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Abstract 
This paper studies the generalized synchronization of a class of drive-response 
neural networks with time-varying delay. When the topological structures of 
the drive-response neural networks are known, by designing an appropriate 
nonlinear adaptive controller, the generalized synchronization of these two 
networks is obtained based on Lyapunov stability theory and LaSalle’s inva-
riance principle. 
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1. Introduction 

There are various complex networks in nature and human society, such as trans-
portation network, biological network, social relationship network, neural net-
work and so on [1] [2] [3]. In recent years, complex networks have attracted the 
attention of scholars in many fields including biology, engineering, economics, 
neuroscience, mathematics, physics. 

They have been become a research hotspot in academic circles, many inter-
esting and valuable results are obtained [4] [5] [6] [7]. Many studies have been 
devoted to the synchronization of complex dynamic networks due to its wide 
application in the real world [8] [9] [10] [11]. Synchronization is a collective 
phenomenon and behavior, its principle can be used to promote social produc-
tion and human activities, for instance the security of communication, the de-
velopment of laser equipment and nuclear magnetic resonance instrument [12]. 
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Therefore, the research on synchronization of complex dynamic networks has 
very important practical significance. 

The consistency problem of all nodes in a complex network is internal syn-
chronization. Various synchronization methods have been proposed, such as 
adaptive control [13] [14] [15], impulse control [16] [17], pinning control [18] 
[19]. In fact, synchronization can also be realized between two networks, that is, 
external synchronization, including complete synchronization [20], projective 
synchronization [21] [22], generalized synchronization [23] [24] [25]. The pro-
jective synchronization of two complex networks with the same node dynamics 
is studied in the literature [22]. By designing a nonlinear controller, the genera-
lized synchronization of two complex networks with different node dynamics 
was realized, but the time delay was not considered [24]. In [25], the generalized 
synchronization for two complex networks with time-varying delay coupling 
was investigated. 

Neural networks, as a special kind of complex networks, have been received 
considerable attention because of its potential application in neurophysiology, 
automatic control, image processing. The synchronization of two neural net-
works with time delay was studied in the literature [26]. The projective synchro-
nization of neural networks without time delay was obtained in [21]. The litera-
ture [27] realized the projective synchronization of a class of neural networks by 
using adaptive feedback control method. 

However, there are few studies on the generalized synchronization of a class of 
neural networks with time-varying delay. This paper is concerned with the prob-
lem of generalized synchronization for drive-response neural networks with time- 
varying delay. If the topological structures of the systems are known, by design-
ing an appropriate nonlinear adaptive controller, the generalized synchroniza-
tion between these two networks can be achieved based on Lyapunov stability 
theory and LaSalle’s invariance principle.  

This paper is organized as follows. In Section 2, model description and some 
important preliminaries are given. In Section 3, the main result is presented. 

2. Model and Preliminaries 

Consider a neural network with time-varying delay, which can be described by 
the following equation: 

( ) ( ) ( )( ) ( )( )( )
( ) ( )0 1

1
1, 2, ,

i i i i

N

ij j
j

x t Cx t Af x t Bf x t t

c d x t i N

τ

=

= − + + −

+ Γ =∑





            (1) 

( ) ( ) ( ) ( )( )T
1 2, , , n

i i i inx t x t x t x t R= ∈  is the state vector of the i-th node at 
time t; : n nf R R→  is a smooth vector function; ( )tτ  is the time varying de-
lay; ( )1 2, , , n n

nC diag c c c R ×= ∈  with ( )0 1,2, ,ic i n> =   denotes the state 
feedback coefficient matrix; ( ) n n

ijA a R ×= ∈  and ( ) n n
ijB b R ×= ∈  are respec-

tively the weight and delayed weight matrices; 0c R+∈  is the network coupling 

https://doi.org/10.4236/am.2022.131002


L. R. Zhu 
 

 

DOI: 10.4236/am.2022.131002 21 Applied Mathematics 
 

strength; external coupling configuration matrix ( ) N N
ijD d R ×= ∈  represents 

the network topology and the coupling strength between nodes, the following 
conditions are met: if there is a connection between node i and node j, then  

0ijd > , if not ( )0ijd i j= ≠ , and the diagonal element 
1,

N

ii ij
j j i

d d
= ≠

= − ∑ ,  

1,2, ,i N=  ; matrix 1
n nR ×Γ ∈  is a known constant positive definite diagonal 

matrix, which represents the internal coupling of the network. 
We regard network (1) as a drive network, and the following equation is the 

corresponding response network: 

