A Comparison of Cereal and Cereal/Vetch Crops for Fodder Conservation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Yield
3.2. Species Composition
3.3. Digestibility
3.4. Crude Protein Content
3.5. Water Soluble Carbohydrates Content
3.6. Fibre Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chapman, D.F.; Cullen, B.R.; Johnson, I.R.; Beca, D. Interannual variation in pasture growth rate in Australian and New Zealand dairy regions and its consequences for system management. Anim. Prod. Sci. 2009, 49, 1071–1079. [Google Scholar] [CrossRef]
- Perrara, R.S.; Cullen, B.R.; Eckard, R.J. Changing patterns of pasture production in south-eastern Australia from 1960 to 2015. Crop. Pasture Sci. 2020, 71, 70. [Google Scholar] [CrossRef]
- Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.; Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 2020, 210, 103348. [Google Scholar] [CrossRef]
- Dear, B.S.; Virgona, J.M.; Sandral, G.A.; Swan, A.D.; Orchard, B.A. Effect of companion perennial grasses and lucerne on seed yield and regeneration of subterranean clover in two wheatbelt environments. Aust. J. Agric. Res. 2001, 52, 973–983. [Google Scholar] [CrossRef]
- Nie, Z.N.; Miller, S.; Moore, G.A.; Hackney, B.F.; Boschma, S.P.; Reed, K.F.M.; Mitchell, M.; Albertsen, T.O.; Clark, S.; Craig, A.D.; et al. Field evaluation of perennial grasses and herbs in southern Australia. 2. Persistence, root characteristics and summer activity. Aust. J. Exp. Agric. 2008, 48, 424–435. [Google Scholar] [CrossRef]
- Hackney, B.; Rodham, C.; Dyce, G.; Piltz, J. Pasture legumes differ in herbage production and quality throughout spring, impacting their potential role in fodder conservation and animal production. Grass Forage Sci. 2021, 76, 116–133. [Google Scholar] [CrossRef]
- Bell, L.W.; Moore, A.D.; Kirkegaard, J.A. Evolution in crop-livestock integration systems that improve farm productivity and environmental performance in Australia. Eur. J. Agron. 2014, 57, 10–20. [Google Scholar] [CrossRef]
- Matthews, P.; McCaffery, D.; Jenkins, L. Winter Crops Variety Sowing Guide 2020; NSW Department of Primary Industries: Orange, Australia, 2020.
- GRDC. Hay and Silage Fact Sheet: Making the Most of a Failed Winter Crop; Grains Research and Development Corporation: Canberrra, Australia, 2018. [Google Scholar]
- Kaiser, A.G.; Dear, B.S.; Morris, S.G. An evaluation of the yield and quality of oat-legume and ryegrass-legume mixtures and legume monocultures harvested at three stages of growth for silage. Aust. J. Exp. Agric. 2007, 47, 25–38. [Google Scholar] [CrossRef]
- Khorasani, G.R.; Jedel, P.E.; Helm, J.H.; Kennelly, J.J. Influence of stage of maturity on yield components and chemical composition of cereal grain silages. Can. J. Anim. Sci. 1997, 77, 259–267. [Google Scholar] [CrossRef]
- Wang, L. An Investigation on the Effect of Maturity Stage and Variety on the Quality of Cereal Forages; Charles Sturt University: Wagga Wagga, NSW, Australia, 2010. [Google Scholar]
- Moreira, N. The Effect of Seed Rate and Nitrogen-Fertilizer on the Yield and Nutritive-Value of Oat Vetch Mixtures. J. Agric. Sci. 1989, 112, 57–66. [Google Scholar] [CrossRef]
- Nadeau, E. Effects of plant species, stage of maturity and additive on the feeding value of whole-crop cereal silage. J. Sci. Food Agric. 2007, 87, 789–801. [Google Scholar] [CrossRef]
- Roberts, C.A.; Moore, K.J.; Johnson, K.D. Forage Quality and Yield of Wheat-Vetch at Different Stages of Maturity and Vetch Seeding Rates. Agron. J. 1989, 81, 57–60. [Google Scholar] [CrossRef]
