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We focus on the global existence and L? — L1 rates of convergence for the compressible magnetohydrodynamic equations in R*. We
prove the global existence of smooth solutions using the standard energy method under the condition that the initial data are close
to a constant equilibrium state in H>. Rates of convergence for the solution in L9 norm with 2 < q < 6 and its first- and second-
order derivatives in L? norm are obtained, if the initial data belong to L’ with 1 <p <&,

1. Introduction

The study of the interaction between magnetic fields and elec-
trically conducting fluids is of great importance for magneto-
hydrodynamics (MHD). From liquid metals to cosmic
plasmas, involving intensely heated and ionized fluids in astro-
physics, geophysics, high-speed aerodynamics, and plasma
physics—the applications of MHD cover a very broad spec-
trum of physics. The structures of the solar system, including
the outer layers, the solar wind that covers the Earth planets,
and the interstellar magnetic fields are all sources of astrophys-
ical problems. MHD is relevant to many engineering chal-
lenges, including extended plasma confinement for controlled
thermonuclear fusion, liquid metal cooling of nuclear reactors,

pi + div (pu) =0,

MHD power generation, electromagnetic casting of metals, and
plasma accelerators for ion engines for spacecraft propulsion.
Magnetic fields can induce currents to flow through conduct-
ing fluids, producing forces on the fluid and change the mag-
netic field. This is called MHD flows. It is necessary to consider
both hydrodynamics and electrodynamics, as there is a com-
plicated interaction between magnetic and fluid dynamic phe-
nomena. The compressible Navier—Stokes equations of fluid
dynamics and Maxwell’s equations of electromagnetism
together form the set of equations describing the compressible
viscous MHD. The whole system of partial differential equa-
tions for three-dimensional viscous, compressible, MHD flows
in Euler coordinates is considered for (0, 00) X R? [1, 2]:

(pu), + div(pu @ u) + Vp = (V x H) x H + divy,

1
&+ div(u(pe+§p|u|2 +p)> =div((uxH)xH+vH X (VX H) + uy + «V0),

H, - Vx(uxH)=-Vx(@VxH),divH = 0,
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where k>0 represents the fluid’s heat conductivity and p, u,
0, and H stand for the density, velocity, temperature of the
fluid, and the magnetic field, respectively. The symbol ¥
denotes the viscous stress tensor and we shall assume that
the ¥ is given through formula:

w :=pu(Vu+ Vul) + Adivul. (2)

The total energy & has contributions from the kinetic
energy, internal energy, and magnetic energy given by:

1 1
83:P€+§P|u|2 +5|H|2- 3)

The coefficients of viscosity u and A of the flow satisfy
24 +32>0and p>0, s the 3 x 3 identity matrix, Vu! is the
transpose of the matrix Vu, and v>0 is the magnetic diffu-
sivity acting as a magnetic diffusion coefficient of the mag-
netic field. The equations of state p: = p(p, 0) and e: =e(p, 0)
relate the pressure p and the internal energy e to the density
and temperature of the flow. MHD is studied by physicists
and mathematicians likewise because of its physical signifi-
cance, its complexity, its diverse phenomena, and its mathe-
matical challenges. There are many published studies that
have been carried out in this field. Viscous compressible
MHD fluids in the isentropic case have been studied by

p; + div (pu) = 0,
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Abdallah et al. [3]. Chen and Tan [4] have studied the interac-
tions between the viscous, isentropic, compressible fluid motion
and the magnetic field are modeled by the MHD system. Three-
dimensional viscous compressible MHD flows in Eulerian coor-
dinates were studied by Hu and Wang [5]. The motion of a
compressible viscous heat-conductive gases, isotropic Newto-
nian fluid was studied by Matsumura and Nishida [6]. The flow
of viscous compressible fluids, even under the influence of a
magnetic field in a bounded domain, was described by Stréhmer
[7]. The solvability of the Cauchy problem in a space of smooth
functions is demonstrated for hyperbolic—parabolic composite
systems of nonlinear equations involving a wide class of equa-
tions of mathematical physics discussed by VolPert and
Hudjaev [8]. The motion of a compressible viscous fluid in an
external domain was studied by Kobayashi [9]. Kobayashi and
Shibata [10] studied the motion of compressible viscous and
heat-conductive gases in an exterior domain. Chen and Wang
[11] studied a fundamental problem of MHD fluid flow in which
the pressure, internal energy, and heat conductivity satisfy cer-
tain physical growth conditions of temperature. In this paper, we
think of the global solution to the three-dimensional MHD
problem over large time scales. Our aim is to analyze the unique-
ness of the smooth solutions and global existence under the idea
that the initial data are very near to the constant equilibrium
position. Hence, we rewrite Equation (1) as follows:

pu; +pu-Vu+ Vp = (VXH)XH+ pdu + (u + 2)Vdivu,

pe; + pu- Ve + pdiva = v|VH|? — vVH: VH? + p|Vu|? + pVu: Vu! + A|divul? + x40,

H -VXx(uxH)=-vVXx(VxH),divH =0,

where VH: VHT =3 ; j<3 0;H;0;H;. We shall assume that
the fluid is ideal and barotropic, i.e., e=c,0 and p =Rpfd
with positive constants c,, R. Moreover, without loss of

p+pdiva+u-Vp =0,

1 1 1
ut+u‘Vu+V9+;9Vp—;(,uA+(,qui)VdiV)u:;(H~VH—H~VHT),

1 1
0, +u-VO+0divu —-A0 = — (|[VH|? = VH: VH! + p|Vu|]? + pVu: Vul + 1|divu)?),
P

\
generality, we also presume that the constants R, ¢,, and v
to be unity, then reformulate the MHD system:

H -AH=H: -Vu-u-VH - (dive)H,divH = 0.

We complement Equation (5) with the Cauchy data
given as follows:

(p.w, 0. H)(0.x) = (po(x), up(x), 0y(x). Hy(x))x € R°.
(6)

Notation. Throughout this paper, the norms in Lebesgue
space LP and Sobolev spaces H™(R®), and W™F(R3) are

denoted, respectively, by || -, |l - lwme and | - ||gm.

