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Abstract 
In this article, we consider the construction of a SVIR (Susceptible, Vacci-
nated, Infected, Recovered) stochastic compartmental model of measles. We 
prove that the deterministic solution is asymptotically the average of the sto-
chastic solution in the case of small population size. The choice of this model 
takes into account the random fluctuations inherent to the epidemiological 
characteristics of rural populations of Niger, notably a high prevalence of 
measles in children under 5, coupled with a very low immunization coverage. 
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1. Introduction 

The measles is caused by a virus belonging to morbillivirus group. It may infect 
other primates, but is largely specialized on its human host. It is transmitted by 
direct contact with an infected person or by air [1] [2]. Upon infection, the pa-
tient passes through a latent period of 6 to 9 days, followed by 6 to 7 day infec-
tive period [3]. The infection results in either death or full recovery of the host. 
In the last case, the host develops lifelong immunity. However, immunity can 
also be acquired by vaccination before infection. Before the introduction of mea- 
sles vaccine in 1963 and widespread vaccination, major epidemics occurred ap-
proximately every two or three years and measles caused an estimated 2.6 mil-
lion deaths each year [1]. In developing countries, like Niger, measles remains 
one of the main causes of infant mortality because children under 5 remain the 
most affected, 90% who die have less than 5 years [1] [4] [5] [6]. In sub-Saharan 
Africa, especially in areas where vaccination coverage is not optimal, the case fa-
tality is one of the highest 5% - 10%, compared to that of high-income countries, 
where we have 1 death in this age group out of 1000 measles cases [7] [8] [9]. 
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A fundamental concept that has come out of the measles transmission process 
is that of the basic reproduction number R0. It is defined as average number of 
secondary infections produced when one infected individual is introduced into a 
host population where everyone is susceptible [10] [11]. R0 is a threshold para-
meter in the course of the spread of measles disease; indeed, if R0 < 1, the disease 
will eventually disappear from the population, while if R0 > 1, the disease can 
spread as an epidemic in the absence of health interventions. In a small, isolated 
population, a measles epidemic cannot persist [12] [13] [14], even if the basic 
reproduction number is initially greater than 1. Indeed, the spread of the disease 
subsides at term, due to a progressive immunization of a growing proportion of 
the population. Thus, in such a context, measles can only be endemic after regu-
lar importation of the virus, generally from infected people from large urban cen-
ters [15]. 

Most model used for infections diseases are the compartmental models, orig-
inally introduced by Kermack and Mckendrick and their variants [5] [10] [16] 
[17]. They are based on the partition of the population into distinct classes (or 
compartments) according to its epidemiological status. Host can move from one 
class to another (transition). In the case of the SIR (Susceptible, Infected, Recov-
ered) model, an infection is the transition which moves an individual from the 
susceptible class to the infected class and a recovery leads an infected person to 
the recovered compartment [5] [10] [11]. In general, the transition rate, which 
expresses the probability that an individual passes from one class to another per 
unit of time, depends essentially on the state of the system at a given moment, in 
particular on the number of individuals in the different compartments and the 
disease infection force [6] [10]. 

In our SVIR stochastic model, we consider Rp the effective reproduction num-
ber, characterizing the vaccination effort to control the spread of the disease, 
where p is the proportion of newborns vaccinated and immunized. In the total 
absence of vaccination (p = 0) against measles, we estimate R0 the basic repro-
duction number [3] [5] between 10 and 18. 

The rest of the paper is organized as follows: Section 2 describes in detail the 
deterministic model SVIR and the equilibrium points of the system of differen-
tial equations of the model. In Section 3, we formulate our stochastic SVIR mod-
el by means of the Kolmogorov Forward equations, precisely by means of a sys-
tem of differential equations of the mathematical expectations of the number of 
susceptible, infected and immune (recovered and vaccinated). Section 4 is de-
voted to the study of the asymptotic behavior of our stochastic model, followed 
by numerical simulations in the fifth section. Finally, in the last section, we dis-
cuss our stochastic approach and scientific conclusions. 