- Acar, Z.; Gulumser, E.; Asci, O.O.; Basaran, U.; Mut, H.; Ayan, I. Effects of sowing ratio and harvest periods on hay yields, quality and competitive characteristics of Hungarian vetch-cereal mixtures. Legume Res. 2017, 40, 677–683. [Google Scholar] [CrossRef][Green Version]
- Atis, I.; Kokten, K.; Hatipoglu, R.; Yilmaz, S.; Atak, M.; Can, E. Plant density and mixture ratio effects on the competition between common vetch and wheat. Aust. J. Crop Sci. 2012, 6, 498–505. [Google Scholar]
- Carr, P.M.; Horsley, R.D.; Poland, W.W. Barley, oat, and cereal-pea mixtures as dryland forages in the Northern Great Plains. Agron. J. 2004, 96, 677–684. [Google Scholar] [CrossRef][Green Version]
- Erol, A.; Kaplan, M.; Kizilsimsek, M. Oats (Avena sativa)—Common vetch (Vicia sativa) mixtures grown on a low-input basis for a sustainable agriculture. Trop. Grassl. 2009, 43, 191–196. [Google Scholar]
- Karagic, D.; Mikic, A.; Milosevic, B.; Vasiljevic, S.; Dusanic, N. Common vetch-wheat intercropping: Haylage yield and quality depending on sowing rates. Afr. J. Biotechnol. 2012, 11, 7637–7642. [Google Scholar] [CrossRef]
- Nykanen, A.; Jauhiainen, L.; Rinne, M. Biomass production and feeding value of whole-crop cereal-legume silages. Agron. Res. 2009, 7, 684–690. [Google Scholar]
- Salawu, M.B.; Adesogan, A.T.; Weston, C.N.; Williams, S.P. Dry matter yield and nutritive value of pea/wheat bi-crops differing in maturity at harvest, pea to wheat ratio and pea variety. Anim. Feed. Sci. Technol. 2001, 94, 77–87. [Google Scholar] [CrossRef]
- Matic, R. Improved Vetch Varieties for Fodder Production; Rural Industries Research and Development Corporation: Canberrra, Australia, 2007. [Google Scholar]
- World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- Isbell, R. The Australian Soil Classification, 2nd ed.; CSIRO Publishing: Melbourne, Australia, 2016. [Google Scholar]
- McKenzie, N.; Jaquier, D.; Isbell, R.; Brown, K. Australian Soils and Landscapes an Illustrated Compendium; CSIRO: Melbourne, Australia, 2004. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- AFIA. AFIA—Laboratory Methods Manual, 8th ed.; Australian Fodder Industry Association: Melbourne, Australia, 2014. [Google Scholar]
- Association of Official Analytical Chemists. International Official Methods of Analysis, 16th ed.; AOAC: Rockville, MD, USA, 1997. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Piltz, J.W. Digestibility of Australian Maize Silages. Master’s Thesis, University of New England, New South Wales, Australia, 1993. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Genstat. Genstat for Windows, 20th ed.; VSN International Limited: Hemel Hempstead, UK, 2020; version 20.1. [Google Scholar]
- Urquhart, N.S. Adjustment in Covariance When One Factor Affects the Covariate. Biometrics 1982, 38, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Delogu, G.; Faccini, N.; Faccioli, P.; Regiani, F.; Lendini, M.; Berardo, N.; Odoardi, M. Dry matter yield and quality evaluation at two phenological stages of forage triticale grown in the Po Valley and Sardinia, Italy. Field Crop. Res. 2002, 74, 207–215. [Google Scholar] [CrossRef]
- Edmisten, K.L.; Green, J.T.; Mueller, J.P.; Burns, J.C. Winter annual small grain forage potential. I. Dry matter yield in relation to morphological characteristics of four small grain species at six growth stages. Commun. Soil Sci. Plant Anal. 1998, 29, 867–879. [Google Scholar] [CrossRef]
- Fisher, L.J.; Fowler, D.B. Predicted forage value of whole plant cereals. Can. J. Plant Sci. 1975, 55, 975–986. [Google Scholar] [CrossRef]
- Fraser, T.J.; Knight, T.L.; Knowles, I.M.; Hyslop, M.G. Twenty-five tonnes of high quality forages annually in Canterbury. Proc. N. Z. Grassl. Assoc. 2004, 66, 85–91. [Google Scholar] [CrossRef]