\
Moreover, C denotes a general constant, which may vary in dif-
ferent estimates. If the dependence needs to be explicitly stressed, a
notation such as Cy, C, will be used. As usual 0, =V = (0, 0,,
03),0; = o,i=1,2,3, and for any integer k>0, ka denotes
all derivatives up to k-order of the function f.

Remark 1. Note that the divergence-free magnetic field H can
be justified by the initial assumption that div Hy = 0. Indeed,
this can be easily and formally observed by taking div of the
magnetic equation. Hence, the magnetic equation is purely
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parabolic with respect to H. Now, we are in a position to state
our main results of this paper. First, we have the following
existence result of a unique small solution to the Cauchy
problem (5)—(6):

Theorem 2. Assume div Hy = 0 and the initial data are close
enough to the constant situation (p,0,0,H) with p,0, H>0,
i.e., there exists a sufficiently small constant &, such that for
any initial data satisfy.

H(Po—/_),uodgo—avHo—ﬁ)HHs < . (7)

then the MHD (5)—(6) possesses a unique globally smooth
solution (p,w,0,H) such that:

H p-p.u,0~60.H- H) HH3

[ 109 + 10,0000, (.9 s < B,
(8)

for any t € [0, 00).
Second, we further have the following decay estimates for
the solution constructed in the theorem above.

Theorem 3. Under the Theorem 2, if in addition, there is
some p € [1,9) such that:

| (po = 7.9, 0y — 6, Hy = H)|| , < + o0, )

then the solution constructed in Theorem 2 satisfies the fol-
lowing decay estimates:

|(p=P.u.0-0.H-H)(t)||,, <C(1+1)%Y Vg€ [2,6],

(10)
and

[(p~7.u.0~0.H-H)(®)] . < C(1+ )72,
(11)

where o( p, q; k) are defined by:

3/1 1 k
2<p q)+2’ ,2,3 (12)

If the initial data further satisfy (po —p. uy, 0y — 6.H, -
H)eH*(R®) and ||(po - P. vy, 0y — 0, Hy — H) ||« is small,
then the solution has the following high-order estimate:

o(p.g: k)

HVZ( -p.uy, 0, -0, Hy - ) ||L2 <C(1+)~o(p22),

(13)

The part which is left from this study is committed to
demonstrate Theorems 2 and 3. In part two of this section,

the priori estimates are carried out for the smooth solution.
The global existence of the smooth solutions has been formu-
lated due to the merging of the local existence and priori
estimates outcomes. The issue in the third section is shaped
using the model of a Laypinov-type energy inequality for all
the derivatives, which are ruled by the first-order derivatives.
Besides that, the decay-in-time estimates for the linearized
system is also used to dominate the first-order derivatives by
the higher-order derivatives. From these two types of esti-
mates, the decay rates of the smooth solutions can be followed.

2. Global Existence

We will prove the existence part of Theorem 2. In outline, we
first derive the uniform-in-time a priori estimates for smooth
solutions. These estimates also hold for our H? local solu-
tions, which are thoroughly authenticated by the standard
method in [6] utilizing the Mollifier technique. Owing to the
uniform estimates, the global existence is finally proved. To
reduce complicated calculations, we recall the following use-
tul inequalities:

/1 <

k f|%. Vf € H. (14)

This can be easily proved by combining the inequalities
of Young and Gagliardo—Nirenberg:
|0 flr <C(p

)Iflalok 1. vF € HE, (15)

1_i_1 1
where 3—q(x+(r

and 0 <i<k,

Hafc(fg)HLz < C[ ||f||L’CH0§9HL2 + HakfoL2 ||9||L%]
(16)

-5(1-a) with @ € (0.1), 7 € (1,00)

2.1. A Priori Estimates. For this objective, suppose (p,u, 8,
H) is a smooth solution of Equations (5) and (6) on (0, T')
with p>0. We formulate the following theorem:

Theorem 4. There exists a sufficiently small constant & such
that:

)l 5. (17)

then for any t € [0, T,
that:

there exists a constant C;>1 such

[(p~p.w.60-60H-H)(- 1)}

+/ﬂ®ﬂum&r+M¢m¢&¢HNJW;%

<Ci||(po =P w00 = 0. Hy = H) (1) |-



For this purpose, we introduce new variables
0+p =pu=apv,0=a?p9+0,ap% +H=H, (19)
where a = \/5, p :%. Then, Equations (5)—(6) are refor-
mulated as: r

0, +adivv = Ny, (20)

v, +aV8 +aVo — up*Av — f2(u + )Vdivy - pH - VH
+ﬂﬁ . V%T == Nz,
(21)
|

N, = —af*(v-Vv) -

P
+a—m—=

o

P

N; = —af*(v- VI) — af*(9divv) + (% —;

Ny=af*(H -VVv) —af*(v-VF) — apf* (H - divv).
(28)

First, we observe that a priori assumption Equation (17)
with the equation of continuity Equation (19) imply:

sup
0<t<T (0,0, 0:0,V,0,v,8,0.9, % .0.7)(¢)|
sup (29)
__ __ . 2
SCOStsTH(Q’u’g 0,H-H)(-1))|};» < Cs.

Because H?>L™®, we can choose & sufficiently small
that:

In the following, we always assume ¢ is small and use
Equations (29)—(30). The a priori estimates will be made in
four steps.

A: L? norms of ¢, v, 9, %. Multiplying the equation of
continuity Equation (20) by ¢ and integrate over R* (by
parts), we obtain:
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9, + adivv — A9 = N, (22)
.+ pH(divv) - fH - Vv — AZ = N,, (23)

(0., 8, %) = (e0, Vo, 90, # ) (x) — (0,0,0,0) as x| — oo,

(24)
where
N, = —ap* div(ov), (25)
1 1 1 1
+u<——:>Av+(u—i—/l)(——:)Vdivv
p P p P (26)
. ™ o1/1 1\ ,—
m__<__:)(H.v7/T)7
P p\p p
1
p)A& —&—;[\VZ’P —NH:NHT + uf|\Vv)? + ufVv: Vvl + 152 |divv]?],
(27)
Lol + / divvdy = I (31)
T oll7 +a ng ivvdx =1,

where I, = (N}, 0).
When momentum Equation (21) is multiplied by v and
integrate over R3, we get:

1d
E%HVH?‘Z ‘l‘(l/ (vV19)dx+a/ (V‘VQ)dx—luﬁz
R3 R

/ (v-Av)dx - f*(u + ﬂ)/ (v-Vdivv)dx -
R R

/ v-(ﬁ-V%)dx—i—ﬁ/ v (H-VZ")dx =1,
R3 R3
(32)

where IZ = <N2,V>.
Similarly, multiplying the energy Equation (22) by 9 and
integrate by parts over R, we get:

1d
" 19117, + a/ div vdx — ﬂz/ 9A9dx =T,  (33)
R3 R3

where I; = (N3, 9).
Finally, when the magnetic Equation (23) is multiplied by
Z and integrates over R3, we obtain:
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- Vvdx

2dt||%|| +/3/ ) div velx - ﬂ/Rz

—/ (H - AI)dx = 14,
R3

(34)

where I, = (N, %).
Now we add Equations (31)—(34) and then by integration
by parts, we obtain the following result:

Zdt ||Q’V ’9%HL2 _|'l"ﬂz||axv||L2
4

+ B2+ D divvl[. + 2097 + 0.7 |17 = kZ L.
—1

(35)

a

L = —aﬂz/ V-(V-Vv)dx—a/ de__z
R R P p

Using Holder’s and Sobolev’s inequalities and Equation
(29), we estimate the right-hand side of Equation (35) as
follows:

I, = —aﬂz/R3Qdiv (ov)dx = aﬂZ/Rggv - 0,0dx

< CllellzlIvlislloxellr < Cllell 19:v1l 2l 0xell 2
< Co||9,v. dsell7:.

/ -(1——)ngx+y/ V'(l—;)Ade
p P

+(ﬂ+/1)/ v-(l—l>Vd1vvdx+a/ (7/ VZ’
R3 14 R} 14

—af VO V%Td v (——)(ﬁ-v%T)dx

ﬂ/Ra (‘") (H- V)

< C||V||H1[IlaxVIILzllf?xVHLz + [10:8112ll0xellr2 + l|9xell2l|9xell
+ ll9xell 21012 + [|0xell [0xdiv vl 2 + [10: 7 21|07 || -

+ll0cell 2 10 |lp2 + 1071|2110 || 2 + [|0xe]| 2105 || 2] < €8] (9s0. 9,v. 02v. 9,9, 0. %) |1}

where we have used the fact that
that:

I; = —a[)’z/RSS(V -V9)dx - aﬁz/R319(19divv)dx

of G-)wanaxs [ Syvap - v

+ up?|Vv): + ppAVv: Vvt
22| div v dx < C8(0,0. 0V, 9,8, 029, 0,7 |2

17

~~ o. Similarly, we find

(38)
and
I, = af? R%%- (H - Vv)dx — aff? R*%. (v V&)dx
- ap? 3%’- ( - divv)dx < C5||(0,v. 0, %) ||7.
R (39)
Accordingly, from Equation (29) and Equations

(35)—(39), we obtain:

d
ey, 8.9) 2 + (0,09, 0.5)
<C(0,0.02v. 292

(40)

B: L? norms of d3¢, 03v, 029, 0> %"

Hle

\
Apply the differential operator d;; to the Equations
(20)—(23), multiply the resulting equations by 9dj0, djv,
0% and 0,3, respectively, and integrating them over R’
we obtain the following equations:

1d
EE/ [|9sxe||?dx + a/ Oxodiv (9 v)dx =Ty,
R &

(41)

where J; = (0;3Ni. 0;0)-

1d
EE/PH()ijkvuzdx + a/R3()l.].kV . Vaijkl()dx

+ a/ Oy - Vojedx — ,uﬂz/ Ojjiv - Adjpvdx
R R}
- B (u+ /1)/ 0jjv - Vdiv (6ijkv) dx
R3
- ﬁ/ aijkv . (dukﬁ . Vduk%) dx
R3

+ﬂ/ aijkv : (aijkH : vaijk%T) = ]Zs
R
(42)



6
where J, = <0,»jkN2, 0jkv).
1d 2 ; 2
23 ) H(),»jkt()H dx+a o 9 9div (aijkv) dx — p
/R3aijk19 . Aa,]k19dx - ]3,
(43)
where J; = <0ijkN3, 9;ji9).
and
Ld 0 ||?d 0 I .0;;:H )div (0 d
2t | MO P tp [ (033 .05H)div (9yv)dx
- / . (07 .04 H).V 0jevdx — / o 05T Adp I dx = ],
(44)
where J, = <6ijkN4, ).
We add Equations (41)—(44), obtaining:
2dtllal,k 0.V, 8, 7)||7: + B0t} + p 0191

+lowZ N7 = kZ Ji-
=1
(45)

Now, we use Equation (16) and Cauchy’s inequality to
estimate the terms in the summation:

JR—— / 3y dyeldiv (ov))dx

= —aﬁz/R3 [0k (ediv ) - 00 + 9 (v - Vo) - O] dx

< Clloz(ediv )|z [|%zell 2 + Clloz(9.v - Vo)l [l 9zl 2
e v vae)-ateds < Clotellllel- 10tV
+ll0%ellz 197l <] + Clldzellz X [[l0:v][ <10zl 2
Hlovllaloeli] +C [ (v Voe) - deds

< Cd||(Ao, v, datv)|]? !