2. The Deterministic SVIR Model 

In what follows, ( ) ( ) ( ), ,S t I t R t  denote respectively the number of susceptible, 
infected and immunized (susceptible vaccinated and recovered patients) at time t. 
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In this model, the new susceptibles (newborns) are introduced at a constant 
rate n. A fraction, pn, of newborns has acquired immunity by vaccination. The 
other fraction ( )1 p n−  remains susceptible. In addition, we assume that: 
• The natural death rate is δ for each compartment.  
• Infectious patients recover at the rate of γ.  
• Infectious patients have an additional μ death rate from measles.  
• We consider the standard incidence ( ),f I S SIβ= , β is the disease trans-

mission coefficient. β is the average probability of an adequate contact (con-
tact sufficient for transmission) between an infected and a susceptible per 
unit of time.  

In Figure 1, a compartmental diagram of the transitions illustrates the rela-
tionship between the three classes.  

The dynamics of a well-mixed population can be described by the differential 
equations: 

( )

( )

d 1
d
d
d
d
d

S n p SI S
t
I SI I
t
R np I R
t

β δ

β δ µ γ

γ δ

 = − − −

 = − + +

 = + −

                     (1) 

Remark. 1) In the case of equilibrium without disease, the system (1) admits 

an equilibrium point 
* * *

0 00 , ,S I R 
 
 

 with  

( )* * *

0 00
1

, 0 et
p n npS I R
δ δ
−

= = =                  (2) 

Setting 
( )0

nR β
δ δ µ γ

=
+ +

 et ( ) 01pR p R= − , this equilibrium point is asymp-

totically stable [18] if 1pR < . In addition, we have 0pR R<  et 1pR <  if and 

only if 
0

11p
R

> − . We say that 
0

11cp
R

= −  is the critical vaccination coverage 

of newborns. 

2) If 1pR > , an endemic point of equilibrium appears 
* * *

, ,e eeS I R 
 
 

 asymp-

totically stable [18], where  

( ) ( )* * *1 1
, etp p

e ee

R np R
S I R

δ β γδδ µ γ
β β δβ

− + −+ +
= = =        (3) 

 

 
Figure 1. Compartment diagram of model SVIR. 
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3. The Continuous Stochastic SVIR Model  

Let ( ) ( )( ) 0
,t t

X S t I t
≥

=  be a continuous-time homogeneous Markov chain on 
the denumerable state space { }22 0,1, 2,= � . First, assume that t∆  can be 
chosen sufficiently small such that at most one change in state occurs during the 
time interval t∆ . In particular, there can be either a new infection, a birth, a 
death, or a recovery. From of state ( ){ },tX s i= , only the following states are 
accessible:  

( ) ( ) ( ) ( ) ( ), ; 1, ; , 1 ; 1, ; 1, 1 .s i s i s i s i s i+ − − − +  

corresponding to the possible transitions starting from the state ( ),s i . (See Fig-
ure 2). tX  has an absorbing set corresponding to disease-free equilibrium states 

( ){ }0 , , 0; 0E s i s i= ≥ = . 
Let ( ),s iV  be the set of neighbors of state ( ),s i : 

( ) ( ) ( ) ( ) ( ){ }, 1, ; 1, 1 ; 1, ; , 1s iV s i s i s i s i= + − + − −  

Setting ( ) ( ) ( ), 1s i n p is s iτ β δ µ δ γ= − + + + + + , the transition rates are defined 
by: 

( ) ( )

( ) ( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

, , ,

1 , 1, , 0, 0
, 1, 1 , 1, 0
, 1, , 1, 0
, , 1 , 0, 1

s i k l

n p k l s i s i
is k l s i s i
s k l s i s i

i k l s i s i

β
τ

δ
µ δ γ

 − = + ≥ ≥
 = − + ≥ ≥=  = − ≥ ≥
 + + = − ≥ ≥

        (4) 

The transition probabilities of ( ) ( )( ),tX S t I t=  are defined by  

( ) ( ) ( ) ( ) ( ){ }, , , , / ,t t ts i k lP t X k l X s i+∆∆ = = =  

We have 0s∀ ≥ ,  

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

, , , ,

, , , ,

,0 , ,0

0, if ,

1 if , ,

0, 1

s i k l s i

s i k l s i

s s

i t o t k l V

P t t o t k l s i

i P t

τ

τ

∀ > ∆ + ∆ ∈
∆ = − ∆ + ∆ =

∀ = ∆ =

       (5) 

