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Abstract: Geographically distributed cloud data centers (DCs) consume enormous amounts of
energy to meet the ever-increasing processing and storage demands of users. The brown energy
generated using fossil fuels is expensive and significantly contributes to global warming. Considering
the environmental impact caused by the high carbon emissions and relatively high energy cost of
brown energy, we propose the integration of renewable energy sources (RES), especially solar and
wind energy, with brown energy to power cloud data centers. In our earlier study, we addressed
the intermittency of renewable energy sources, where we replaced the random initialization of
artificial neural network (ANN) edge weights with the harmony search algorithm (HSA)-optimized
assignment of weights. This study incorporated reliably forecast solar and wind energy into the input
parameters of our proposed green energy manager (GEM), for cost minimization, carbon emission
minimization, and better energy management of cloud DCs, to make our current study more reliable
and trustworthy. Four power sources, on-site solar energy and wind energy, off-site solar energy and
wind energy, energy stored in energy storage devices, and brown energy, were considered in this study
and simulations were carried out for three different cases. The simulation results showed that case 1
(all brown) was 58% more expensive and caused 71% higher carbon emissions than case 2.1 (cost
minimization). Case 1 (all brown) was 39% more expensive and had 80% higher carbon emissions than
case 2.2 (carbon emission minimization). The simulation results justify the necessity and importance
of the GEM, and finally the results proved that our proposed GEM is less expensive and more
environmentally friendly.

Keywords: brown energy; renewable energy; cost optimization; carbon emission minimization; green
energy manager

1. Introduction

Fulfillment of increased storage and computation demands from users has resulted in
the rapid growth of cloud data centers (DCs), both in number and scale. This swift growth
in cloud DCs has produced serious concerns about operational costs and environmental
implications [1]. DCs consume more energy, which leads to higher operational costs and
more carbon emissions [2]. The power consumption of cloud DCs was 200 TWh in 2016, and
it is expected to grow to 2967 TWh by 2030 [3]. According to [4], the energy consumption of
cloud data centers was 2% of worldwide electricity consumption in 2019 and it is expected
to rise to 8% of worldwide electricity consumption by 2030. The report in [5] stated that a
40% energy saving for cloud servers would help save more than USD 3 billion annually.
The same report went on to state that the increasing power consumption of US cloud DCs
will require the installation of nearly 50 large power plants, which will generate about
150 million tons of carbon emissions annually.
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Higher energy consumption leads to higher energy costs and carbon emissions. In this
context, Barasso stated that the continuously increasing trend in energy consumption by
cloud DCs will make the lifetime energy costs of DC servers higher than the equipment
cost itself [6]. Google consumes more than 1120 GWh and Microsoft consumes more than
600 GWh, which costs USD 67 million/year and USD 36 million/year for Google and
Microsoft, respectively [7]. Cloud service providers are controlling their electricity costs
and carbon emissions through integration of RESs (green energy) with brown energy
sources [8,9]. Google is already powering its DCs with up to 39.4%, while Yahoo is
powering its DCs with up to 56.4% green energy [10]. Some cloud service providers
have their own RESs (wind or solar energy plants), while others purchase green energy
produced by RESs from renewable grids, installed at different locations in the form of solar
parks and wind farms.

Brown energy generation, through fossil fuels such as crude oil, natural gas, and coal,
leads to excessive carbon emissions, hence polluting the environment. The study in [11]
stated that 100 MWh energy generation in the US produces 50 tons of carbon dioxide.
The carbon emission rates (CER) of different energy sources are shown in Table 1, which
indicates that the carbon emission rates of renewable energy sources are far lower than
brown energy sources [12]. The report in [13], presented that about 80% of today’s
energy is brown energy and being produced using fossil fuels. Widespread use of fossil
fuels is connected with global climate warnings [14]. To develop sustainable, cheaper,
and environmentally friendly green computing systems, green energy produced by RESs
should be employed as the primary power source, and the brown energy produced using
fossil fuels should be employed as a secondary power source. Therefore, clean power
generation technologies, such as the use of renewable energy, are seen as a crucial path to
a low-carbon electricity economy that takes into account the balance between economic
development and environmental concerns [15–17].

Table 1. Carbon emission rates (CER) of different energy sources.

Energy Source CER (gCO2e/KWh)

Brown energy
Coal 968
Gas 440
Oil 890

Renewable energy

Solar energy 53
Wind energy 22.5

Hydro 13.5
Nuclear 15

Carbon emissions produced by burning fossil fuels for the sake of ever increasing
demands for electricity have forced the international community to consider the global
warming issue very seriously, and various policies have been formulated by countries to
protect the natural environment. As per the Kyoto protocol [18], European Union (EU)
countries are bound to decrease their emissions of greenhouse gases, especially carbon
dioxide, for environmental protection, along with economic growth. Consequently, EU
countries are focusing on renewable energy production, among other programs [19,20].
To meet the objective of a green world, a series of decisions and actions encompassing
all walks of life are required. The climate summit in Madrid, Spain [21], presented “The
European Green Deal” [22] to make EU a “zero emission” economy by 2050. Moreover, this
strategy also directed a 50% reduction in emissions of carbon dioxide by 2030. EU policy
of making a “zero emission” economy involves further research and development in the
renewable energy sector [23–26].

In this context, electricity cost reduction and environmental sustainability are critical
challenges for governments and the research community. Considering the long-term
impacts of carbon emissions through power generating units, a few countries have imposed
heavy taxes on carbon emissions [27,28]. Therefore, the research community has put huge
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research efforts into decreasing electricity costs and carbon emissions, especially those
caused by the energy consumption of cloud DCs. Further research and development in
solar and wind energy is underway. A study conducted by Fitch Solutions [29] stated that
the additional solar power capacity is expected to rise by 125% globally during the coming
decade and it will take a 6% share of global energy generation, whereas, according to Wood
Mackenzie [30], the additional global wind power capacity from 2020 to 2029 will be 77 GW,
on average.

The research community has considered the higher costs and excessive carbon emis-
sions due to the use of brown energy in cloud DCs. Therefore, most researchers proposed
the integration of renewable energy sources with brown energy. However, as shown in the
Table 2, the intermittency of renewable energy sources is not considered in the literature,
i.e., the main contribution of our research. Integrating RESs with brown energy helps in
minimizing data center operating costs, reducing carbon emissions, overcoming energy im-
balances, reducing the dependence on electricity reserves, improving equipment reliability,
and better scheduling various energy sources. However, the intermittency of renewable
energy sources is an important issue for effective and efficient grid management.

In our previous study in [31], we addressed the highly fluctuating nature of renew-
able energy sources (solar and wind energy) and proposed a harmony-search-algorithm-
optimized artificial neural network (HSA-ANN) to deal with the intermittency of solar and
wind energy sources. We replaced the random initialization of ANN edge weights with the
HSA-optimized assignment of weights. This incorporated reliably forecast solar and wind
energy into the input parameters of our proposed green energy manager (GEM) for cost
minimization, carbon emission minimization, and better energy management of cloud DCs,
to make our current study more reliable and trustworthy. The output of our previously
proposed HSA-ANN model was used in this study as input to our proposed green energy
manager (GEM) under the labels SEt

on−site (on-site solar energy), WEt
on−site (on-site wind

energy), SEt
o f f−site (off-site solar energy), and WEt

o f f−site (off-site wind energy). The key
contributions of our study are listed below.

• The issue of the efficient power management of cloud DCs is focused on for the sake
of cloud DC cost optimization and reduction in carbon emissions.

• In reviewing the literature, we found that the intermittency of renewable energy
sources is not taken into account when proposing the integration of renewable energy
sources together with brown energy sources. Therefore, more reliably and accurately
forecast solar and wind energy are provided at the input of our proposed green energy
manager using the HSA-ANN model, which we presented in our previous study [31].