72
(46)

where (v - 020Vg)-d20 =v - V%.
We next estimate J, in detail:
() —ap? [0y - O (v - VV)dx < C [l vl |l
BV - V)|l C Il vl lIviiee I o vl +
o3 vl Il o V||L“]<C5 I (03 v. oV,
(ii) — o f g0y - d,]k( )dx—afRz iV - 0y ( )
dx < Cl|0f V|2 102 (%) > < Cllog vl

(120128 - T sz + 1162 (2) 12018 - V) o]
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<Cllot Vil 1939 - Vo)ll + 1103 (1) 1
<Cllog vl [I191=1103ell 2 + 102911 2 10x0ll 1=
11200 dselly: + 11 2 2ell,2|<C5 1| (9. e
9. 9iv, 9%,

(111) —%ngaijkV . al]k |:<% - /—%) . VQ:| dx :/)%fRaaijkk
v, [(; - é) : vg} dx < Cll0 V][0

p

[(3-2) - Vo] iz <cliavi: [ (- 2) e

el +1102 (1= 2) iz lovelli] <C5 |
(9.0, %o, de, V)l
(IV) ﬂfR3al]kval]k|:( - ) j|dx: _”fRﬂ)ijkkv’

1
7
05| (3-2) - av]dx < Clloivil 12

[(5-1) - av] e <clatviie (3 - 2)

108 vl 1102 (3 = ) 2193wl
< Collod vilz 104 Vil + 102 (3 = ) 2193wl
<G8l (90, 020, 02V, O3V, Oy V)|I2.,
V) (1 +2) [0V - O [(l - é) Vdivvl} dx < Cs ||
(()xg, aazcg’ aJZCV’ 0,3(V, 04 )||L29
(Vi) afps Ok - Oijk (M) dx < C6 ||
(040, 030, 030, O3V, X I, O ) |17,
(vii) ﬂfRs kv - d,]k[( p)( V%’)]deCéll
(050, 070, 030, O3V, R T)|I7,
(viif) — @ f g0V - O (”V«%’) dx < C5 ||
(040, 030, 030, O3V, L I, 0L T )|I7.,
(IX) /}fRz ’ka O,Jk |:(— - ;) ( V%T)]
dx < C5 || (0,0, 030, 030, O3V, R T) |I7. .

Combining the above, we conclude that:
J» < C8|(9s0. 030. 030. 03 V. 03 V. 0x V. 038, 0 H . 0 X ) ||1..
(47)

Similarly, we find that:

J5 < C5||(d,0. %0, 020, 33 v, 0t v, 029, 039, 049, 8 I, 0 ) ||?

LZ £
(48)
and

Ji < B3 v, obv, 02 5., 04 ) . (49)
Accordingly, from Equations (45)—(49), we obtain:

7+ Cll(v, 029, 0 )|
,039,039. 03 7)||1%,

d
1@ v. 9. 7))
< C8||(%0. B30 03 v. Oy v

(50)
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Hence, the lowest and highest estimate inequalities Equa-
tions (40) and (50), with the help of Equation (14), yield:

d
5@ 0. v. 0y, 8.0, .. 27 )|I3:
+ Cl[(04v, 0%V, 0,8, 038, 0,7 , 0 ) ||2. < C6|(040. 030) |2
(51)

C: L*-norms of 0,0, 02¢:
First, we estimate d,¢. To this purpose, we calculated as
follows:

/ (BIVof +aVo- v)dx
K (52)

= / (28Ve Vo, +aVe, v+ aVe - v,)dx.
R3

From Equation (20), we estimate the first term on the
right-hand side of Equation (52) as follows:

/ 2pVo - Vo,dx = / 2BV - V[N, — adivv]dx
R R
= / 2V - V[-af?div (¢v) — adivv]|dx

R3

— _/ 2pVo - Viaf*(v- Vo + odivv)
R3
- adivvldx < C8| (9., 0,v, 9% V)72
—/ 2apV - Vdivvdx < C§||(0,0, 0yv, 2 V)Hiz
R3

- 2ap Vo - Vdivvdx,
R3

(53)
where we have used:
) Vol?
VQ . (VZQ . v) — alQal]Qv] — v% -V, (54)
We estimate the second term as follows:
/ aVo; - vdx = / aV (N, — adivv) - vdx
R? R?
= —/ a(N; — adivv)div vdx < C5||040. 0,v||7.
R3
+a2/ (divv)2dx.
R3
(55)

From Equation (21), we can estimate the last term:

/ aVo - v,dx = / aVo - [N, —aVd —aVo

R3 R3
+pup*Av + f*(u + A)Vdivv + pH - VH
-pH -V |dx < Cs
H (axQ’ axvv aszc v, axl()’ ax%) ||%2

—/ a*[|Vo|* + Vo - VI]dx

R3

+/ af*uVo - Av + (u+ A)Vo
R3

-Vdiv v]dx + / apVo
R3
H-V# -H-VH")dx.
(56)

Then, estimate the right-hand side of the above inequal-
ities, the detail of which is the following:

(i) = [pa[[Veol* + Vo - VOldx < — [1na?|Vo|dx +
@ VoPdy+ [pa?|VOPdx < =% [l de I}
+5 108117,

(ii) [paf*uVe-Av+ (u+ 4)Ve - Vdivv]dx —
2af [ Ve - Vdivvdx = [psapVe - (Av - Vdivy)
dx <% [ 0.0 112 + 467 || 0],

(ili) [papVe - [H-VZ -H-VH"]
dx <% | o0 12 +Cll o 7|1

Hence, from Equations (52)—(56) and with help of Equa-
tion (14), we obtain:

2
a
[ 15+ ave vy + 5 owel:
<C8|0xv. 03 v, 0,9, 0,7 |12, + o ||div |7, + 452 0% v]| 7.

2
a
+ > 1903117 + Cllo.Z |-

(57)
We now turn to estimate d2¢.
As in Equation (52), by direct calculation, we have:
/ o Ploel? + adye - 3] dx
= / 32ﬁal-jkg - 040y + @00y - aijvk + a0 - aijv’t‘dx.
R
(58)

We estimate the first term on the right side of Equation
(58) given as follows:



/R3 20,0 - Oy0dx = /RSZﬂd,ij - 0[Ny — adivv]dx
= / 20,0 - Oj[—ap*div (ev) — adiv v]dx
R3
= / 200 - Oj[—af*Vo - v — ap?edivv — adiv v]dx
R3

< CH||(030. 030, 03 v, 03 v, 03 V) |7, — /R3aﬂ3v|aijk0{2 v
+ 200,003 div vdx < C§|| (020,020, 0%v, 03 v, 0L v) ||i2
—2ap / ;00 div vdx.