 

 
Figure 2. States transition. 
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The distribution of tX  is ( ), 0s iP t =  if 0s <  or 0i <  and  
( ) ( ){ }, ,s i tP t X s i= =  if 0, 0s i≥ ≥ . Therefore, the marginal distributions are 

given by: 
( ){ } ( ) ( ){ } ( ), ,

0 0
ands i s i

s i
I t i P t S t s P t

≥ ≥

= = = =∑ ∑   

From the Equation (5), we obtain the Kolmogorov Forward equations, for all 
0s ≥  and 0i ≥  

( ) ( )( )

( ) ( ) ( )

,
1, , 1, 1 ,

, 1 , 1, ,

d
1 1 1

d
1 1

s i
s i s i s i s i

s i s i s i s i

P
n p P P s i P siP

t
i P iP s P sP

β

µ γ δ δ

− + −

+ +

   = − − + + − −   

   + + + + − + + −   

     (6) 

Hence the system of differential equations verified by the mathematical ex-
pectations: 

( )

( )

d 1
d
d
d
d
d

SI

SI

S p n SI S cov
t
I SI I cov
t
R np I R
t

β δ β

β µ δ γ β

γ δ


= − − − −




= − + + +



= + −


                (7) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

, ,
0 0 0 0

,
0 0 0

,

and

s i s i
s i s i

SI s i
s i r

S t sP t I t iP t

cov t siP t S t I t R t r R t r

+∞ +∞ +∞ +∞

= = = =

+∞ +∞ +∞

= = =

= =

= − = =

∑∑ ∑∑

∑∑ ∑ 
 

4. Asymptotic Behavior 

In this part, we establish that the extinction of the epidemic is done almost sure-
ly independently of the number Rp, although this is not a priori guaranteed in 
infinite dimension. 

Let us consider the embedded process ( )k k
Y

∈  of ( ) 0t t
X

≥
 which is a dis-

crete Markov chain representing the sequence of values taken by ( ) 0t t
X

≥
 at 

transition times. 
Setting 1k k kY Y Y+∆ = − , we have:  

( ) ( ){ }

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

1 2

1 2

1 2

1 2

1 2

1
, if , 1,0

,

, if , 1,1
,

, / ,
, if , 1,0

,

, if , 0, 1
,

k k

n p
e e

s i
si e e
s i

Y e e Y s i
s e e

s i

i
e e

s i

τ
β

τ
δ

τ

µ γ δ
τ

−
=




= −


∆ = = = 
 = −



+ +
= −



      (8) 

note that ( ) ( ) ( ), 1s i n p si s iτ β δ µ γ δ= − + + + + + . 
To establish our results, we need the proposition [1] and the lemmas [2] [3] [4] 

[5] which are obtained according to the proof of the criterion of ergodicity and 
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recurrence of Markov chains, given by Rosenkrantz [19]. These assertions are 
essentially based on the Lyapunov-Foster ergodicity criterion, which shows that 
a Markov chain is recurrent positive. This criterion was subsequently extended 
by Meyn and Tweedie [20] [21]. The proofs of the lemmas are given in the Ap-
pendix. 

Proposition 1. Setting ( )
0

1
max ,

n p
s µ γ δ

δ β
− + +

=  
 

; ( ){ }0 0, , , 0D s i s s i= > > ,  

( ){ }1 0,0 ,D s s s= > , ( ){ }2 0 , , 0D s i i= >  and let ( ) ( ), / ,k ks i Y Y s i= ∆ =  d   
be the drift vector and ( ) ( ), ,j s i s i=d d  ( ), , 0 2js i D j∈ ≤ ≤ . then  

( ) ( )
( )

( )
( )

1
, ,

, ,
n p si s si i

s i
s i s i
β δ β µ γ δ

τ τ
 − − − − + +

=   
 

d             (9) 

Lemma 2. For all { }0,1,2j∈ , we pose ( ),j s i=d d  where ( ), js i D∈ . We 
denote by ( )�

1 0,ψ = n d  the angle between 1n  and 0d , ( )�
1 1 1,ψ = n d  the angle 

between 1n  and 1d , ( )�
2 2 2,ψ = n d  the angle between 2n  and 2d , where  

( )1 0,1=n  and ( )2 1,0=n . 
We have the following results:  

1) 1 20
2

ψ ψ ψπ
< < = < ≤ π . 