• The four power sources considered in this study are GEon−site, GEo f f−site, Sesd, and Sbe.
Where GEon−site represents on-site green energy, i.e., composed of on-site solar energy
and wind energy, and GEo f f−site is off-site green energy that is also composed of
off-site solar and wind energy sources. Sesd represents energy stored in energy storage
devices (ESDs), and Sbe refers to brown energy supplied by traditional fossil-fuel-based
power generating units.

• Our proposed green energy manager manages the power consumption of cloud DCs
in such a way that the cloud DCs are mostly powered by green energy (renewable
energy sources). This minimizes the overall energy costs of the cloud DCs and the
resulting carbon emissions.

The rest of this article is structured as follows. Section 2 presents the current state of
the literature and system models are revealed in Section 3. The proposed system model
is explained in Section 4, whereas the experimental setup and results are explained in
Section 5. The graphical and numerical performance evaluation of our proposed model is
discussed in Section 6, and, finally, Section 7 concludes the study with research findings
and future research directions.
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Table 2. Summary of various studies on cost and/or carbon minimization.

Paper Energy Source(s) ESDs Implementation Strategy Objective(s) Limitation(s)

[1] Solar, wind and
brown energy Yes

(1) Data center ranking (2)
Request allocation

through bin packing
method (3) Cplex solver

to schedule different
energy types

Minimization of costs and
carbon emissions

RES intermittency
not considered

[2] Solar, wind, and
brown energy Yes A smart load allocation

policy using RESs Cost minimization RES intermittency
not considered

[10] Solar, wind, and
brown energy Yes

(1) Server scheduling for
maximum utilization of

renewable energy (2)
Cplex solver to schedule

different energy types

Minimization of costs and
carbon emissions

RES intermittency
not considered

[32] Brown energy No
Efficient VM placement

through crow
search algorithm

Minimization of
energy consumption

RES intermittency
not considered

[33] Brown energy No

Minimization of active
servers using

ant colony
optimization algorithm

Minimization of
energy consumption

RES intermittency
not considered

[34] Solar, wind, and
brown energy No Selection of best location

for cloud data center
Minimization of costs and

carbon emissions
RES intermittency

not considered

[35] Solar and brown energy Yes

Single DC level batch
scheduling of jobs based

on availability of
green energy

Cost minimization RES intermittency
not considered

[36] Solar and brown energy No

Linear fractional
programming based

algorithm and effective
dynamic task distribution

among DCs

Cost minimization RES intermittency
not considered

[37] Solar, wind, and
brown energy No

Decomposed the whole
problem into

sub-problems and solved
using Cplex solver

Minimization of carbon
emissions

RES intermittency
not considered

[38] Solar and wind energy Yes

DC management problem
was divided into IT

sub-problem and
electrical sub-problem.

A game theoretic
algorithm was used

Balance between power
demand and supply

of DCs

RES intermittency
not considered

[39] Solar and wind energy No
A case study on

greenhouse gas effect on
Egyptian energy system

Carbon emission
minimization

RES intermittency not
considered

[40] Solar, wind, and
brown energy No A green-aware online

control algorithm
Minimization of costs and

carbon emissions
RES intermittency

not considered

Ours Solar, wind, and
brown energy Yes

Green energy manager to
schedule different

types of energy

Minimization of costs and
carbon emissions

Considered RES
intermittency in [31]

Abbreviations: ESDs: energy storage devices, RES: renewable energy source.
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2. Literature Review

Various solutions have been proposed to deal with the abovementioned financial
and environmental challenges. By using energy trading and ESDs, a unique scheduling
architecture was developed by the authors of [1] to make cloud data centers greener at
a lower cost. The proposed green scheduler considers requests that require different
resources, including the CPU, memory, disc, bandwidth, and execution time. The results
of their study showed that energy trading with the power grid can further reduce both
overall energy costs and carbon emissions. The authors of the research in [2] proposed
EcoMultiCloud for cost-efficient load management of cloud DCs. They exploited brown
energy, RESs, and ESDs for geographically distributed cloud DCs and concluded that, for
the considered scenario, the proposed strategy was very well suited and flexible.

Focusing on the importance of energy costs, the authors of [32] implemented a crow
search algorithm for efficient VM placement, to control the energy consumption of DCs.
In another study in [33], minimization of energy consumption through minimization of
active servers using an ant colony optimization algorithm was proposed. Both studies
presented in [32,33] did not consider environmental implications and stated no solution
for controlling carbon emissions, rather they completely relied upon brown energy. The
authors of [34] proposed a strategy to find the best location for a data center to minimize
energy consumption, energy costs, and carbon emissions. Although it was a good effort,
primarily focusing on the objective of cost and carbon minimization, the data centers
were placed too far from the users, which ultimately led to delays in the processing of
user requests.

The intermittent nature of renewable energy sources is an important issue that ad-
versely affects energy management. Researchers have explored various perspectives to deal
with the issue. One perspective is to take advantage of geographically distributed DCs, and
another is to act at a single data level. The authors of [35] focused on the management of a
single DC through the processing of batch jobs with due date constraints. They proposed
an online greedy algorithm named the attractiveness-based blind scheduling heuristic
(ABBSH). Experimental results confirmed a 49% decrease in consumption of brown energy
and 51% cost savings.

Yanwei, Z., et al. [36] proposed a dynamic task distribution algorithm on the basis of
linear fractional programming. They proposed a middleware namely, GreenWare, for ef-
fective and efficient task distribution among various data centers, to meet the budgetary
constraints of the user. They discussed the diurnal pattern of renewable energy sources.
However, they did not consider ESDs, and the simulation results showed that the proposed
GreenWare ensured maximum utilization of renewable energy to power DCs and to meet
the budgetary constraints of the user.

The authors of [37] stated that the data centers of the same cloud service provider
are always geographically distributed to cover most of a region and to provide better and
fast services to the users. The electricity prices incurred to power these DCs fluctuate
with time zones and geographic locations. They divided the overall problem of carbon
emission minimization into sub-problems. The objective of the study was to minimize
carbon emissions using renewable energy, while satisfying electricity cost constraints, the
intermittent nature of RESs, and the maximum number of servers in DCs. The authors
of [37] used both energy sources to power cloud data centers but did not discuss ESDs.
Their experimental results showed that the proposed scheduler reduced carbon emissions
through effective utilization of renewable energy to power the cloud data centers.

The overall data center management problem was divided into an IT sub-problem
and electrical sub-problem in [38]. An efficient power compromise was achieved using an
efficient negotiating game theoretic algorithm in their study. Negotiation between both
sub-systems was performed through the proposed black-box approach and semi black-box
approach. The results confirmed that the semi black-box approach was better for ensuring
the quality of service, stability, and execution time compared to the black-box approach.
The authors only used RESs with ESDs and ignored brown energy in their research.
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A case study on the effects of greenhouse gases on the Egyptian energy system was
presented in [39] to minimize carbon emissions. The authors only considered renewable
energy as a power source and ignored energy storage devices in the study. The authors
demonstrated significant effects on the Egyptian energy system through the proposed
scheme. The authors of [40] reiterated the importance of green cloud data centers and
proposed a green-aware online control algorithm (GAOA) to minimize carbon emissions
and electricity costs, and to ensure service level agreement (SLA). The proposed GAOA
helps find an optimal trade-off among electricity costs, SLAs, and carbon emissions. Con-
sidering multiple energy sources, the authors formulated the cost minimization problem
as a constraint stochastic optimization problem. The effectiveness of GAOA was proven
through extensive simulations on real-world data. Moreover, online and offline versions of
the control algorithm were also discussed in the study.