R3

(59)
Similarly, we estimate the second term:
/ R3aaiijt - 0yvkdx = / ad[N; — adivv] - 0;v*dx
=- / R}adij[Nl——adivv]a,-jdivvdx
<Co||(ee. dbo. v V)2, + / (v
(60)

And we estimate the last term as follows:
First, we detail the estimate of the integral [ R A0ijK0 -
[Nz]dx
() = [pa?oye - 05(v- VV)dx <C || el I

(v- 9Vl < Cll ella IVl 1 02Vl +
102 Vil 11 0,vl~)<Cé | Jelle [l vilz: +
192 VIl ]<C6 I (3. 02 v. V).,

(i) = [reaoge - 0y(*5¢)dx < Cllokell 18 (252 112
<Clloelliz |1 1~ 18 - V)l + 1103 (3) e
(8- Ve)lli=)<Calloellu: 1811~ llo3ell: + 121l
l0:elli + 130, - dcellie + I 3 o2ell)<C3 |
(9x0. dre. dze. AL

(i) — [0 0uc -0y (1=1) - Vo] e < Cllasells 12
(2-2) - Vel <Clldell[I1(E - 1) i~ o%e
I+ 102 (2 = 2) lellowellu ] <Callozell o2
iz + 11 % 0 - deells + 1| 1 o2elliz)<Co |
(9.0, dzo, %07,

Similarly, we find that

(i) [pnadpe- ;| (1-1)av]ax < cs||
(0,0. 0. 020, 02V, v, 0tv) |2,

V) [ralu+2)050 - dij[(ﬁ—;}dev} dx < C§ ||
(0.0. 0. 030, 02V, BV, 0Ev)||%,

Vi) [pa®dje - 01,{ (- V%)Idmc(s I
(0c0. 020, 030, 2K . )%,

Abstract and Applied Analysis
(viD) [ 2040 - 9y [(; - %) (H - vyf)} dx < C5 || (0,0,
%0, 020, RI)|I%,
(viii) — [(wa?d0 - 0,11[ (H - V%’T)]dxs Cs || (9,0,
020, B0, 2, ) ||%,
(ix) - fR3 djjke - at][x

(050, d%0, B0, BK) || 2.

vzﬂ)} dx < C3)|

Hence, from (i) to (ix), we derive the following estimate:

— a0 9 — adro

/ 00 - 0vth—/ 00 - 0[

+ uBPAVF + B2 (u + 1) 0y div vF
+pH - o - fH - 7" | dx
< CH|[(00. 030. 030. 03V, 03V, 0y v,

039, K . I )||7, - / a*[|oel?
R3
+ aiij . aijktg] dx + /Rjaﬁaijkg
. [aijAvk + Oydiv vk] dx
+/ ape - [H- 0% —H - o " dx,
R3

(61)
where
_/R3O‘2 [|9x0|? + 9o - 9:9] dx < —2||30l|2. + L[|039]|2..
(62)

2
. a
[ apoe [0,av - oydiv¥|ax < 3l + 47 v

(63)
and

[ oo (B0 T -0 i< kel + Cl

(64)

This together with Equations (58)—(61) and by inequality
Equation (14), we obtain:

/ [ﬂ‘aljk0| + aazijaUV ] dx + ||a)3CQ||L2
< C5||( .0, 0.V, aﬁ v, 0,9, 0?19, ax%, ()ﬁ%)”Lz
P
. a
+ asz,'jdlvaiz + 4ﬂ2||dj‘cv|\iz +7 ||0i19||%2 + Cde;%H%Z
(65)

D: Conclusion consequently, as in [4], adding Equations
(57) and (65), and using Equation (14), we have:
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t/ (VP +aVe v + %  Josel

+/ [ﬂ‘agkg| + aazijaUv } dx + ||033CQ||L2

< C3||(0yv, 02V, 0,9, 0.7 )%, + o:ZHdlvaL2

”LZ
ol L% 2 2
+4ﬁ ”axV”LZ +7||ax19”L2 + C”ax%”LZ
+ Cé‘H (axg, 0.V, aﬁ v, 0,9, 0;1{19, o0, 0?6%)”]23
2
. (04
+ a2 0;div v|[7. + 452104 vIZ: + = (102913
+ Cllz |1 < Cdllocelli:
+ C|| (dxv, 0;1{ v, 0,9, dﬁ&, 0,7, 0;%%)”;.
(66)

Multiplying the above estimate by ¢ € (0, 1/2), and add-
ing the resulting inequality and Equation (51), we obtain:

[ 1vel +ave v+ uaxeuLZ [ louel’
¢ K
+ aaijkaijgvk)tdx +2 ) ||02(7H%2
d
+ 5 lle %o v. 0. 9,08, 7. 0. |1,
C
+ 5 H(axvi aﬁV, ax'gv (329, ax%7 ai%)H]zj < CéCHaxQH]z}

(67)
Now, letting & € (0,¢a?/(16C)), we further have:
d 3 3 3 3 2
E { ” (Q’ 070.V, 0 v, 9, ax&v x, ax%)”L2
+/R3§[/3IV0|2 +aVeo v+ plogol?
+ aaiijaijvk] dx} + Cl ((:)
|| (axgv 693695 axvv a;lc v, ax'9’ ajlcgs ax%7 ()ﬁ%) HIZJZ <0,
(68)

where C,({)=min{C/2,{a?/16}. By Cauchy’s inequality,
we have:

[ clpivel + ave: v+ ploel

+ 20,300,V ]dx> (lvalle + ||9;el2) (69)

C 2
2% (IIvliE: + ||aij"kHiZ)-

Noting that a and f are finite, integrating Equation (68)
directly with respect to time, and using Equations (14), (19),
(29), and (30), we can obtain the a priori estimates of the
Equations (20)—(24) by choosing sufficiently small {. We can
finish the proof of Theorem 4.

2.2. Global Existence Proof. In this subsection, the existence
part has been proofed from Theorem 2. There is no need to
prove the local existence because it is already proved in [6]
and found in [7, 8]:

Theorem 5. Under the assumptions of Theorem 2, there exists
a positive constant T such that the initial value problem
Equations (5)—(6) has a unique solution (p,u,0,H), which
continuous in [0, T] X R® together with its derivatives of first
order in t and of second order in x, and there exists a constant
C,>1 such that the following inequality is satisfied:

(o =7.v.0 - 0. H-H) (- )|
[ 100+ 02v.0.0. 0.5
<G| (po = 7. vo. Ho = H) I3

(70)

for any t € 0, T).

The global existence of smooth solutions is confirmed by
a continued argument that combines the local existence the-
orem and the theorem of a priori estimates.