2) If 1pR ≤ : 0s µ γ δ
β

+ +
= , 2ψ = π  and 14 2

ψ ψπ
< =

π
<  

3) If 1pR > : ( )
0

1n p
s

δ
−

= , 22
ψπ

< < π . 

Proof: See Appendix. 

Definition 4.1. Let ( ) ( )1, cosr rαφ θ αθ θ= −  where ( )1 22 θ θ
α

+
=

π
, for all 

reals 0r ≥  and 0,
2

θ  π∈   
 with 

• 1 0,
4

θ  ∈  
π  and 2 1,

2 2
θ θ ∈ − 

π


π , in the case where 1pR ≤ . 

• 1 , inf ,
2 2 4

θ ψ  ∈ − − −
π π

    

π  and 2 1,
2

θ θ π ∈ −  
, in the case where 1pR > . 

( )�
1 0,ψ = n d  is the angle between 1n  and 0d , 

We say that φ  is the Lyapounov function intervening in the study of the re-
currence-transience of tX . 

Remark. If 1pR ≤ , we obtain 1 2α< < , whereas if 1pR > , 0 1α< < .  
Lemma 3. Let φ  be the Lyapounov function. For all reals 0r ≥  and  

0,
2

θ  π∈   
, we have the following results: 

1) ( ) 0, 0r θ∇ ⋅ <dφ , ( ) 1,0 0r∇ ⋅ <dφ  and ( ) 2, 2 0r π∇ ⋅ <dφ . 
2) There are real constants C0 and C1 such that, uniformly in θ we have:  
a) ( )1

0 0limsup , 0
r

r r Cα θ−

→+∞
∇ ⋅ ≤ <dφ  

b) ( )2
1limsup ,lj

r
r D r Cα φ θ−

→+∞
≤  and (c) ( )limsup ,

r
rφ θ

→+∞
= +∞  
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3) ( )1
1 0limsup ,0 0

r
r r Cα−

→+∞
∇ ⋅ ≤ <dφ  and ( )1

2 0limsup , 2 0
r

r r Cα−

→+∞
∇ ⋅ ≤ <π dφ   

( ),ljD rφ θ  denote the partial derivatives of ( ),rφ θ  with respect to ( )1,2lx l =  
and ( )1,2jx j = . r and θ  are the polar coordinates of ( )1 2,x x x= . 

Proof: See Appendix. 
Remark. Let ( )1 2, ,0 2jx x x D j= ∈ ≤ ≤  and ( ) ( )/j k kA x Y Y x= ∆ = ; we ob-

tain  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }and 1,0 , 1,1 , 1,0 , 0, 1j j jx A x A x = ∈ − − − d   

On ( ){ },kY s i=  we have: 
( )

2 22 1 1
,k k
siY Y
s i
β

τ
   ∆ = = = − ∆ =      and  

( ) ( ) ( ) ( )2 2 2
0 1 2, 1 2, , 1 2, , 1 2

,
siA s i A s i A s i
s i
β

τ
     = + < = < = <          

    

An immediate consequence of the lemma 3 is: 
Lemma 4. Let ( ) ( )1 2 1 2, , ,x x y y= =x y  two vectors of the plane and  

2 2
1 2x x= +x , 1 1 2 2x y x y⋅ = +x y . 