The cited studies on cost minimization, electricity consumption control, and reduction
in carbon emissions to curb their environmental implications are summarized in Table 2.

3. System Models

The mathematical problem formulation of the proposed solution was carried out
under different system models, which are discussed in the following.

3.1. Energy Supply Model

In our proposed power setup model, we considered four main energy sources, solar
energy (SE), wind energy (WE), energy stored in energy storage devices (Sesd), and brown
energy (Sbe). Solar and wind energy can be self-generated (SEon−site and WEon−site, respec-
tively) or purchased from off-site renewable (solar and wind) energy sources (SEo f f−site
and WEo f f−site, respectively). ESDs are used in the system to accommodate the intermittent
nature of renewable energy supply, to smooth the power flow towards the load, i.e., cloud
data centers in our case. ESDs are charged either by excessive solar/wind energy or by
brown energy during low-tariff hours. The available power source(s) (Pt

DC) for cloud data
centers are shown in following Equation (1).

Pt
DC = {GEt

on−site, GEt
o f f−site, St

esd, St
be} (1)

where Pt
DC denotes the available power source(s) for a cloud data center at time t. GEt

on−site
represents on-site green energy at time interval t, i.e., composed of solar and wind energy.
Green energy bought from off-site green energy source(s) at time interval t is shown by
GEt

o f f−site, i.e., also composed of solar and wind energy, in our case. The power supply
available from energy storage devices at time t is shown as St

esd, and St
be denotes the brown

energy generated by fossil fuels at time interval t. Let GEt represent both the solar and
wind energy supply at time t (Equation (2)).

GEt = SEt + WEt (2)

Hence, we can simplify Equation (1) as shown in Equation (3) in the following.

Pt
DC = {GEt, St

esd, St
be} (3)

Let SEt
on−site(dc) denote the on-site solar energy required by a DC at time interval t

and SEt
on−site(max) denote the maximum limit of the available on-site solar energy at time

t. Then, the on-site solar energy requirements of any DC should be less than or equivalent
to the maximum available on-site solar energy, as shown in Equation (4).

0 ≤ SEt
on−site(dc) ≤ SEt

on−site(max) (4)

WEt
on−site(dc) denotes the on-site wind energy required by a DC at time t and

WEt
on−site(max) denotes the maximum limit of the available on-site wind energy at time t.
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Then, the on-site wind energy requirement of a DC should be less than or equivalent to the
maximum available on-site wind energy, as shown in Equation (5).

0 ≤WEt
on−site(dc) ≤WEt

on−site(max) (5)

The available on-site solar and wind energy can be used to power the DC and be
stored in ESDs. Therefore, Equation (6) describes the total available on-site green energy.

GEt
on−site = SEt

on−site + WEt
on−site + SEt

on−site(esd) + WEt
on−site(esd) (6)

where GEt
on−site denotes the total available green energy produced by on-site solar and wind

energy sources at time t, and SE/WEt
on−site(esd) shows the amount of on-site generated

solar and/or wind energy stored in ESDs at time t for future use.
Let SEt

o f f−site(dc) denote the off-site solar energy required by a DC at time t and
SEt

o f f−site(max) denote the maximum limit of the available off-site solar energy at time interval t.
Then, off-site solar energy requirement of a DC should be less than or equivalent to the
maximum available off-site solar energy, as shown in Equation (7).

0 ≤ SEt
o f f−site(dc) ≤ SEt

o f f−site(max) (7)

WEt
o f f−site(dc) denotes the off-site wind energy required by a DC at time t and

WEt
o f f−site(max) denotes the maximum limit of the available off-site wind energy at time

t. The off-site wind energy requirement of a DC should be less than or equivalent to the
maximum available off-site wind energy, as shown in Equation (8).

0 ≤WEt
o f f−site(dc) ≤WEt

o f f−site(max) (8)

The available off-site solar and wind energy at time t can be used to power the DC
and be stored in ESDs. This, Equation (9) describes the total available off-site green energy.
Hence, the total off-site green energy can be calculated by Equation (9).

GEt
o f f−site = SEt

o f f−site + WEt
o f f−site + SEt

o f f−site(esd) + WEt
o f f−site(esd) (9)

where GEt
o f f−site denotes the total available green energy produced by off-site solar and

wind energy sources at time t, and SE/WEt
o f f−site(esd) shows the amount of off-site solar

and/or wind energy stored in ESDs at time t, for future use.
Therefore, the total available power for a cloud DC at time t (Pt

DC), including brown
energy (St

be) and energy stored in energy storage devices (St
esd), in our case, can be described

as shown in Equation (10).

Pt
DC = GEt

on−site + GEt
o f f−site + St

esd + St
be (10)

3.2. Cloud Data Center Model

Each cloud service provider (CSP) has multiple geographically distributed data centers
(DCs). In our case, CSP = {DC1, DC2, DC3, DC4}, where each DC has multiple servers
in it to process the multiple incoming tasks. A DC having multiple servers is denoted as
DC = {s1, s2, s3, . . . . . . sn}. The arriving tasks are assigned to the different servers of the
data center. The set of tasks is denoted λ = {taskt

1, taskt
2, taskt

3, . . . . . . taskt
n}. The available

power source(s) for a cloud data center is Pt
DC = {GEt

On−site, GEt
O f f−site, St

esd, St
be}. The total

task processing time T = {t1, t2, t3, . . . . . . tn}, and taskt
i shows the arrival of task i at time

interval t. Where task i is composed of bandwidth, memory, CPU, and disk requirements,
which are different for each task and available at servers of DCs and i ∈ λ.
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3.3. Cost Model

Data centers consume a large amount of energy, which is associated with correspond-
ing costs. Each data center is powered by one or a combination of on-site green energy
sources (solar and wind energy), off-site green energy sources (solar and wind energy),
ESDs, and brown energy, as shown in the proposed system model. To calculate the energy
cost for a cloud DC, we need to know the power consumption of each server in the DC and
the power rate. We can calculate the power consumption of a server in a cloud data center
using the following Equation (11), as mentioned in [41]. The different parameters of the
considered cloud data centers are shown in Table 3 and the location-wise brown energy
prices for each data center are shown in Figure 1. The green line shows the varying brown
energy price at the CAPITAL site for cloud DC1, the blue line shows the brown energy
price at the CENTRAL site for cloud DC2, the red line shows the brown energy price at the
DUNWOOD site for cloud DC3, and the black line shows the brown energy price at the
GENESE site for cloud DC4.

Ps = Pmin + (Pmax − Pmin) ∗ µ (11)

Table 3. Parameters of considered cloud data centers.

Data Center # of Servers # of CPUs Memory (GB) Disk Size (TB) PMin(W) PMax(W)

DC1 3300 8 128 2048 54 90
DC2 2800 16 144 2048 84 140
DC3 3200 8 128 2048 65 100
DC4 2500 16 144 2048 90 150

Figure 1. Location-wise brown energy prices for each DC.

Here, Ps denotes the power consumed by a server of the DC. Pmax and Pmin show peak
load power consumption and idle state power consumption of the server, respectively.
Where µ represents the CPU utilization.

Let Costtotal
GE(On−site) denote the total cost of on-site green energy, Costtotal

esd show the total

cost of energy stored in energy storage devices, Costtotal
GE(O f f−site) represent the total cost of

off-site green energy, and Costtotal
be denote the total cost of brown energy. The energy cost of

different sources can be calculated using Equations (12)–(15).