- Jacobs, J.L.; Ward, G.N. Dry matter yields and nutritive value of silage from cereal and pea combinations. In Global Issues, Paddock Action, Proceedings of the 14th Agronomy Conference, Adelaide, Australia, 21–25 September 2008; Australian Society of Agronomy Inc.: Adelaide, Australia, 2008. [Google Scholar]
- Karagic, D.; Vasiljevic, S.; Katic, S.; Mikic, A.; Milic, D.; Milosevic, B.; Dusanic, N. Yield and quality of winter common vetch (Vicia sativa L.) haylage depending on sowing method. Biotechnol. Anim. Husb. 2011, 27, 1585–1594. [Google Scholar] [CrossRef]
- Anwar, A.; Ansar, M.; Nadeem, M.; Ahmad, G.; Khan, S.; Hussain, A. Performance of non-traditional winter legumes with oats for forage yield under rainfed conditions. J. Agric. Res. 2010, 48, 171–179. [Google Scholar]
- Zhang, Y.; Duan, Y.; Nie, J.Y.; Yang, J.; Ren, J.H.; van der Werf, W.; Evers, J.B.; Zhang, J.; Su, Z.C.; Zhang, L.Z. A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition. Agric. Water Manag. 2019, 225. [Google Scholar] [CrossRef]
- Hackney, B.; Rodham, C.; Piltz, J. Using Biserrula to Increase Crop and Livestock Production; Meat & Livestock Australia Ltd: North Sydney, Australia, 2013. [Google Scholar]
- Armour, T.; Jamieson, P.D.; Nicholls, A.; Zyskowski, R. Breaking the 15t/ha wheat yield barrier. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. [Google Scholar]
- Wilkinson, J.M.; Davies, D.R. The aerobic stability of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Davies, D.R.; Fychan, R.; Jones, R. Aerobic deterioration of silage: Causes and controls. In Nutritional Biotechnology in the Feed and Food Industries: Proceedings of Alltech’s 23rd Annual Symposium; Lyons, T.P., Jacques, K.A., Hower, J.M., Eds.; Alltech UK: Stamford, UK, 2007; pp. 227–238. [Google Scholar]
- Shah, A.N.; Tanveer, M.; Rehman, A.U.; Anjum, S.A.; Iqbal, J.; Ahmad, R. Lodging stress in cereal-effects and management: An overview. Environ. Sci. Pollut. Res. 2017, 24, 5222–5237. [Google Scholar] [CrossRef]
- Harrison, M.T.; Evans, J.R.; Dove, H.; Moore, A.D. Dual-purpose cereals: Can the relative influences of management and environment on crop recovery and grain yield be dissected? Crop. Pasture Sci. 2011, 62, 930–946. [Google Scholar] [CrossRef]
- Edmisten, K.L.; Green, J.T.; Mueller, J.P.; Burns, J.C. Winter annual small grain forage potential. II. Quantification of nutritive characteristics of four small grain species at six growth stages. Commun. Soil Sci. Plant Anal. 1998, 29, 881–899. [Google Scholar] [CrossRef]
- Jacobs, J.L.; Ward, G.N. Effect of intercropping forage peas (Pisum sativum L.) with winter wheat (Tritium vulgare L.) or triticale (Triticale hexaploide Lart.) on DM yield, nutritive characteristics when harvested at different stages of growth. Anim. Prod. Sci. 2012, 52, 949–958. [Google Scholar] [CrossRef]
- Carmi, A.; Aharoni, Y.; Edelstein, M.; Umiel, N.; Hagiladi, A.; Yosef, E.; Nikbachat, M.; Zenou, A.; Miron, J. Effects of irrigation and plant density on yield, composition and in vitro digestibility of a new forage sorghum variety, Tal, at two maturity stages. Anim. Feed. Sci. Technol. 2006, 131, 120–132. [Google Scholar] [CrossRef]
- Goodchild, A.V. Effects of rainfall and temperature on the feeding value of barley straw in a semi-arid Mediterranean environment. J. Agric. Sci. 1997, 129, 353–366. [Google Scholar] [CrossRef]
- Filya, I. Nutritive value of whole crop wheat silage harvested at three stages of maturity. Anim. Feed. Sci. Technol. 2003, 103, 85–95. [Google Scholar] [CrossRef]