Then, There are 0ε >  and 0K >  such that 
1) If 1pR > , then x K∀ ≥ , ( ) ( )1 / 0k k kY Y Y xφ φ+ − = ≤  .  
2) If 1pR ≤ , then x K∀ ≥ , ( ) ( )1 /k k kY Y Y xφ φ ε+ − = ≤ −  .  
Proof: See Appendix. 
Lemma 5. Let ( )k k

Y
∈  be the embedded process of ( ) 0t t

X
≥

, which is a dis-
crete Markov chain representing the sequence of values taken by ( ) 0t t

X
≥

 at 
transition times. Then  

1) If 1pR ≤ , then the Markov chain ( )k k
Y

∈  is positive recurrent. 
2) If 1pR > , then the Markov chain ( )k k

Y
∈  is null recurrent. 

Proof: See Appendix. 
We can state now our main results: 
Theorem 6. Let ( ){ }0 inf 0, 0T t I t= ≥ =  with inf ∅ = +∞ . Then, for all  

*i∈ , [ ]0 1i T < +∞ =  and ( )lim 0 1t i I t→+∞ = =   . 
Proof: This result is a consequence of the lemma 5 and the properties of re-

current Markov chains with nonempty absorbing set of states. (see [22], Propo-
sition 5-15). It reflects the absorbent nature of the Markov chain.             

Theorem 7. Let ( ){ }0 inf 0, 0T t I t= ≥ =  with inf ∅ = +∞  and  

( )* * *

0 00
1

, 0,
p n npS I R
δ δ
− 

= = = 
 

. 

If 1pR ≤ , then (1) [ ]0T = +∞  and (2)  

( ) ( ) ( )( )
* * *

0 00lim , , , ,t S t I t R t S I R→+∞
 =  
 

.  

Proof: The first result reflects the positive recurrence obtained from the lemma 
5. The second assertion follows from the fact that the Markov chain is absorbent, 
and once in the absorbing state, the correlation between ( )S t  and ( )I t  is 
identically zero. Therefore, asymptotically the deterministic equations and the 
mathematical expectation equations have the same equilibrium points.        
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Theorem 8. Let ( ){ }0 inf 0, 0T t I t= ≥ = , inf ∅ = +∞  and  

( ) ( )* * *1 1
, ,p p

e ee

R np R
S I R

δ β γδδ µ γ
β β δβ

 − + −+ + = = =
 
 

 

If 1pR > , then (1) [ ]0T = +∞  and (2)  

( ) ( ) ( )( )
* * *

lim , , , ,e eet S t I t R t S I R→+∞
 =  
 

  

Proof: The first assertion is proved by observing that there are asymptotically 
two distinct equilibrium points, and necessarily ( )T = +∞E  in the case 1pR > , 
otherwise the two equilibrium points would be confused by uniqueness of the 
stationary measure. 

The proof of the second assertion is similar to that of the second assertion of 
Theorem 7.                                                        

5. Simulation 

In what follows, we will denote by I  and dI numerical solutions of Equations 
(7) and (1) respectively. The average of the simulated realizations of the number 
of infected ( )I t  is denoted by mI. We used MATLAB software for Monte- 
Carlo simulations and R software for graphics 

Let an initial population of 0 100S =  susceptibles with an initial number of 

0 2I =  infected for the following values of the parameters:  

0.69; 0.25; 0.02; 0.5; 3.5; 0.51; 6.15pn p Rβ δ µ γ= = = = = = =  

In Figure 4, we have the estimate of the covariance ( )SIcov t  from 50 simu-
lations. Figure 5 give a comparison of I , dI and mI in the time interval [ ]0,26 . 
The time interval is then varied for the same values of the parameters. It appears 
that for the large values of t, we obtain ( ) ( ) *

eI t dI t I≈ ≈ , where *
eI  is the en-

demic equilibrium of the Equation (1), the expected asymptotic value when  
1pR > . 