Costtotal
GE(on−site) =

n

∑
i=1

PGE(on−site)(DC, h) ∗ Tari f fGE(on−site)(DC, h) (12)
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In Equation (12), Costtotal
GE(on−site) represents the total energy cost incurred by usage of

on-site green energy. ∑n
i=1 PGE(on−site)(DC, h) shows the combined on-site green energy

consumed by all servers of a particular DC, whereas Tari f fGE(on−site)(DC, h) denotes the
respective hourly tariff for on-site green energy consumption.

Costtotal
GE(o f f−site) =

n

∑
i=1

PGE(o f f−site)(DC, h) ∗ Tari f fGE(o f f−site)(DC, h) (13)

Costtotal
GE(o f f−site), in Equation (13), represents the total energy cost incurred from usage

of off-site green energy. ∑n
i=1 PGE(o f f−site)(DC, h) shows the combined off-site green energy

consumed by all servers of a particular DC, whereas Tari f fGE(o f f−site)(DC, h) denotes the
respective hourly tariff for off-site green energy consumption.

Costtotal
esd =

n

∑
i=1

Pesd(DC, h) ∗ Tari f fesd(DC, h) (14)

In Equation (14), Costtotal
esd represents the total energy cost incurred from usage of

energy stored in ESDs. ∑n
i=1 Pesd(DC, h) shows the combined ESDs power consumed by all

servers of a particular DC, whereas Tari f fesd(DC, h) denotes the respective hourly tariff
for ESDs energy consumption.

Costtotal
be =

n

∑
i=1

Pbe(DC, h) ∗ Tari f fbe(DC, h) (15)

Costtotal
be , in Equation (15), represents the total energy cost incurred by usage of brown

energy. ∑n
i=1 Pbe(DC, h) shows the combined brown energy consumed by all servers of

a particular DC, whereas Tari f fbe(DC, h) denotes the respective hourly tariff for brown
energy consumption. The total energy cost of a particular cloud data center at time t can be
calculated according to the following Equation (16).

Costtotal
dc = Costtotal

GE(On−site) + Costtotal
GE(O f f−site) + Costtotal

esd + Costtotal
be (16)

3.4. Carbon Emission Model

Green energy sources have a low CER, whereas brown energy sources, because of
burning fossil fuels, have a higher CER. The total carbon emissions of a DC at time t, caused
by DC energy consumption, can be calculated as per the following Equations (17)–(20).

CEt
GE(on−site) = Erate ∗ SEt

On−site(dc) + Erate ∗WEt
On−site(dc) (17)

CEt
GE(o f f−site) = Erate ∗ SEt

O f f−site(dc) + Erate ∗WEt
O f f−site(dc) (18)

CEt
be = Erate ∗ St

be (19)

CEtotal
DC = CEt

GE(on−site) + CEt
GE(o f f−site) + CEt

be (20)

where CEtotal
DC shows the total carbon emission of a DC from the consumption of energy

from all sources at time t. Accumulative carbon emissions from on-site green energy
sources, off-site green energy sources, and brown energy sources at time t are shown by
CEt

GE(on−site), CEt
GE(o f f−site), and CEt

be, respectively.

3.5. Objective Functions

A reduction in DC operating costs and the minimization of carbon emissions are the
two primary objectives of greening cloud data centers. Both of objective functions are
shown with the help of Equations (21) and (22). A list of symbols/abbreviations frequently
used in system models is shown in Table 4.
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min
n

∑
task=1

.
n

∑
s=1

Costtotal
DC (21)

Subject to Equations (11)–(16)

min
n

∑
task=1

.
n

∑
s=1

CEtotal
DC (22)

Subject to Equations (17)–(20)

Table 4. List of symbols/abbreviations frequently used in system models.

Symbol Description Symbol Description

SE Solar energy WE Wind energy

Sesd
Energy stored in energy

storage devices Sbe Brown energy

SEon−site On-site solar energy WEon−site On-site wind energy

SEo f f−site Off-site solar energy WEo f f−site Off-site wind energy

GEon−site On-site green energy GEo f f−site Off-site green energy

SEt
on−site(dc) On-site solar energy required by a

cloud DC at time t WEt
on−site(dc) On-site wind energy required by a

cloud DC at time t

SEt
o f f−site(dc) Off-site solar energy required by a

cloud DC at time t WEt
o f f−site(dc) Off-site wind energy required by a

cloud DC at time t

SEt
on−site(max) Maximum limit of the available

on-site solar energy at time t WEt
on−site(max) Maximum limit of the available

on-site wind energy at time t

SEt
o f f−site(max) Maximum limit of the available

off-site solar energy at time t WEt
o f f−site(max) Maximum limit of the available

off-site wind energy at time t

λ Set of tasks Ps Power consumed by a server of DC

Pmax
Peak load power consumption of

a server Pmin
Idle state power consumption of

a server

Costtotal
GE(On−site) Total cost of on-site green energy Costtotal

GE(O f f−site) Total cost of off-site green energy

Tari f fGE(on−site)(DC, h) Hourly tariff against on-site green
energy consumption at DC Tari f fGE(o f f−site)(DC, h) Hourly tariff against off-site green

energy consumption at DC

Costtotal
be Total cost of brown energy Costtotal

esd Total cost of energy stored in ESDs

CEt
GE(on−site)

Carbon emission of on-site green
energy at time t CEt

GE(o f f−site)
Carbon emission of off-site green

energy at time t

CEt
be

Carbon emission of brown energy
at time t CEt

esd
Carbon emission of energy stored in

ESDs at time t

Pt
DC

Available power for a cloud DC
at time t Demandt

DC
Power demand of a cloud DC

at time t

Costtotal
DC Total energy cost of a cloud DC CEtotal

DC Total carbon emission of a cloud DC

4. Proposed Framework

Integration of renewable energy (solar and wind) with brown energy sources has
been the focus of recent research, because of its low operational cost and carbon-free
production. However, reliable forecasting of renewable energy sources is an important
issue and needs keen attention. Therefore, in this study, we used reliably forecast solar
and wind energy from our HSA-ANN model previously proposed in [31]. We considered
brown energy, EDSs, and green energy (solar and wind) sources in our proposed system
model, as shown in Figure 2. Solar energy and wind energy are intermittent in nature. Their
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power generation can be calculated with the help of Equations (23) and (24), respectively,
as mentioned in [42].

PSE(t) = ηsp × Asp × Irr(t)× (1− 0.005(Temp(t)− 25)) (23)

In Equation (23), PSE(t) indicates the produced solar energy at time interval t, whereas
the solar efficiency and area of the solar panel are shown by ηsp and Asp, respectively. The
outside temperature and solar irradiation for the time interval t are denoted by Temp(t) and
Irr(t), respectively.

PWE(t) = 0.5× Cp × λ× ρ× A× (Vwt(t))3 (24)

Wind power is generated from wind turbines, and the wind power generated by a
wind turbine in Equation (24) is shown by PWE(t), i.e., directly proportional to wind speed
(Pt

wt ∝ V). Wind speed Vwt(t), rotor efficiency Cp, area swept by rotor blades A, constant
λ, and air density ρ affect the energy generated by a wind turbine.

The proposed system model, shown in Figure 2, can be broadly divided into the
on-site power setup and off-site power setup. Both power setups have two power sources.
The on-site power setup model has an on-site green energy source and ESDs, whereas
the off-site power setup model includes brown energy and off-site green energy sources.
Brown energy refers to traditional energy produced using fossil fuels. The blue dotted lines
in the model represent communication signals.

Figure 2. Proposed on-site and off-site power setup model.

4.1. On-Site Power Setup Model

An on-site power setup represents solar and wind energy production at a site by the
cloud service provider (CSP) itself, to be used by an on-site data center. The prominent
benefits of on-site green energy include
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• Lower transmission losses;
• Lower distribution losses;
• Minimum effects from grid outages, on cloud power supply.