( ) ( ) ( )( ) ( )( )( )
( ) ( )0 2

1
1, 2, ,

i i i i

N

ij j i
j

y t Cy t Ag y t Bg y t t

c g y t u i N

τ

=

= − + + −

+ Γ + =∑





            (2) 

( ) ( ) ( ) ( )( )T
1 2, , , n

i i i iny t y t y t y t R= ∈  is the state vector of the i-th node at 
time t; : n ng R R→  is a smooth vector function; ( ) N N

ijG g R ×= ∈ , 2
n nR ×Γ ∈  

are defined as ( ) N N
ijD d R ×= ∈ , 1

n nR ×Γ ∈  in network (1) respectively; iu  is 
the synchronous controller to be designed.   

We can see from the model of drive-response neural networks that the topol-
ogy and node dynamics of the two networks can be different.  

Definition 1 [25] The node error of generalized synchronization between sys-
tems (1) and (2) is defined as  

( ) ( ) ( )( )i i i ie t y t x tϕ= − , 1,2, ,i N=                 (3) 

where ( ): 1, 2, ,n n
i R R i Nϕ → =   is a vector mapping. 

If there is a controller iu , such that ( ) ( )lim 0 1,2, ,it
e t i N

→∞
= =  , then the 

networks (1) and (2) are said to be generalized synchronized. 
To get the generalized synchronization of networks (1) and (2), the controller 

iu  is designed as follows:  

( ) ( )( ) ( )( )( ) ( )( )( )( )
( )( )( ) ( )0 2

1

ii i i i i i i i

N

ij j j i i
j

u J x t C x t Ag x t Bg x t t

c g x t k e t

ϕ ϕ ϕ ϕ τ

ϕ
=

= + − − −

− Γ −∑



    (4) 

( ) 2
i i ik r e t=                           (5) 

where ir  is an arbitrary positive constant; 
i

Jϕ  is the Jacobian matrix of the 

mapping iϕ , 

1 1 1
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2 2 2
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1 2

i

i i i

i i in

i i i

i i in

in in in

i i in

x x x

x x xJ

x x x

ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂=

∂ ∂ ∂
∂ ∂ ∂





   



, 1,2, ,i N=  . 

Under the action of the controller, the error dynamic equation of the system is 
described as 
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( ) ( ) ( )
( ) ( )( ) ( )( ) ( )( )( )

( )( )( ) ( )( )( )( )
( ) ( )( ) ( )0 2

1

ii i i

i i i i i i

i i i

N

ij j j j i i
j

e t y t J x t

C y t x t A g y t g x t

B g y t t g x t t

c g y t x t k e t

ϕ

ϕ ϕ

τ ϕ τ

ϕ
=

= −

  = − − + −   
 + − − − 

 + Γ − − ∑

  

      (6) 

In order to study the problem, the following assumptions and lemma are 
needed.  

Assumption 1 For function ( )g x , there exists a positive that L such that 

( ) ( )g y g x L y x− ≤ − , 

for any two vectors , nx y R∈ . 
Assumption 2 The time varying delay ( )tτ  satisfies: ( )0 1tτ ε≤ ≤ < , where 

ε  is a known constant. 
These two assumptions are very common in the synchronization of complex 

networks. 
Lemma 1 [28] For any two vectors , nx y R∈ , the following formula holds 

T T T2x x y y x y+ ≥ . 

3. Main Result 

In this section, we investigate the generalized synchronization problem of net-
works (1) and (2). The main result is given by the following theorem. 

Theorem 1 If the topological structures of the drive-response neural networks 
(1) and (2) are known, then they can achieve generalized synchronization under 
the adaptive controller (4) and updated rule (5). 

Proof: Construct the Lyapunov function as follows: 

( ) ( ) ( )1 2V t V t V t= +                       (7) 

where 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2T
1

1 1

T
2

1

1

d
1

N N

i i i
i i i
N t

i it t
i

V t e t e t k k
r

V t e e
τ

α θ θ θ
ε

= =

−
=

= + −

=
−

∑ ∑

∑ ∫
               (8) 

k  and α  are positive constants to be determined.  
Calculating the time derivative of ( )V t  along the error system (6), 

( ) ( ) ( )1 2V t V t V t= +                          (9) 

According to (5) and (6), we can get 

( ) ( ) ( ) ( )
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( ) ( )( ) ( )( )( )

T
1

1 1

2T

1 1

T

1

12 2
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N
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i
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r
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e t A g y t g x t