For the considered values of the parameters, the endemic equilibrium value is 
* 1.8659eI = . The simulations gave the following values :  

( ) ( ) ( )26 1.8648, 26 1.8650, 26 0I dI mI≈ ≈ ≈  (voir Figure 5) 

( ) ( ) ( )52 1.8650, 52 1.8650, 52 0I dI mI≈ ≈ ≈  (voir Figure 6) 

In Figure 3, two sample paths of ( )I t , their mean and the deterministic so-
lution for the following values: 

[ ]
0 0100; 2; 0.69; 0.25; 0.02;

0.5; 3.5; 0.51; 0,26 et 6.1p

S I
n p t R

β δ µ

γ

= = = = =

= = = ∈ =
 

Figure 4 estimated covariance function from 50 sample paths of  
( ) ( )( ),tX S t I t=  and in Figure 5 Deterministic solution (dI), solution of ma-

thematical expectations ( I ) and mean of 50 sample paths of ( )I t  (mI) for the 
following values:  

[ ]
0 0100; 2; 0.69; 0.25; 0.02;

0.5; 3.5; 0.51; 0,26 ; 6.15p

S I
n p t R

β δ µ

γ

= = = = =

= = = ∈ =
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Figure 3. Two sample paths of I(t), their mean—the average of the simulated values cal-
culated at each instant, estimate of the mathematical expectation of I(t)—and the deter-
ministic solution. 

 

 

Figure 4. Estimated covariance function from 50 sample paths of ( ) ( )( ),tX S t I t= . 

 

 

Figure 5. Deterministic solution (dI), solution of mathematical expectations ( I ) and 
mean of 50 sample paths of I(t) (mI). 
 

In Figure 6 mean of 50 sample paths of ( )I t  and solution of mathematical 
expectations ( I ) for previous parameter values are compared to the determinis-
tic solution (dI) over the time interval [ ]0,52 .  
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Figure 6. Deterministic solution (dI), solution of mathematical expectations ( I ) and 
mean of 50 sample paths of I(t) (mI) for previous values but [ ]0,52t∈ . 

6. Discussions 

This paper presents a stochastic compartmental model SVIR of measles. A com-
parison of our stochastic model with the corresponding deterministic model in-
dicates that the deterministic solution is asymptotically the mean of the stochas-
tic solution. It is well known that mI obtained by random sampling (Monte 
Carlo methods) before extinction is an estimate of I . Our result shows that the 
three trajectories of I , dI and mI asymptotically coincide. The deterministic 
solution is the mean of the stochastic solution. 

In addition, unlike the deterministic approach, we show that the epidemic is 
extinguished independently of the threshold Rp with a probability equal to 1. 
More precisely, if 1pR ≤  extinction occurs in a time of finite mean, and if 

1pR >  the disease eventually disappears in a time of infinite mean. 
One of the peculiarities of our model is that the size of the population is not 

constant and can be quite large. The extinction of the process in this case is not 
guaranteed unlike in the case where the size of the population is constant. This 
led us to focus on the probability of absorption of the process. 

On the other hand, when 0 1R > , it is well known for the constant population 
SIR model [23] that the average duration of the epidemic increases exponentially 
with the size of the population. This fact is confirmed by the assertion 1. of the 
theorem 8 and the extinction is done in a time of infinite mean when 1pR > . 

7. Conclusions  

To understand the dynamics of the system before absorption, a commonly used 
measure is the quasi-stationary distribution [24]. The term quasi-stationarity re-
fers to the distribution of the Markov chain by conditioning on the event that 
absorption has not occurred yet. It gives a good measure of the behavior before 
absorption when the absorption time is very long. 

If the set of transient states is finite and irreducible, it is well known that the 
quasi-stationary distribution exists [25]. But if this set is infinite the existence of 
a quasi-stationary distribution is not guaranteed, and even if it does exist it is 
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practically impossible to determine it explicitly. To elucidate this situation, an 
extension of our work would be the study of the process in quasi-stationary re-
gime. 

The emergence of epidemics often reveals complex dynamic relationships be-
tween susceptible individuals, pathogens and their environments. Complex dy-
namic relationships that result in seasonal epidemic cycles vary over time [26]. 
In Niger, recent studies [7] reveal two main periodicity of measles, a more ac-
centuated annual periodicity, probably due to seasonal agricultural labour mi-
gration and a low and unstable periodicity of 2 to 3 years which is partly ex-
plained by heterogeneity in vaccination coverage. To account for this aspect of 
temporal and environmental variability, it would be necessary to extend our 
study to the analysis of the time series of cases of infection. The stochastic aspect 
takes better account of these temporal and environmental fluctuations and may 
provide a framework to improve our understanding of the complex dynamics of 
measles epidemics. 
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Appendix  