An on-site green energy source can fully or partially power a cloud data center,
depending upon its power generation capacity and the data center’s power requirements.
Moreover, the energy produced by an on-site green energy source can be stored in energy
storage devices or sold back to the utility, in case of excess energy. Low-cost brown energy
can also be stored in ESDs for future use, and an ESD facility can be used to accommodate for
the mismatch between the demand and supply of power using renewable energy sources.

A green energy manager (GEM) is an important part of an on-site power setup and
is responsible for efficient and intelligent power management of a cloud data center to
minimize the DC operational costs and reduce carbon emissions. The GEM controls
various power sources on the basis of the available power, load demand, energy costs, and
carbon emissions. Algorithm 1 of our proposed green energy manager (GEM) describes
the selection of power sources for the cloud DC to meet Demandt

DC. The different power
sources considered in this study and their associated costs/data are shown in Equation (25),
and the input data files (brown energy prices of all cloud DCs, solar and wind energy
data, and hourly power demand of each cloud DC) of our proposed GEM are available at
(https://github.com/syedmmohsin1214/SelfJ2_Cloud_InputData.git, accessed on 4 June
2024). Our proposed GEM will always select and utilize the best power source as per
requirement/case, as evaluated in Section 6 of this study.

Costt
GE(on−site), Costt

GE(o f f−site), Costt
esd, Costt

be (25)

where Costt
GE(on−site) represents the cost of on-site green energy at time interval t, and the

cost of off-site green energy is shown by Costt
GE(o f f−site). The cost of ESD supply at time

interval t is depicted by Costt
esd, whereas Costt

be describes the cost of brown energy supply
for the DCs at time interval t.

The selection of the best power source(s) on the basis of availability is shown in
Algorithm 1, which selects the optimal power source(s) on the basis of the availabil-
ity, load demand of cloud DCs, and the associated costs to meet Demandt

DC. It is as-
sumed that our proposed GEM has a built-in smart meter for keeping record of elec-
tricity consumption, electricity demand, type of energy source, electricity supply, etc.
At first, the GEM checks whether the on-site green energy source is sufficient to meet
the DC demand at time t (Demandt

DC) and if it is the cheapest available power source
(Costt

GE(on−site) ≤ Costt
GE(o f f−site), Costt

esd and Costt
be). If yes, then the DC will be powered

by GEt
on−site only, as shown in Equation (26). Otherwise, the next available cheapest power

source, e.g., an off-site green energy supply (GEt
o f f−site) will also be included in Pt

DC for
the DC, to meet its energy demands (Demandt

DC) if Costt
GE(o f f−site) ≤ Costt

esd and Costt
be,

as shown in Equation (27).

Pt
DC = GEt

on−site

If;

Costt
GE(on−site) ≤ Costt

GE(o f f−site), Costt
esd and Costt

be
(26)

Pt
DC = GEt

on−site + GEt
o f f−site

If;

Costt
GE(o f f−site) ≤ Costt

esd and Costt
be

(27)

https://github.com/syedmmohsin1214/SelfJ2_Cloud_InputData.git
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Algorithm 1 Selection of power source for cloud DC to meet Demandt
DC

1: Initialize GEt
on−site, GEt

O f f−site, St
esd, St

be, CostGEt
on−site

, CostGEt
o f f−site

, CostSt
esd

, CostSt
be

,

Demandt
DC, Pt

DC
2: if GEt

On−site ≥ Demandt
DC and Costt

GE(on−site) ≤ Costt
GE(o f f−site), Costt

esd and Costt
be

then
3: Pt

DC ← GEt
on−site to meet Demandt

DC
4: else if GEt

on−site + GEt
O f f−site ≥ Demandt

DC and Costt
GE(o f f−site) ≤ Costt

esd and Costt
be

then
5: Pt

DC ← GEt
On−site + GEt

O f f−site to meet Demandt
DC

6: else if GEt
on−site + GEt

O f f−site + St
esd ≥ Demandt

DC and Costt
esd ≤ Costt

be then
7: Pt

DC ← GEt
On−site + GEt

O f f−site + St
esd to meet Demandt

DC
8: else
9: Pt

DC ← GEt
On−site + GEt

O f f−site + St
esd + St

be to meet Demandt
DC

10: end if

Our proposed GEM again checks whether the DC’s power requirement Demandt
DC

is met or not. If the DC power demand is fulfilled then fine, otherwise the next available
cheapest power source, e.g., St

esd will be added, if Costt
esd ≤ Costt

be, into Pt
DC and following

power (see Equation (28)) becomes available to the DC.

Pt
DC = GEt

on−site + GEt
o f f−site + St

esd
If;

Costt
esd ≤ Costt

be
(28)

If Demandt
DC is fulfilled, then brown energy will not be used, otherwise brown energy

(be) will also be included in Pt
DC to meet the power demands of the DC (Demandt

DC).
Finally, the DC utilizes all available power sources (Pt

DC) to meet its Demandt
DC, as shown

in Equation (29).

Pt
DC = GEt

on−site + GEt
o f f−site + St

esd + St
be (29)

However, Equation (30) must be satisfied to meet the DC’s power requirements.

Pt
DC ≥ Demandt

DC (30)

4.2. Off-Site Power Setup Model

An off-site power setup comprises off-site green energy sources and brown energy
sources. In this study, we considered off-site solar and wind energy (SEo f f−site and
WEo f f−site) only. The availability of on-site green energy is appealing; however, it may not
be the best option because of its higher installation costs and likely less favorable on-site
environment for the generation of green energy. Off-site green energy sources refer to solar
and wind energy sources far away from the data center site, which are installed at more
conducive locations with a better production capability. Off-site energy is purchased by the
cloud data center through grid. Off-site green energy sources and brown energy sources
both feed the power grid, which then transmits power to the user, i.e., a cloud data center
in our case. Cheap off-site energy supplied from the power grid and green energy sources
can also be stored in ESDs for future use.

5. Experimental Setup and Results

Below is a brief description of the experimental setup, the incoming workload in the
cloud data centers, the on-site and off-site solar and wind power generation, and the power
requirements of each data center.
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5.1. Experimental Setup

In view of our objective functions to minimize costs and carbon emissions
(Equations (21) and (22)) by integrating renewable energy and energy storage devices,
we considered four geographically distributed cloud data centers, four on-site solar and
wind energy sources, four off-site solar and wind energy sources, and energy storage
devices in this study. Details of the experimental setup for the cloud data centers can be
found in Table 5, while Table 6 contains details of the solar and wind power generation
models and energy storage devices.

Table 5. Experimental setup for cloud data centers.

Parameters Value

Machine specifications Corei7, 8 GB, 1TB
Programming language Python 3.9.18

Cloud data centers DC1, DC2, DC3, DC4
Location/control zone of cloud data centers CAPITAL, CENTRAL, DUNWOOD, GENESE

Considered duration 18 November 2012 to 24 November 2012
DC workload source Intel Netbatch grid clusters (Pool A, B, C, D) [43]

Brown energy prices data source New York Independent System Operator (NYISO) [44]

Table 6. Details on the simulation setup for the energy storage devices (ESDs), and solar and
wind energy.

