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We study in this paper a general shape of damped Euler—Bernoulli beams with variable coefficients. Our main goal is to generalize
several works already done on damped Euler—Bernoulli beams. We start by studying the spectral properties of a particular case of
the system, and then we determine asymptotic expressions that generalize those obtained by other authors. At last, by adopting
well-known techniques, we establish the Riesz basis property of the system in the general case, and the exponential stability of the
system is obtained under certain conditions relating to the feedback coefficients and the sign of the internal damping on the

interval studied of length 1.

1. Introduction

The stabilization of damped beams submitted to vibrations
has been one of the main research topics in smart materials
and structures. A beam has two spatially nonhomogeneous
damping terms. The first is often called structural damping,
while the second acts opposite to the velocity and is called
viscous damping. When these damping coefficients are con-
stant, it is known that viscous damping causes a constant
attenuation rate for all frequencies of vibrations. In this

paper, we study a general shape of Euler—Bernoulli beams
with variable coefficients under the influence of a viscous
damping. This beam is clamped at one end and controlled
at its free end in force by a linear combination of the velocity,
rotation, and velocity of rotation and in a moment by a linear
combination of the velocity, velocity of rotation, and the
position term. Let y(x, t) the transversal deviation at position
x and time t. The equations are defined by the following:

m(x)yy(x.1) + (E1(X)Ysc) e (x, 1) + 7 (x)yr(x,1) =0, 0<x<1,£>0,

y(0.1) =y,(0.1) =0, t>0,

—EI(1)y(1,t) = (2011p1 + Coyu + ayi) (1,1), >0, (1)
(EI()yxe) (1, 8) = (Caryr + 2800y + By)(1,1), >0,

y(x,0) = yo(x). yi(x.0) = y1 (x), 0<x<l.
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The terms a, f, {11, {2, {12, and {5, are positive given
constants. The function m(.) is the mass density of the beam
and the function EI(.) is its flexural rigidity satisfying m(.)
>0and EI(.)>0. Throughout this paper, we assume that

€12 20,81280 2 (C11 + &xp)*and (m(.), EI(.)) € [CH(0, 1)]*.
(2)

Moreover, y(.) is a continuous coefficient function of
feedback damping that is assumed to satisfy the condition

[GH) e o

Our interest in this work is to generalize the works car-
ried out by several authors on damped Euler—Bernoulli
beams.

Aouragh and Yebari [1] studied the system (1) without
damping (y = 0) and with the condition {;,>0. In their arti-
cle, the authors showed that there is a sequence of general-
ized eigenfunctions that form a Riesz basis of the appropriate
Hilbert space and that there is exponential stability under
certain conditions relating to the feedback coefficients.

For our part, we study the system (1) with the presence of
a viscous damping y(x) >0 and the condition {;, > 0. To do
this, we analyze two situations as follows:

Case 1: We consider the case where {;, =0, which
implies with the condition (2) that {;; ={,, =0. Our
investigation of this case allows us to deduce the results
of asymptotic expressions by Guo [2], Koffi et al. [3],
Touré et al. [4], and Wang et al. [5]. In these cases, the
authors have concluded for the exponential stability.

Case 2: We study the case where {},>0 and {55 >
({11 + )% Here, first, we find a general asymptotic
expression of the eigenvalues of the system where we
could deduce those found by Jean-Marc et al. [6] and
Aouragh and Yebari [1] in the constant case. Next, by
proceeding by Wang [7], the exponential stability of the
system (1) is obtained when y is non-negative in [0,1],
and we discuss the case that y is continuous and indefi-
nite on the interval [0, 1].

In the second case, we consider non-zero all the coeffi-
cients in the boundary conditions, which made the calcula-
tions very complex. The calculations have been carried out
meticulously to obtain the expected result.

This present work reveals capital importance because it is
a general case of the results obtained in several works [1-6].

During our analysis, we used the asymptotic method of
Wang, which is essential for our study. This method comes
from the work of Birkhoff [8, 9]. We also find in the literature
several authors who have used this approach to study
Euler—Bernoulli beam equations with variable coefficients
(see Wang et al. [5], Wang [7], Guo [10], Guo and
Wang [11]).
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The contents of the paper are arranged as follows: in
Section 2, we formulate the system (1) into an abstract Cau-
chy problem in Hilbert state space and discuss some basic
properties of the system. In Section 3, we study the spectrum
properties for each case. The Riesz basis property and the
exponential stability in the general case are concluded in
Section 4.