Proof of the lemma 2: 
The lemma is a consequence of the definition of Rp and of the expressions 

0 1 2, ,d d d : 

( )
( ) ( )

( )
( ) ( )

( )
( )

( )
( ) ( )

( )
( ) ( )

0

1

0 0 0
2

0 0 0 0

1
,

1 1

1
,0

1

1
,

1 1

n p si s si i
n p si s i n p si s i

n p s
n p s

n p s i s s i i
n p s i s i n p s i s i

β δ β µ γ δ
β δ µ γ δ β δ µ γ δ

δ
δ

β δ β µ γ δ
β δ µ γ δ β δ µ γ δ

 − − − − + +
=   − + + + + + − + + + + + 
 − −

=   − + 
 − − − − + +

=   − + + + + + − + + + + + 

d

d

d

(10) 

We can easily determine the signs of the abscissas and ordinates of jd , in-
deed:  

( ) ( )
( )0

1 1
max , ; p

n p n p
s R

βµ γ δ
δ β δ µ γ δ
− − + +

= = 
+ + 

 

1) 0 00x yd d< < ; 1 0xd = ; 2 20x yd d< ≤   
2) If 1pR ≤  we have: 0 00 y xd d< < − ; 1 0xd = ; 2 20x yd d< =   
3) If 1pR >  we have: 0 00 y xd d< < − ; 1 0xd = ; 2 20x yd d< <             
Proof of the lemma 3: 
In polar coordinates, we have ( ) ( ) ( )( )1

1 1, cos , sinr rαθ α αθ θ αθ θ−∇ = − − −φ . 
To establish the result, we distinguish the two cases 1pR ≤  and 1pR > . 
• If 1pR ≤ , the angle between 0d  and ( ),r θ∇φ  is  

( ) 1 2
a θ θ αθ ψ θ = − − + −


π




. From ( ) ( )2 12 2
aθ ψ θ θ ψ− − − ≤ ≤ − −

π π
, the  

angle between 1d  and ( ) ( )1
1 1,0 cos ,sinr rαα θ θ−∇ =φ  is equal to  

1 1a θ= − π . furthermore, we show that the angle between 2d  and  
( ) ( )1

2 2, 2 cos , sinr rαα θ θ−∇ = −πφ  is equal to 2 2a θ= − − π . 
The choice of 1θ  and 2θ  allows to have:  

1 2 1
5 3 3 3,
4 4 2 2 2

θ θ θ− < − < − − < − −
π π π π

< −π < −
π

π  

and for any , 0
2

θ θ< <
π

, we obtain ( ) 1
5 3
4 4 2

a θ θ− < −
π

< < −
π π

. As a result, 

we have inequalities 1
2cos

2
a −
< , 2 1

3cos cos 0
2

a θ < − < 
 

π  et  

( )( ) 1
3cos cos 0
4

a θ θ < − < 
 

π . 

• If 1pR > , we have good ( )1 12
aθ ψ θ θ ψ− − ≤ ≤ −

π
 et 1 1a θ= − π . 

For 2d , we find 2 2 2a θ ψ= − − . The choice of 1θ  and 2θ  leads to  

1 2 2 2
3 3et
2 2 2 2

θ θ ψ θ− < − < − − < − − < − −
π π

π π < −
π π

 

and for any , 0
2

θ θ< <
π

 et ( )1 1
3
2 2 2

aθ ψ θ θ ψ− < − − ≤ ≤ −
π

< −
π π

. Thus  
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( )( ) ( )1 2 2 1
2cos , cos cos 0 et cos cos 0.