Type of Energy Parameters Value

ESDs Capacity 3 MWh
ESDs power price ($/MWh) 10

Solar power

Data source
Measurement and instrumentation data center (MIDC)
of National Renewable Energy Laboratory (NREL) [45]

Data locations

Loyola Marymount University, University of Arizona,
National Energy Laboratory Hawaii Authority and

Solar Technology Acceleration Center
Applied equation Equation # (23) of this study

Solar panel BP-MSX-120, 24 V [46]
# of on-site solar panels considered in this study 20 K
# of off-site solar panels considered in this study 40 K

Solar panel efficiency 10.88% [46]
Solar panel dimensions 1108 mm × 991 mm [47]

On-site solar power price ($/MWh) 10 [1,11]
Off-site solar power price ($/KWh) Price of brown energy + 18 cents [1,36]

Wind power

Data source
Measurement and instrumentation data center (MIDC)
of National Renewable Energy Laboratory (NREL) [45]

Data locations

Loyola Marymount University, University of Arizona,
National Energy Laboratory Hawaii Authority and

Solar Technology Acceleration Center
Applied equation Equation # (24) of this study

Wind turbine Vestas V90-3.0 (3 MW) [48]
Rated power 3.00 MW

# of on-site wind turbines considered in this study 400
# of off-site wind turbines considered in this study 600

Diameter 90 m
Swept area 6362 m2

Blade length 44 m
# of blades 3
Air density 1.23 kg/m

Rotor efficiency 50%
On-site wind power price ($/MWh) 10 [1,11]
Off-site wind power price ($/KWh) Price of brown energy + 1.5 cents [1,36]
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5.2. Incoming Workload of Cloud DCs

The incoming workloads of all considered cloud DCs (DC1, DC2, DC3 and DC4)
installed at the CAPITAL, CENTRAL, DUNWOOD, and GENESE sites, respectively, were
taken from Intel Netbatch Grid clusters (Pool A, B, C, D) [43] and are shown in Figure 3.

(a) Incoming tasks (λ) of DC1 (b) Incoming tasks (λ) of DC2

(c) Incoming tasks (λ) of DC3 (d) Incoming tasks (λ) of DC4

Figure 3. Incoming tasks (λ) of each DC.

5.3. On-Site and Off-Site Solar and Wind Power Generation

The weather data for the calculation of on-site and off-site solar and wind power
generation according to Equations (23) and (24) for the Loyola Marymount University,
University of Arizona, National Energy Laboratory Hawaii Authority, and Solar Technology
Acceleration Center sites were taken from the Measurement and Instrumentation Data
Center (MIDC) of the National Renewable Energy Laboratory (NREL) [45] and are shown
individually in Figures 4–7. The weather data for on-site and off-site solar and wind power
generation were run through our previously proposed solar and wind energy forecasting
model [31] and then used as input to the green energy manager proposed in this study.

(a) Solar power generation (b) Wind power generation

Figure 4. On-site and off-site solar and wind power generation at “Loyola Marymount University” site.
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(a) Solar power generation (b) Wind power generation

Figure 5. On-site and off-site solar and wind power generation at “University of Arizona” site.

(a) Solar power generation (b) Wind power generation

Figure 6. On-site and off-site solar and wind power generation at “National Energy Laboratory
Hawaii Authority” site.

(a) Solar power generation (b) Wind power generation

Figure 7. On-site and off-site solar and wind power generation at “Solar Technology Acceleration
Center” site.

The on-site and off-site solar and wind power generated at the Loyola Marymount
University, University of Arizona, National Energy Laboratory Hawaii Authority, and
Solar Technology Acceleration Center sites is shown in Figure 4, Figure 5, Figure 6, and
Figure 7, respectively. Given the limited availability of weather data, we assumed that the
data shown in Figures 4–7 were available for cloud data centers at the CAPITAL (DC1),
CENTRAL (DC2), DUNWOOD (DC3), and GENESE (DC4) locations/load control areas in
New York, USA, respectively.

5.4. Power Requirement of Each DC

The power consumption of all DCs in relation to the incoming workload is shown in
Figure 8. These were calculated using Equation (11), the various parameters of the cloud
data centers under consideration (Table 3), and the location-based brown energy prices of
the individual data centers, as shown in the Figure 1.
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(a) Power requirement of DC1 (b) Power requirement of DC2

(c) Power requirement of DC3 (d) Power requirement of DC4

Figure 8. Power requirement of each DC with regards to incoming workload (λ).

6. Performance Evaluation

For the support and better understanding of both beginners and experienced readers,
we present the performance evaluation with graphical and numerical means below.

6.1. Graphical Evaluation of the Proposed Model (GEM)

To determine the accuracy, reliability, resilience, and overall performance of a proposed
model in real-life situations, an evaluation is required. In this study, we evaluated our pro-
posed green energy manager (GEM) in the three cases described in Sections 6.1.1 and 6.1.2.
The blue bars in Figures 9–20 show the cost share and carbon emissions caused by brown
energy in meeting the energy demand shown in Figure 8. Green lines represent the cost
share and carbon emissions caused by wind energy, red lines refer to the cost share and
carbon emissions caused by solar energy, while yellow lines represent the cost share and
carbon emissions caused by energy stored in ESDs. In Figures 9–20, the days are shown on
the x-axis, the costs/carbon emissions of the brown energy source on the left side of the
y-axis, and the costs/carbon emissions of the renewable energy source(s) are shown on the
right side of the y-axis.

6.1.1. Case 1: All Brown

In this case, we supplied all DCs with brown energy only, depending on the load,
and neither on-site solar or wind energy source(s), off-site solar or wind energy source(s),
nor energy storage devices (ESDs) were considered. This case served as a benchmark for
comparing the efficiency and effectiveness of our proposed GEM. The simulation results
regarding the individual cost share of all DCs are shown in Figure 9 and regarding the
collective cost of all DCs in Figure 10.
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(a) Cost share of each energy source for DC1 (b) Cost share of each energy source for DC2

(c) Cost share of each energy source for DC3 (d) Cost share of each energy source for DC4

Figure 9. Case 1: Cost share of each energy source for DC1, DC2, DC3, and DC4.

As already mentioned, the cost share of the individual DCs in $ for case 1 (all brown)
is shown in Figure 9. It can be seen that the share of solar energy, wind energy, and battery
energy was zero in this case. Consequently, the cost share was also shown to be zero.
As case 1 was the reference case, we powered each cloud DC with brown energy only, and
the resultant costs are shown in $ with blue bars. The varying graph bars show the cost
of brown energy depending on the incoming workload, as discussed in Section 5.2, and
the respective DC power requirements, as discussed in Section 5.4.

Figure 10. Case 1: Collective cost of all DCs.
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Collective cost of all DCs (DC1, DC2, DC3, and DC4) for case 1 (all brown) is shown in
Figure 10. The simulation results regarding the carbon emissions of the individual DCs are
shown in Figure 11, and regarding the collective carbon emission of all DCs in Figure 12.

(a) Carbon emission share of each energy source for DC1 (b) Carbon emission share of each energy source for DC2

(c) Carbon emission share of each energy source for DC3 (d) Carbon emission share of each energy source for DC4

Figure 11. Case 1: Carbon emission share of each energy source for DC1, DC2, DC3, and DC4.

Case 1 used only brown energy, which is why it had higher carbon emissions, as can
be seen from the carbon emission rates (CER) of the individual energy sources in Table 1.
The share of carbon emissions (tons) of the individual DCs is shown in Figure 11 with blue
bars. Meanwhile, the collective carbon emissions of all DCs (DC1, DC2, DC3, and DC4) are
shown in Figure 12 using blue bars.

Figure 12. Case 1: Collective carbon emissions of all DCs.

6.1.2. Case 2: Proposed Green Energy Manager (GEM)

In the case 2, we considered four on-site solar and wind energy sources (SEt
on−site

and WEt
on−site, respectively), four off-site solar and wind energy sources (SEt

o f f−site and
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WEt
o f f−site, respectively), and energy storage devices, together with brown energy, to

meet the total power demand of the cloud DCs (Demandt
DC) based on their availability

(Algorithm 1), cost (Algorithm 2), and carbon emissions (Algorithm 3).