ϕ

ϕ

= =

= =

=

= + −

 = − − − 
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∑ ∑

∑ ∑

∑






 

https://doi.org/10.4236/am.2022.131002


L. R. Zhu 
 

 

DOI: 10.4236/am.2022.131002 23 Applied Mathematics 
 

( ) ( )( )( ) ( )( )( )( )
( ) ( ) ( )( )

T

1

T
0 2

1 1

1 2 3 4

2

2

N

i i i i
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i ij j j j
i j
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=

= =
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∑

∑∑    (10) 

In the above equation, 

( ) ( ) ( )( ) ( )
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Let ( )0 1 2min , , , nc c cλ =  , ( ) ( ) ( ) ( )
TT T T

1 2, , , Ne t e t e t e t =   , then 

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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= 2
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i i i i i
i i
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i i i i
i i

N N

i i i i
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ϕ

λ
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= =

 = − − − 

= − −

≤ − −
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∑ ∑

∑ ∑
         (11) 

By using Lemma 1 and Assumption 1, it’s easy to get 

( ) ( )( ) ( )( )( )

( ) ( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

( ) ( ) ( ) ( ) ( )
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N
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N
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i
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   + − −   

≤ +

= +
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∑

∑

∑ ∑

     (12) 

where ( )T
1 max AAλ λ=  is the maximum eigenvalue of matrix TAA . 

Same as 2W , we have 

( ) ( )( )( ) ( )( )( )( )
( ) ( ) ( )( )( ) ( )( )( )( )

( )( )( ) ( )( )( )( )
( ) ( ) ( ) ( )( ) ( )( )
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T
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1 1
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1 1
T T
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2
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i
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e t e t Le t t e t t

τ ϕ τ
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λ τ τ

λ τ τ

=
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   (13) 
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where ( )T
2 max BBλ λ= . 

For convenience of presentation, let 2M G= ⊗Γ , ( )T
3 max MMλ λ= , we ob-

tain 

( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )( ) ( )

T
4 0 2

1 1
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0 2
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1 2 2 2 2
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, , ,

2

N N

i ij j j j
i j

N N

i ij j
i j

N

N
N

N N NN

N
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Γ Γ Γ
Γ Γ Γ
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Γ Γ Γ
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∑∑

∑∑







   


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( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

T
0

T T T
0

T T T
0 max

T
0 3

2

1
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c e t MM e t e t e t

c MM e t e t e t e t

c e t e t

λ

λ

=

 ≤ + 
 ≤ + 

= +

                   (14) 

The time derivative of ( )2V t  can be expressed as 

( ) ( ) ( )
( )( ) ( )( ) ( )( )T T

2

1
1 1

t
V t e t e t e t t e t t

α τα τ τ
ε ε

−
= − − −

− −



      (15) 

Combining (7) - (15) yields 

( ) ( ) ( )
( )( ) ( )( ) ( )( )

( ) ( )

T T
0

T
1 2 0 3 0

1
2

1

2
1

t
V t e t e t L e t t e t t

L c c k e t e t

α τ
λ τ τ

ε

αλ λ λ
ε

 −
≤ − + − − −  − 

 + + + + + − + − 





   (16) 

Take 1 2 0 3 0
1, 1
2 1

LL k L c cα λ λ λ
ε

 = = + + + + + + − 
, then under the premise 

of Assumption 2 that (16) can be estimated as 

( ) ( ) ( )TV t e t e t≤ −                       (17) 

It can be found from (17) that ( ) ( )0 0V t V≤ ≤ , this together with (7) and (8) 
signifies ( )V t  is bounded. We can also obtain  

( ) ( )( ) ( ) ( )Tlim d 0 lim
t

t tt t
e e V V t

τ
θ θ θ

−→∞ →∞
≤ −∫ . Based on Lyapunov stability theory and 

LaSalle’s invariance principle [29], we have ( ) ( )lim 0 1,2, ,it
e t i N

→∞
= =  . Then it 

follows from Definition 1 that the drive-response networks (1) and (2) achieve 
generalized synchronization. The proof is completed. 

4. Conclusion 

In this paper, the problem of generalized synchronization for drive-response neur-
al networks with time-varying delay and different node dynamics is concerned. 
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We design an appropriate nonlinear adaptive controller and construct a suitable 
Lyapunov function so that the desired synchronization is achieved. Because ge-
neralized synchronization is a function mapping relationship, the controller of 
generalized synchronization is complex. How to simplify the controller and make 
it have a simpler form will be a problem to be studied in the future.  
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