2 2
a a aθ θ θ ψ−  π < < − − < < − < 

 
 

definitively, for any value of pR  and for any 0 2θ≤ ≤ π , we deduce that  

( ) ( ) ( )0 1 2, 0, ,0 0 and , 2 0.r r rθ∇ ⋅ < ∇ ⋅ < ∇ <π ⋅d d dφ φ φ        (11) 

So the assertions 1; 2. a) et 3. deduce. 
To establish the assertion 2. (b), we consider the partial derivatives with re-

spect to 1x  and 2x  of φ : 

( )( )

( )( )

1
1 1

1
2 1

sincos cos 1

cossin sin 1

r

r

D r
r

D r
r

α
θ

α
θ

θφ θφ φ α α θ θ

θφ θφ φ α α θ θ

−

−

= − = − −

= + = − −
          (12) 

where rφ  and θφ  are the partial derivatives with respect to r and θ  of φ  of 
Jacobian matrix of φ : 

( )
( )( ) ( )( )
( )( ) ( )( )

1 12

1 1

cos 2 sin 2
1

sin 2 cos 2ljD rα
α θ θ α θ θ

φ α α
α θ θ α θ θ

−
 − − − −
 = −
 − − − − − 

     (13) 

The assertion 2. (c) follows from the definition of φ  and the fact that  

( )1cos 0αθ θ− > ; indeed, for any ,0
2

θ θ≤ ≤
π

 we have 12 2
αθ θ− < − <

π π
. 

Hence the lemma 3.                                               
Proof of the lemma 4: 
The proof is analogous to that of the theorem 3 of [19]. The Taylor formula of 

the function φ  is:  

( ) ( ) ( ) ( ),x h x x h R x hφ φ+ − = ∇ ⋅ +φ  

where ( )1 2,h h h=  and ( ) ( ), 1,2

1,
2 lj l jl jR x h D x h h hφ η

=
= +∑  is the remainder of 

Taylor with 0 1η< < . 

For { }0,1,2l∈ , when we replace h by ( )lA x , we get:  

( ) ( ) ( ) ( )( )1 / ,k k k l l lY Y Y x D x R x A xφ φ+   − = ∈ = ∇ ⋅ +   d φ  

Applying the lemma 3 and the remark 4, we have  

( ) ( ) ( ) ( )2
1 /k k k l lY Y Y x D x O x αφ φ −
+ − = ∈ = ∇ ⋅ +  d φ  

• If 1pR ≤ , we have 1 2α< <  and ( )1
0limsup 0lx x x Cα− +

→∞ ∇ ⋅ ≤ <dφ ; 
Therefore: 

( ) ( )10 and 0, / .k k kK Y Y Y x x Kε φ φ ε+ ∃ > > − = ≤ − ∀ ≥   

• If 1pR > , it turns out that 0 1α< < , we cannot conclude that  

( ) ( )1 / 0 .k k kY Y Y x x Kφ φ+ − = ≤ ∀ ≥   

What completes the demonstration.                                  
Proof of the lemma 5:  
Let us show the recurrence in the case 1pR > . 
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We pose { }/B x x K= ≤ , { }inf 0, kT k Y B= ≥ ∈  and ( ) { }k k T kZ Yφ >=   
where A  denotes the indicator map of A. 

Let ( )k k∈  be the filtration associated to ( )k k
Y

∈ . Knowing that  

{ } { }1T k T k> + >≤  , we can write: [ ] ( ) { }1 1/ /k k k kT kZ Yφ+ + >
 ≤        

( ) { } { } ( ) { } ( )1 1/ / .k k k k k kT k T k T kY Y Y Zφ φ φ+ +> > >
   = ≤ =         

In this last expression, the last inequality is obtained from the second assertion 
of the lemma 4. Thereafter ( )k k

Z
∈  is a positive supermartingale and therefore 

[ ]lim 0 1k kZ→+∞ = = . 
On the other hand, because the Markov chain ( )k k

Y
∈  is irreducible, we have 

limsup 1k kY→+∞ = ∞ =  . In this case, on { }T = +∞ , it follows that  
( )lim limk k k kZ Yφ→+∞ →+∞= = +∞ , thus [ ] 0T = +∞ = . In other words, the fi-

nite set A is visited an infinite number of times by the Markov chain ( )k k
Y

∈ , 
which corresponds to recurrence. Finally, the last assertion of the lemma is a 
consequence of the first assertion of the lemma 4 and of Foster’s positive recur-
rence criterion [27].                                                 
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