Algorithm 2 Selection of the cheapest power source to meet minCosttotal
DC

1: Initialize GEt
on−site, GEt

O f f−site, St
esd, St

be, CostGEt
on−site

, CostGEt
o f f−site

, CostSt
esd

, CostSt
be

,

Demandt
DC, Pt

DC
2: if Costt

GE(on−site) ≤ Costt
GE(o f f−site), Costt

esd, Costt
beand it is available for use then

3: Pt
DC ← GEt

on−site to meet Demandt
DC

4: else if Costt
GE(o f f−site) ≤ Costt

GE(on−site), Costt
esd, Costt

beand it is available for use then

5: Pt
DC ← GEt

O f f−site to meet Demandt
DC

6: else if Costt
esd ≤ Costt

GE(on−site), Costt
GE(o f f−site), Costt

beand it is available for use then

7: Pt
DC ← St

esd to meet Demandt
DC

8: else
9: Pt

DC ← St
be to meet Demandt

DC
10: end if

Algorithm 3 Selection of the power source with least carbon emission to meet minCEtotal
DC

1: Initialize CEGEt
on−site

, CEGEt
o f f−site

, CESt
esd

, CESt
be

, Demandt
DC, Pt

DC

2: if CEGEt
on−site

is the minimum and it is available to use then

3: Pt
DC ← GEt

on−site to meet Demandt
DC

4: else if CEGEt
o f f−site

is the minimum and it is available to use then

5: Pt
DC ← GEt

O f f−site to meet Demandt
DC

6: else if CESt
esd

is the minimum and it is available to use then

7: Pt
DC ← St

esd to meet Demandt
DC

8: else
9: Pt

DC ← St
be to meet Demandt

DC
10: end if

Our proposed green energy manager (GEM) compared the available power sources
with the power demand, and used the power source with the lowest cost (Case 2.1) and the
lowest carbon emissions (Case 2.2). As the brown energy prices fluctuated, as shown in
Figure 1, it is worth noting that there may have been a situation where the price of brown
energy was the lowest. Of course, the GEM preferred brown energy in this case. GEM
algorithms always prefer power sources based on the selection criteria, and there may be
cases where one of the power sources is not used because a relatively cheaper and less
carbon-emitting energy is available. The upper limit for purchasing external power may be
the power requirements of the cloud DC. In this study, we assumed that the availability
of brown energy could cover the entire power demand of the cloud DCs. Case 2 had the
following two sub-cases.

Case 2.1: MinCost (minCosttotal
DC )

Considering the objective function defined in Equation (21), cost minimization was
the top priority in case 2.1 (minCosttotal

DC ). Consequently, the carbon emissions were slightly
increased as a trade-off. Therefore, the power source of each DC was selected on the
basis of the lowest cost for the selected week, regardless of the carbon emissions of the
selected power source(s). Selection of the cheapest power source to meet the cloud DC
power requirement was carried out as per Algorithm 2 to meet the objective function
of minCosttotal

DC .
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The costs of all energy sources (CostGEt
on−site

, CostGEt
o f f−site

, CostSt
esd

, CostSt
be

) together

with the total energy demand (Demandt
DC) of the cloud DC and the power available to

the cloud DC (Pt
DC) were provided at the input of Algorithm 2. In this case (minCosttotal

DC ),
the cost and availability of each power source were checked to see if the costs were the
lowest and then the respective power source was used to meet the power demand of the
cloud DCs. In this way, the maximum power requirement of the cloud DC was met with
the power source with the lowest cost. Consequently, the total operating costs of the cloud
DCs were reduced compared to case 1, i.e., all brown.

The simulation results in relation to individual cost share of all DCs are shown in
Figure 13, and in relation to the collective cost of all DCs in Figure 14.

(a) Cost share of each energy source for DC1 (b) Cost share of each energy source for DC2

(c) Cost share of each energy source for DC3 (d) Cost share of each energy source for DC4

Figure 13. Case 2.1: Cost share of each energy source for DC1, DC2, DC3, and DC4.

The cost share of the individual DC in $ for case 2.1 (MinCost) is shown in the Figure 13.
In this case, minimizing energy costs was the top priority, which is why each energy source
was used as and when it was the cheapest. The blue bars in Figure 13 represent the cost
of brown energy, the red line shows the share of solar energy, the green line shows the
share of wind energy, while the yellow line represents the cost of energy provided by ESDs.
The results show that all four available energy sources (GEon−site, GEo f f−site, Sesd, and Sbe)
were used by the GEM in this case, with the main objective of minimizing costs.

Collective costs of all DCs (DC1, DC2, DC3, and DC4) for case 2.1 (MinCost) are shown
in Figure 14. The simulation results in relation to the carbon emissions of the individual
DCs are shown in Figure 15. and in relation to the collective carbon emissions of all DCs in
Figure 16.
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Figure 14. Case 2.1: collective price of all DCs.

(a) Carbon emission share of each energy source for DC1 (b) Carbon emission share of each energy source for DC2

(c) Carbon emission share of each energy source for DC3 (d) Carbon emission share of each energy source for DC4

Figure 15. Case 2.1: Carbon emission share of each energy source for DC1, DC2, DC3, and DC4.

In case 2.1 (MinCost), our proposed GEM used all four energy sources (GEon−site,
GEo f f−site, Sesd, and Sbe), with the carbon emission rate for each source as given in Table 1.
The blue bars in Figure 15 represent the proportional share of carbon emissions caused by
the use of brown energy, the red line shows the proportional share of carbon emissions
caused by the use of solar energy, and the green line shows the proportional share of
carbon emissions caused by the use of wind energy. Although the energy stored in ESDs
was also used in this case, it is worth noting that the proportion of carbon emissions
caused by the energy stored in ESDs was assumed to be zero, as it was only the storage of
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energy. The collective carbon emissions of all DCs (DC1, DC2, DC3, and DC4) are shown
in Figure 16, where the blue color bars are used for brown energy, red color line indicates
solar energy, green color line shows wind energy, and yellow color line represents ESDs.

Figure 16. Case 2.1: Collective carbon emissions of all DCs.

Case 2.2: MinCE (minCEtotal
DC )

Considering the objective function defined in Equation (22), carbon emission min-
imization was the overriding priority in case 2.2 (minCEtotal

DC ). Consequently, the cloud
DCs’ operating costs were slightly increased as a trade-off. Therefore, the power source for
each DC was selected on the basis of the lowest carbon emissions for the selected entire
week, regardless of the cost of the selected power source(s). Selection of the power source
with least carbon emission to meet cloud DC power requirements was carried out as per
Algorithm 3 to meet the objective function of minCEtotal

DC .
The carbon emissions of all energy sources (CEGEt

on−site
, CEGEt

o f f−site
, CESt

esd
, CESt

be
,)

together with the total energy demand (Demandt
DC) of the cloud DC and the available

power for the cloud DC (Pt
DC) were provided at the input of Algorithm 3. In this case

(minCEtotal
DC ), the carbon emissions and availability of each power source were checked to

see if the carbon emissions were the lowest, and then the respective power source was
used to meet the power demand of the cloud DCs. In this way, the maximum power
requirement of the cloud DC was met with the power source with the lowest carbon
emissions. Consequently, the total carbon emissions of the cloud DCs were reduced
compared to case 1, i.e., all brown.

The simulation results regarding the individual cost share of all DCs are shown in
Figure 17 and regarding the collective cost of all DCs in Figure 18.