Postulate

Ey = || (po -0.H, - H)||,,<8/VCC,.

_E’VO’HO

(71)

where § is defined in Theorem 4. Because the initial data
satisfy Ey<d8/+/C,, then by Theorem 5, there exists a posi-
tive constant 7} >0, such that the smooth solution of Equa-
tions (5) and (6) on [0, T}] exists and has the following

estimate:
Ol + [ 1ot

mm¢s9%,

||( -p,v,0-0,H - H
+ ”(axvv 6,49, axH)("
(72)

for 0 <t < Tj. It implies:

HH3 = \/C_2E0<5

(73)

Thus, the solution satisfies the a priori estimate Equation
(17), by Theorem 4 and Equation (71), we have:

E; </CE < (74)

5
VG
Thus, by Theorem 5, the initial problem (5) for t > T},

with initial data (p,v, 0, H)(x, T;) again has a unique local
solution(p, v, 0, H) that satisfies:
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(o= 7v.0- 8.0~ F) .0,
t

+ / 1000+ 103. 0. 0.9

<Gl(p-p.v.0-0.H-H)(-.T))|?

(75)

for Ty <t<2T). This together with Equations (71) and (74)
yields:

sup _ _ —
r<t<r, 1P =20 =8 H-H)(. 0|, 76)

< \/CiE; </C,C,Ey<8.

Then by Equations (73) and (76) and Theorem 4, we
have:

sup _ — —
T o<t<om 1o =7.v.6 - 8.H-H)(-.0)[|fp )

< /CiEy <5/,/C,.

E,

(77)

We are able to perform similar procedure with 0 <t <
nTy,n =3,4,5,- - - and eventually obtain the global solution
and the estimate Equation (8). It is easy to prove the unique-
ness of the solutions, although the proof is omitted here.

3. Decay Rate of the Solution

In this section, we will prove the rate of convergence of the
solution to complete the proof of Theorem 3. In subsection 1,
we give some elementary conclusions about the estimates of
the decay-in-time for the linearized system Equations
(20)—(24) and a useful inequality. In subsection 2, we first
obtain the energy inequality for the derivatives of order one
through two, and then point out a decay-in-time estimate for
the first-order derivatives, where the error is on the higher-
order derivatives. Finally, we determine the optimal decay
rates by bringing together these two estimates.

3.1. Some Elementary Decay-in-Time Estimates. We consider
the rate of convergence of the solution (¢,v, 9, %) for the
linearization problem (20)—(24). For later use, the result on
the global existence of solutions to Equations (20)—(24) is
reformulated as follows:

Proposition 6. Under the assumption of divHy =0 and (7),
there exists a unique globally smooth solution (¢,v, 9, %) of
the Cauchy problem (20)-(24) satisfying for any t € [0, 00),

Abstract and Applied Analysis

t
1(0v. 8. 9) (. )12 + / loe(- )
105, 0,8.0,9) (-+5) [2dls < Cl| (0. Vo. 8o o) 2.
(78)

Moreover, (p,v,d, %) which satisfies Equation (19)
uniquely solves the initial problem Equations (5)—(6) for all
time. To utilize the LP — L1 estimates to the linear problem
for the nonlinear problem (20)—(23), we rewrite the solution
of Equations (20)—(23) as:

t

U(t) = E(t)Up + / E(t - s)F(U(s))ds. (79)

0
where

U - [Q,V, 19, %]T, Uo == [QO’V()’&O’%O]T’

80

F= [NI?NZwN&N‘l]T? ( )
and E(t) is the solution of the semigroup defined by E(t)=
e A t >0, where A is a matrix-valued differential operator
given by

0 av’ 0 0

- aV  —ufIA - B(u+2)VVT  aV  —pIH -V + pVHT
0 av’ -p*A 0
0 -pIH -V + pH - VT 0 -1A

The semigroup E(t) has the following properties on the
decay in time [9, 10].

Lemma 7. Let k>0 be an integer and 1 <p <2 < g<o0.
Then, for any t >0, it holds that:

[VE() Up|| s < C(1+ 1)~ P50 || U | ppope (81)
where o( p. g; k) is defined by Equation (12) and || - || pops =
-l + 11 Mg

Lemma 8. If k > 0 is an integer and 1 < p < 2. Then, for any
>0,

[VEE#) U < C(1 + £)=220 (|| U + [| 05U | ).
(52)

holds where o(p,q;k) is defined by Equation (12) and
I Mernme =1 Mo A1 e

We end this subsection by listing an elementary but use-
ful inequality [12]:

Lemma 9. If r;>1 and r, € [0, 1], then we have
S+t =) (1 +7)2dr < C(ry, ry) (1 + 1)
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3.2. Convergence Rates. First, we will estimate the decay rates
of the first-order derivatives.

Lemma 10. Under the assumption of Proposition 6, let (0, v,
9, %) be the solution to the initial problem (20)—(24). Then,
we have:

105(0.v. 9. ) || ;2 < CKy (1 + £)=o(p21)
t
+ C(So/ (1+4+1¢t- s)—a( P,Z;I)Hax(g, v, 8, %) (-, 5)|| g2,
0
(83)

when Ky = ||(00, Vo» 90 # o)l pams is finite from Equations
(7) and (9). Here, 1 < p< £ and o is defined by Equation (13).

Proof. From the integral formula (79) and Lemma 7, we
have:

10.:(0, v, 9. 7)|| 2 < CKy (1 + 1)~
t
[ (= P N, N NN s (-5,
0
(84)
where 1 < p< g. To derive (83), we need to control ||(N;, N,

N3, Ny)|lpram by the L? norm of derivatives of ¢, v, 9, #.
From Proposition 6:

Nl = (Vo + e.divv) . (85)
<Clle V) »1(0.0.05) 1 (36)
<l[(@:V)llen (950, 04v)[ 2 (87)
<C[(0x0. 0V 2. (88)
[Nl < Co[(9,0. 0xV) | 2. (89)
and
[0xN1 12 < C8o [ (0. 070. 0xv. 03 V) | 2. (90)

Thus, we achieve:

IN[lzzaen < Col| (950, 0:¥) |l (91)

HNZHU’ < C” (Q,V, '9’ %)H ZTP || (axgv axvv aiivv aijv’ ax%) ||L2
L2
<Cll(e:v. 8. Z)| 2 l(0:0. 9cv. 0 v. 9| 2.