- Unkovich, M.; Baldock, J.; Forbes, M. Variability in Harvest Index of Grain Crops and Potential Significance for Carbon Accounting: Examples from Australian Agriculture. Adv. Agron. 2010, 105, 173–219. [Google Scholar] [CrossRef]
- Borowiec, F.; Furgal, K.; Kaminski, J.; Zajac, T. Nutritive value of silage made of whole barley crop harvested at various stages of maturity. J. Anim. Feed. Sci. 1998, 7, 45–54. [Google Scholar] [CrossRef]
- Hadjipanayiotou, M.; Antoniou, I.; Theodoridou, M.; Photiou, A. In situ degradability of forages cut at different stages of growth. Livest. Prod. Sci. 1996, 45, 49–53. [Google Scholar] [CrossRef]
- Juskiw, P.E.; Helm, J.H.; Salmon, D.F. Forage yield and quality for monocrops and mixtures of small grain cereals. Crop Sci. 2000, 40, 138–147. [Google Scholar] [CrossRef]
Cereal Species | Cereal Variety | Wagga 2008 Harvest | Culcairn 2009 Harvest | Temora 2010 Harvest | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | ||
Cereal crops | ||||||||||||
Avena sativa L. | Echidna | 2 October | 15 October | 22 October | 27 September | 8 October | 13 October 1 | 30 October | 5 October | 20 October | 26 October 1 | 15 November 1 |
A. sativa | Mannus | 29 September | 15 October | 22 October | 16 September | 28 September | 10 October 1 | 30 October | 7 October 1 | 14 October 1 | 24 October 1 | 18 November |
Hordeum vulgare L. | Gairdner | 1 October 1 | 15 October | 22 October | 25 September | 8 October | 15 October | 31 October 1 | 5 October 3 | 11 October 3 | 20 October 3 | 3 November 1,3 |
H. vulgare | Urambie | 29 September | 15 October | 22 October | 25 September | 8 October | 15 October | 30 October 1 | 24 September | 5 October | 20 October | 2 November 1 |
Triticum aestivum L. | Wedgetail | 6 October | 17 October | 22 October | 8 October | 12 October | 3 November | 8 November 1 | 5 October | 20 October | 6 November 1 | 22 November |
T. aestivum | Strzelecki | 6 October | 16 October 1 | 22 October | 3 October | 8 October | 2 November 1 | 10 November | 7 October 1 | 11 October | 26 October 1 | 22 November |
× Triticosecale | Tobruk | 5 October 1 | 17 October | 22 October | 4 October 1 | 19 October | 3 November | 10 November | 5 October | 20 October | 9 November | 22 November |
Cereal/vetch crops | ||||||||||||
A. sativa | Echidna | 1 October 1 | 15 October | 22 October | 27 Sepember 1 | 12 October 1 | 19 October 1 | 30 October | 9 October 1 | 20 October | 25 October | 18 November |
A. sativa | Mannus | 29 September | 15 October | 22 October | 16 September | 28 September | 8 October | 30 October | 7 October 1 | 20 October 1 | 27 October 1 | 18 November |
H. vulgare | Gairdner | 1 October 1 | 15 October | 22 October | 25 September 3 | 9 October 1 | 16 October 1 | 28 October 1 | 5 October | 11 October | 23 October 1,3 | 1 November |
H. vulgare | Urambie | 29 September | 15 October | 22 October | 25 September 1 | 8 October | 18 October 1 | 29 October 1 | 29 September 1 | 9 October 1 | 20 October | 3 November 1 |
T. aestivum | Wedgetail | 6 October | 17 October | 22 October | 8 October | 18 October 1 | 3 November | not cut | 7 October 1 | 20 October | 7 November 1 | not cut |
T. aestivum | Strzelecki | 3 October 1 | 16 October 1 | 22 October | 3 October 1,3 | 11 October 1 | 27 October | 3 November 2 | 5 October | 11 October | 6 November 1 | not cut |
× Triticosecale | Tobruk | 5 October 1 | 17 October 3 | 22 October | 4 October 1 | 19 October | 3 November | not cut | 5 October | 20 October | 6 November 1 | not cut |
Site | Year | Annual Rainfall | Growing Season Rainfall 1 | ||
---|---|---|---|---|---|
Experiment | Long-Term Average | Experiment | Long-Term Average | ||