The cost shares of the individual DCs in $ for case 2.2 (MinCE) are shown in Figure 17.
In this case, minimizing carbon emissions was the top priority, which is why each energy
source was used as and when it had the lowest carbon emission rate, as per Table 1. The blue
bars in Figure 17 represent the cost of brown energy, the red line shows the share of solar
energy, the green line shows the share of wind energy, while the yellow line represents the
cost of energy provided by ESDs. The results show that all four available energy sources
(GEon−site, GEo f f−site, Sesd and Sbe), were used by GEM in this case, with the main objective
of minimizing carbon emissions.



Energies 2024, 17, 2787 24 of 29

(a) Price share of each energy source for DC1 (b) Cost share of each energy source for DC2

(c) Cost share of each energy source for DC3 (d) Cost share of each energy source for DC4

Figure 17. Case 2.2: Cost share of each energy source for DC1, DC2, DC3, and DC4.

Figure 18. Case 2.2: Collective price of all DCs.

Collective costs of all DCs (DC1, DC2, DC3, and DC4) for case 2.2 (MinCE) are shown
in Figure 18. The simulation results regarding the carbon emissions of the individual DCs
are shown in Figure 19 and regarding the collective carbon emission of all DCs in Figure 20.

In case 2.2 (MinCE), our proposed GEM used all four energy sources (GEon−site,
GEo f f−site, Sesd, and Sbe) with the carbon emission rate of each source as given in Table 1.
The blue bars in Figure 19 represent the proportional share of carbon emissions caused by
the use of brown energy, the red line shows the proportional share of carbon emissions
caused by the use of solar energy, and the green line shows the proportional share of
carbon emissions caused by the use of wind energy. Although the energy stored in ESDs
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was also used in this case, it is worth noting that the proportion of carbon emissions
caused by the energy stored in ESDs was assumed to be zero, as it was only the storage of
energy. The collective carbon emissions of all DCs (DC1, DC2, DC3, and DC4) are shown
in Figure 20, where blue color bars are used for brown energy, the red color line indicates
solar energy, green color line shows wind energy, and yellow color line represents ESDs.

(a) Carbon emission share of each energy source for DC1 (b) Carbon emission share of each energy source for DC2

(c) Carbon emission share of each energy source for DC3 (d) Carbon emission share of each energy source for DC4

Figure 19. Case 2.2: Carbon emission share of each energy source for DC1, DC2, DC3, and DC4.

Figure 20. Case 2.2: Collective carbon emission of all DCs.

6.2. Numerical Evaluation of the Proposed Model (GEM)

The total cost of case 1 (all brown) for all DCs was USD 225,768.48, while the CO2
emissions for all DCs were 5311.67 tons. The total cost of case 2.1 (minCosttotal

DC ) for all DCs
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was USD 95,331.25, while the CO2 emissions for all DCs were 1549.97 tons. In case 2.2
(minCEtotal

DC ), the total costs for all DCs were USD 136,746.89, while the CO2 emissions were
1062.42 tons. A summary of the simulation results for the three considered cases is shown
in Table 7.

Table 7. Summary of the simulation results for the different cases.

Case Total Cost of All DCs (USD) Total CO2 Emission of All DCs (Tons)

Case 1 (All brown) 225,768.48 5311.67
Case 2.1 (minCosttotal

DC ) 95,331.25 1549.97
Case 2.2 (minCEtotal

DC ) 136,746.89 1062.42

A cost comparison of cases 1 and 2.1 is shown in Equation (31), while a carbon emission
comparison of the two cases is shown in Equation (32). A cost comparison of cases 1 and
2.2 is shown in Equation (33), and a carbon emission comparison of the two cases is given
in Equation (34). A cost comparison of cases 2.1 and 2.2 is shown in Equation (35), while a
carbon emission comparison of the two cases is given in Equation (36).

Case 1 vs. Case 2.1 (Cost) =
Total cost of case 1− Total cost of case 2.1

Total cost of case 1
∗ 100 (31)

Case 1 vs. Case 2.1 (CO2 emission) =
Total CE of case 1− Total CE of case 2.1

Total CE of case 1
∗ 100 (32)

The above Equations (31) and (32) gave the conclusion that case 1 (all brown) was 58%
more expensive and caused 71% more carbon emissions than case 2.1 (minCosttotal

DC ).

Case 1 vs. Case 2.2 (Cost) =
Total cost of case 1− Total cost of case 2.2

Total cost of case 1
∗ 100 (33)

Case 1 vs. Case 2.2 (CO2 emission) =
Total CE of case 1− Total CE of case 2.2

Total CE of case 1
∗ 100 (34)

The abovementioned Equations (33) and (34) concluded that Case 1 (all brown) was
39% more expensive and had 80% higher carbon emissions than case 2.2 (minCEtotal

DC ).

Case 2.1 vs. Case 2.2 (Cost) =
Total cost of case 2.2− Total cost of case 2.1

Total cost of case 2.2
∗ 100 (35)

Case 2.1 vs. Case 2.2 (CO2 emission) =
Total CE of case 2.2− Total CE of case 2.1

Total CE of case 2.2
∗ 100 (36)

The above equations showed that case 2.2 (minCEtotal
DC ) was 30% more expensive and

caused 46% less carbon emissions than case 2.1 (minCosttotal
DC ). These results indicated a

trade-off between cost and carbon emissions. Lower carbon emissions (up to 46% in this
case) caused higher costs (30% in this case) and vice versa. A comparative analysis of the
simulation results is summarized in Table 8.

Table 8. Comparative analysis of the simulation results for the different cases.

Cases % Rise or Fall in Total Cost (USD) % Rise or Fall in Total CO2 Emission (Tons)

Case 1 (all brown) vs. Case 2.1 (minCosttotal
DC ) Case 1 is 58% more costly Case 1 produces 71% more CO2 emission

Case 1 (all brown) vs. Case 2.2 (minCEtotal
DC ) Case 1 is 39% more costly Case 1 produces 80% more CO2 emission

Case 2.1 (minCosttotal
DC ) vs. Case 2.2 (minCEtotal

DC ) Case 2.2 is 30% more costly Case 2.2 produces 46% less CO2 emission

7. Conclusions and Future Work

The ever-increasing demand for power in cloud data centers (DCs) creates significant
problems, including higher energy prices for service providers and harmful carbon emis-
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sions for the environment. To solve these serious problems, researchers have advocated
the use of renewable energy sources. However, the erratic nature of solar and wind en-
ergy requires more accurate forecasting techniques. In this study, we presented a green
energy manager (GEM), a solution that optimizes the use of renewable energy sources,
energy storage devices, and traditional (brown) energy to reduce costs and CO2 emissions.
To improve the reliability of the feed-in of renewable energy, we used the HSA-ANN model
to accurately forecast solar and wind energy. The GEM aimed to reduce expenses and
carbon emissions, while successfully managing energy resources, both on-site and off-site.
We evaluated its performance by comparing it to a reference scenario in which the DCs
relied entirely on brown energy. The simulation results clearly showed the superiority of
our GEM technique. Case 1 (brown energy only) was 58% more expensive and produced
71% higher carbon emissions than Case 2.1 (minCosttotal

DC ). Similarly, Case 1 was 39% more
expensive and produced 80% higher carbon emissions than Case 2.2 (minCEtotal

DC ). Case
2.2 was 30% more expensive and produced 46% less carbon emission than case 2.1. Our
future research plans include merging our proposed GEM with demand-side management
measures to create a more robust and responsive energy ecology for dynamic demand-side
management, by leveraging smart grid technologies and real-time data analytics to reduce
overall energy costs and carbon footprints, while promoting a more resilient and responsive
energy ecosystem. The ultimate goal of our research is to improve energy management
systems, to achieve a greener and more sustainable approach to energy generation and
consumption in cloud data centers and elsewhere.
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