≤ − + −

≤ − + −

≤ − <

a a a a

a a

a

 

It proves that the sequence ( ){ }x η  is Cauchy in b . Also, b  is a closed sub-
set of a Banach space s . Consequently, there is an existence of a point bκ ′∈  
in such a manner that  

( )lim .η

η
κ

→∞
′=a  

Now, ( )( )lim , 0d η
η→∞ =a p  gives that ( ), 0d κ ′ =p . As we know that p  

is closed, hence from Lemma (3), κ ′∈p .  
We now prove the following Theorem using Condition (C). 
Theorem 11 Let b s⊂  , where s ≠ ∅  be a uniformly Banach space and 
: b b→    be a mapping satisfying ( ),B δ µ . Then, ( ){ }η

a  generated by (8) 
converges strongly to an element of p  provided that   satisfies Condition (C).  

By using the Theorem (8), we have  
( ) ( )lim 0.η η

η→∞
− =a a  

Thus, by Condition (C), we obtain  
( )( )lim , 0.d η

η→∞
=a p  

Now that all of Theorem (11)’s have been met, ( ){ }η
a  converges strongly to a 

fixed point of   as a consequence of its conclusion. 

5. Conclusion 

Our work deals with AK' iteration scheme to approximate fixed point for Suzuki 
generalized nonexpansive mapping which satisfy ( ),B δ µ  condition in the frame-
work of Banach spaces. With the help of examples, it is proved that AK' iteration 
scheme is more efficient than *K  and S iteration schemes. AK' iteration scheme 
can be used to find the solution of functional Volterra-Fredholm integral equa-
tion and absolute value equations.  
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