SC&OH(axgvaxv’ ()JZCV, ax%)HLZ’ (93)

N2 |2 < C8o[[(0x0. 0,v. 0 v. 0, 7). (94)

11
and
[0:N: |2 < Cll(0. 050, V. 0,v. 9, 0,9, K, 0,7 ) || .~
” (ax()’ aazcg’ 0y, azzc v, aoac v, 6§V7 0T , a)zc%a) ||L2
< C(SOH (axg’ aachv axv’ aazc v, 636 v, ax%’ 6926%7) HL2 .
(95)
Hence
N2 o < C8ol](050: 05V, 0k 7 ) | 2 (96)

N[l < Cll(@. v 0.v. 8. 0. 7))
1(0,v. 02 v, 0,9, 029, 0. %) | 2 (97)
< Cl|(0gv, 02V, 0,9, 029, 0.%) || 12,

[IN3|,2 < C8o[[(0xv. 0% v, 0,9, 038, 0, )| 2, (98)

and

||0xN3 ||L2 < CH (Q» ax@ v, axv’ '99 ax’99 ax%) ”LO“
[(0xv, 2V, 0,9, 029, 039, 0. %)|| ;2 (99)
< C8l[(0gv, 027, 0,9, 029, 339, 0, %) |2

We further obtain:

IN3||per < CBol[(05V, 048, 047 )| 2 (100)

[INullr < ClI(v. Z)| 22 [1(0xV, 0:7) |12 < CBo | (9,v. 057 )| 2,

LZ%H

(101)
IN4ll12 < Cll(v, Z) || 1< [|(0:v, 0 7) || 12 < C8o | (0xv, 0 ) |12,

(102)
and

10Nyl ;2 < Cl|(v. 0,v. 7. 0.5 ) || < || (v, 2 v, 0.7 , I ) || .2
< CBy||(0xv. 02V, 0K . 2 ) || 2.
(103)

Finally, we obtain:

INall o < Col| 95V, 027 ) || - (104)

Hence, from Equations (91)-(104), we find:
|(N1, N3, N3, Ny) [l ot < C8ol|(050, 0.V, 08, 0,7 ) || -
(105)

Then, we can derive Equation (83) from Equations (84)
and (105). O
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We now show the energy equation is an equality as
follows:

Lemma 11. Under the assumption of Proposition 6, let (0, v,
9, %) be the solution to the initial problem (20)—(24), and (o,
u, 0, H) satisfies Equation (19), then there are two constants
C>0, D>0 such that if 5> 0 in Equation (7) is small enough,
the following holds:

dM (t
MU & DM(1) < Cl0,0.0,v.0,0.0,7) .

(106)
where M(t) defined by Equation (115) is equivalent to ||(0,0,
0.V, 0,9, 0,7 )||%,.; that is, there exists a constant C3 >0 such
that:

2 .
HZ;

1
63 H (axQ’ axvv ax’97 ax%) H?—IZ < M(t)

< C3|| (ax@ axv’ ax'99 ax%)HIZF]Z

(107)

Proof. Considering d, to Equations (20)—(23), multiplying by
0,0, 0,v, 0,8, and 0,7, respectively, and integrating them
over R?, and adding the results, we have:

1d
E& H(axgv axv7 ()x19, ax‘?f)”%2 + ”ﬁzHaﬁchH]z}

+ 10237 + 5|7 = (9:N:. 0xe)

+ <axN27 axv> + <axNSs ax’9> + <axN4’ ax’qf>7

(108)

We then estimate the right-hand side of Equation (108),
and the details are as follows:

(0xN1. 0:0) < [INi]| 2 [|0%ell12 < CBol10:0. 0¥ 7. (109)

<axN27 axv> < HNZHLZ”a)zcv”LZ < Cé()”axgvaxvv ax%H%—["
(110)

<axN37 0x19> < ||I\]3||L2 Ha:2c19||L2 < C50||axvv 0x19, ax%Hi{l’
(111)

and

(0xNy, 0. 7) < [Nyl 2|03 || 2 < Co|0xv. 0 |I7

H
(112)

Hence
1d 2 2 (| A2 2
Ea ”(ax()’ axv’ axl()» ax%)”L2 + ﬂﬂ ||axV||L2
+ 20|12 + |2 |12, < CBo|0x0, 9V, 9,8, 0, |2
(113)
O

From this together with Equations (52) and (68), we can
derive the following inequality with the aid of Proposition 6

Abstract and Applied Analysis

and inequality (14):

d
pr {/ (0. 0.v, 02V, 0.9, 028, 0, .7 )
R3
+e(B|ogre|? + adyeo;vF) dx}
+ C|[(0%0. B2 v. 0L v, 028, 019, R, 9L ) |2,
< C(€)8y|0c0, 0,v, 0,9, 0,7 ||?

LZ?
(114)

where ¢ is sufficiently small. We define the temporal energy
functional as:

M(t) = / ((0:0. 0uv. 32 v. 0,9, 029, 0, 332 )
R3

+ e(ﬂ|a,-ij|2 + a0;,00;v*) dx,
(115)

where we note that M(t) is equivalent to ||0,0, 0V, 0,9,
0,7 ||3,.. By selecting a sufficiently large constant D; >0, and
adding D; || 0,0, 0,v, 0,9, 0,7 ||3,. to both sides of Equation
(114), we derive Equation (106). Now, we are in a position to
prove Equations (9) and (10). Next, we shall state the follow-
ing estimates for (o,v, 9, %).