Wagga Wagga | 2008 | 414 | 524 | 185 | 329 |
Culcairn | 2009 | 404 | 591 | 306 | 379 |
Temora | 2010 | 749 | 524 | 479 | 358 |
Cereal Species | Cereal Variety | Wagga Wagga 2008 Harvest | Culcairn 2009 Harvest | Temora 2010 Harvest | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |||
Cereal crops | |||||||||||||
Avena sativa L. | Echidna | 1569 | 2278 | 2200 | 7080 | 7810 | 8832 | 9988 | 17,569 | 28,019 | 25,935 | 27,280 | |
A. sativa | Mannus | 1914 | 2624 | 2546 | 4172 | 5298 | 8700 | 8057 | 20,622 | 19,704 | 21,567 | 28,266 | |
Hordeum vulgare L. | Gairdner | 1530 | 2240 | 2162 | 4258 | 5458 | 5677 | 6911 | 19,263 | 16,222 | 17,946 | 31,338 | |
H. vulgare | Urambie | 1815 | 2525 | 2447 | 4599 | 5573 | 5624 | 7218 | 10,125 | 16,323 | 20,102 | 25,842 | |
Triticum aestivum L. | Wedgetail | 1414 | 2124 | 2046 | 6504 | 7236 | 7861 | 6985 | 13,603 | 21,098 | 24,852 | 28,742 | |
T. aestivum | Strzelecki | 1780 | 2490 | 2412 | 4091 | 4789 | 5954 | 6353 | 15,121 | 15,429 | 22,035 | 27,950 | |
× Triticosecale | Tobruk | 1806 | 2516 | 2438 | 6705 | 8555 | 8566 | 8280 | 15,973 | 21,401 | 30,724 | 37,718 | |
Cereal + vetch crops | |||||||||||||
A. sativa | Echidna | 1201 | 1911 | 1833 | 7377 | 8381 | 8181 | 8445 | 17,215 | 22,968 | 28,916 | 29,573 | |
A. sativa | Mannus | 1547 | 2257 | 2179 | 4340 | 5740 | 7920 | 6384 | 15,038 | 25,789 | 17,813 | 23,207 | |
H. vulgare | Gairdner | 1163 | 1872 | 1794 | 5856 | 7330 | 6326 | 6669 | 14,860 | 14,172 | 24,954 | 14,472 | |
H. vulgare | Urambie | 1448 | 2158 | 2080 | 5509 | 6756 | 5584 | 6287 | 10,198 | 12,270 | 19,575 | 17,310 | |
T. aestivum | Wedgetail | 1047 | 1757 | 1679 | 5592 | 6598 | 6000 | * | 14,470 | 16,578 | 14,042 | * | |
T. aestivum | Strzelecki | 1413 | 2122 | 2044 | 5919 | 6891 | 6834 | 6341 | 16,132 | 16,196 | 14,649 | * | |
× Triticosecale | Tobruk | 1439 | 2149 | 2071 | 5534 | 7657 | 6446 | * | 16,563 | 17,578 | 17,112 | * | |
p value | l.s.d.(p<0.05) | p value | l.s.d.(p<0.05) | p value | l.s.d.(p<0.05) | ||||||||
variety | 0.018 | 296.6 | <0.001 | 902.4 | <0.001 | 2690.8 | |||||||
vetch | <0.001 | 158.6 | ns | - | <0.001 | np | |||||||
harvest | <0.001 | 166.4 | <0.001 | 478.0 | <0.001 | 1358.5 | |||||||
variety × vetch | ns | - | 0.021 | 1290.2 | ns | - | |||||||
variety × harvest | ns | - | 0.002 | 1374.5 | <0.001 | 4039.2 | |||||||
vetch × harvest | ns | - | <0.001 | 724.0 | <0.001 | 2075.0 | |||||||
variety × vetch × harvest | ns | - | ns | - | <0.001 | 5742.0 |
Cereal Species | Cereal Variety | Year | ||
---|---|---|---|---|
2008 | 2009 | 2010 | ||
Avena sativa L. | Echidna | 320.6 | 478.2 | 430.7 |
A. sativa | Gairdner | 356.8 | 682.4 | 726.5 |
Hordeum vulgare L. | Mannus | 229.7 | 474.5 | 493.2 |
H. vulgare | Strzelecki | 341.7 | 742.5 | 807.4 |
Triticum aestivum L. | Tobruk | 249.1 | 730.4 | 686.5 |
T. aestivum | Urambie | 204.1 | 704.9 | 627.7 |
× Triticosecale | Wedgetail | 226.6 | 782.9 | 664.5 |
p value | 0.004 | |||
l.s.d.(p<0.05) | 125.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piltz, J.W.; Rodham, C.A.; Wilkins, J.F.; Hackney, B.F. A Comparison of Cereal and Cereal/Vetch Crops for Fodder Conservation. Agriculture 2021, 11, 459. https://doi.org/10.3390/agriculture11050459
Piltz JW, Rodham CA, Wilkins JF, Hackney BF. A Comparison of Cereal and Cereal/Vetch Crops for Fodder Conservation. Agriculture. 2021; 11(5):459. https://doi.org/10.3390/agriculture11050459
Chicago/Turabian StylePiltz, John W., Craig A. Rodham, John F. Wilkins, and Belinda F. Hackney. 2021. "A Comparison of Cereal and Cereal/Vetch Crops for Fodder Conservation" Agriculture 11, no. 5: 459. https://doi.org/10.3390/agriculture11050459