Proposition 12. Under the assumption of Proposition 6, let
(0,v,9, ) be the solution to the initial problem (79) and (o,
v, 9, ) satisfies (78). Then, for p € [1.2), there exists a con-
stant C such that:

050, v. 9. %) | . < C(1 + £)(P2V k= 0,1,2,

(116)
and
(0. v.8. )]s < C(1 + )~ P40, (117)
for any t > 0 as well as o is defined by Equation (12).
Proof. Define
h) =, Ss‘ips , ME1+sP(r20, (118)
Note that h(t) is nondecreasing, and
1010023, 0.8.0.5)(:9) )

< Cy/M(s) < C(1 +5)7or2) /h(t),

for 0 <s < t. Then, it follows from Equation (83) and lemma
(81) that:
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(0.0, 0,v, 0,8, 0,%)|| ;> < CKy(1 +
t
" C50/ (14t =) p2U(1 4 5)7o(220ds /h(r)
0
< C(1+ )72V [Ky + 80/A(D)]

t)—'f( p.231)

(120)

O

Thus, from Gronwall’s inequality and Equations (106)
and (120), we obtain:

M(t) < M(0) -Df+c/ D(t=s)
0
1(0x0, 05v, 0,9, 0,7 ) (5 5) || 7.ds < CM(0)(1 + £)~2(p-21)
t
- C/ (£ =) PN )2 EA(KE + S3h(1)]

< C(1+t)~2(P2V[M(0) + KZ + 83h(t)].
(121)

Because h(t) is nondecreasing, then from Equation (118),

we have that M(s)(1 + s)2°(7%1) < C[M(0) + KZ] + C83h(t),

for 0 < s <t, which implies that:

20( p.2;1) ) 2
0<s<t MO+ < CIM(0) + KZ + 83h(t)].
(122)

Then by the smallness of §, we have
h(t) < CIM(0) + K3]. (123)

This gives Equation (116). Now we turn to estimate for
(e, v, 8, Z)l1a.

In a similar manner to Equation (84), we have from
Equation (79) that

1027 8. 9) 1 < CKo(1 + 1))
t
+ c/ou + b= )P EO|| (N Np. Ny Ny) s 8)l| oo

(124)

Thus, using Equations (105), (119), and (123), we find:

(e, v, 9. 7)||ps < CKy(1 + 1)~ 20)
t
+ C5o/ (14t = 5)77(P0| (050, 0V, 0.9, 0, 7)) | s ds
0
t
< CKy(1 + t)=o(pa0) 4 Céo/ (1+t—s)ora0)
0
(1 + 5)~7(P2Vdsh(t) < CKy(1 + t)~o(P-30)
1 t
+C8o[M(0) + K3 / (1+ 1 =)0 (1 4 5) (P21 ds
0

(125)

13

<C(1 + t)~o(pa:0), (126)

where 2 < g < 6. Equations (116) and (117) imply Equations
(10) and (11) with the help of Equation (19). Finally, we
improve the decay rates of the second derivatives by modi-
fying the condition on the initial data. First, applying Lemma
8 and formula (79), we can immediately deduce the following
lemma:

Lemma 13. If k>0 is an integer and 1 <p <2<q< o0,
then for any t>0,

05U (B)]|,2 < CA+ £)= PR (|| Uy (8)]| s

Hakto)l) + ¢ [ 1+ =93 (I FU)

+[|FU))]]2)-
(127)

where o is defined by Equation (12).

Next, we state the following proposition, which together
with Equation (19) yields Equation (13). This completes the
proof of Equations (10), (11), and (13) in Theorem 3.

Proposition 14. Under the assumption of Proposition 6, let
(0,v,8, %) be the solution to the initial problem (79) and (o,
v, 9, X) satisfies Equation (78), if in addition the initial data
(00, Vo, 99, # o) EH* and ||(0g, Vo, 99, # o) ||+ are small, then
there exists a constant C such that:

102(0. v, 9, %) || 2 < C(1 + t)~o(P22), (128)

As in the proof of the Theorem 5, we have the global
solution(g, v, 9, Z)€H*(R?) by the smallness of || (¢, Vo, 9.
)| 4. Moreover, we determine the decay in-time estimate
(116) for k =0,1,2,3 (117). Now, we shall estimate for Ny,
N,,N; and N, in Equation (128):

Il(Ny, N5, N3, Nl <Cll(0,V,0,v,9, %, 0,5 )|| 12
1(0:0, 0,v, 02 v, 059, 39, 0. 7) |
<ll(@.v.0.v.9.7.0.%)|[:|(0.v. 0,v. 9. 0.7 5
X [[(9x 0¥, 0 v, 0,8, 029, 0.7 ) |7
[1(0x0. 0xv. 02 v. 0,9, 029, 0,7 ) || }=*
<Cll(e.v. 0¥, 9, ,0.7)|5. 1| (950, 0¥, 2V, 0,9, 029, 0. ) ||
X ||(d2e, 2 v, 0} v, 028,029, X ) | 15°.
(129)

where € =3 —1.

We shaﬁ now estimate 02(Ny, N,, N3, N,) in detail:

[0iN1 |12 < Clle. 9.0, v, 0,v|| 4[| 070, 00, 0 v, 0 V| 1
< Cll(e. V)l (070, V) [ 12
(130)
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10%NL |2 < Cll (0. v. 8. %) || <[ (930. 03 V. 05 v. 37 ) || 2
+ C” (ax07 a,ZCQ, axV7 axtg’ ax%)HL“ H(a)zcg7 aazc v, afc v, 692687 a)zc%)nﬁ
<Cll(e.v. 8. 7)1 || (0Z0. 02 v, 039, T ) || .
(131)

102N5 ]2 < Cll (@, v. 8) |~ [1(03 v. 039, 029 |2
+ CH (axQ7 a,ZCQ, 0.V, aazc v, 0,9, ax%’ aazc%)”L4
(02 v. 03 v. 038, 029, 2 . 0.7 ) ||+ < Cl[ (0. v. 9. %) | 12
1(0%0. 02 v. 028, 02 ) | 12
(132)

10%Ny|l;2 < ClI(v. 0,v. . 0,7) || s/ (9% v. O3 v. BRH . O3 ) || .
<CIv. T2 M1 (0% v. 2) | 11

(133)

Therefore, by Lemma 13, the decay-in-time estimates
Equations (116) and (117), and the above estimates for Ny,
N,, N3, and N,, we obtain:

[ (=903 (| FUE)y)
+ ([ F(U(9))]|2)ds < C(1 + t)~op52)

t
+/ (14t —3s)0022) (1 4 5)5/*ds < C(1 4 )73,
0

l2U(1)ll;> < C(1 + 1) P2)K,

(134)
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