2. Semigroup Formulation

In this part, we study the well-posedness of the system (1)
and deduce some properties of the operator of this system.
We introduce this Hilbert spaces as follows:

V = {ue H2(0,1)] u(0) = ,(0) = 0}, (4)
H =V xI20,1), (5)
with the inner product

Gz = [ )+ [ B 0) o))
a1 @), (1) T s (1)5(1).
(6)

where z; = (u;, v\)T € # and z,=(u,, v,)T € #. Here,
||l.|ls denotes the corresponding norm. The spaces L2(0, 1)
and H(0, 1) are defined as follows:

12(0,1) = {u:[O, 1 —>(C{/:)|u|2dx<oo}, 7)

H*0,1) = {u:[0,1] — C{u,uM u®, .. u® e12(0,1)}.
(8)

Next, we define an unbounded linear operator &/ : D(</)
CH — X as follows:

with the domain

(u,v)T € (H*(0,1)nV) x V:

—EI(1)u (1) = 2811v(1) + C1av(1) + au (1)

(EI()the) (1) = Env(1) + 2857, (1) + Bu(1)
(10)

D(<f) =

The system (1) can be formally written as a first-order
evolution problem
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dy(t)
{ o YW (11)
Y(0) =Y, € %.
where Y(t) = (u(., t), u,(., t))T and Y(0) = (ug, u;)’. Fur-

thermore, we introduce the linear operator & defined on
D(4/) by the following:

u u u 0
.%‘[ } —,Qf[ - A = | r®@)v(x)|.Y(u,v)eD().
v v “mlx)
(12)
Notice that A, denotes the operator where y(x) = 0. In the

study of Aouragh and Yebari [1], it is shown that the linear
operator A, generates a C,-semigroup of contractions on 7.
Moreover, the linear operator % is bounded on 7. In fact,

(B, )", (u.9)") 5| < R (w.v)"|? (13)
where
o (10
Rixe[oli] {m(x) } (14)

3

Proof. Let U=y, y,)T € D(o/). Integrating twice by parts
and taking real part, we obtain the following: O
e (U, Uz = —(Lulyr (D +2(Los + Cu) [y (1)y (1)

by - / r@d(x) <
(15)

Thus, / is a dissipative operator.

Moreover, the linear operator 98 is bounded on # and A,
generates a Cy-semigroup of contractions. Then, according to
perturbation theory by a bounded linear operator (see Pazy
[12] P.76), the operator &/ = 3B + A, is an infinitesimal gener-
ator of a Cy-semigroup of contractions {T(¢)},59 = {e”"} 0>
satisfying to || T(t)|| () < Mel™MI#D for M, w R, and
teR,.

Now, we show that the operator &/~! exists. For any G =
(u,v) € #, we must find a unique F=(f, g) € D(&/) such
that &/F = G. This leads us to the following system:

gx)=u(x),uecV
(EI(x)fex) (%) = —m(x)V(x) —r(x)g(x),v € L*(0,1)

—EI(1)f, (1 nu(l) + &pu(l) + af (1
Now, we deduce the well-posedness of the system (WD) = (L) +Cate(1) + )
through the following theorem. (EI(1)fec)x (1) = E1u(1) + 2850u(1) + ff (1)
f(0) =f£.(0) =0.
Theorem 2.1. The operator of defined by Equations (9) and (16)
(10) generates a Cy-semigroup of contraction {e”'},, on H
and has compact resolvent and 0 € p(f). Therefore, the spec-
trum o (&) consists entirely of isolated eigenvalues. A direct calculation shows that
|
g(x) = u(x)
= [ =g [ im0+ vtryuto) e
X) = - m(r)v(r) +y(r)ul(r)|ar
0 o 8)Js Ju ! ! (17)
1 s—1 af,(1)
-———(2 1 — 2 1) -
EI(5) (280u+ Cpuy)(1) +EI(5) (Saru + 285pu, + f) (1) EI(5) Jdod
\
where f(1) and f,(1) are defined as follows:
/. m(r)v(r) + ()
1+ﬂ// 2 doie / o), ),
1-
+EI(5) (28 + Sou) (1) + af(1)) 4 (Saru + 285u,) (1 )El(é) )dods 18)

EI((S)

Fh=— a/‘fﬁdé [ G [ imter 01+ eyt

(28111 + Lot ) (1) + (Saqu + 28nu, + ) (1 ) 6)‘15

EI(5)
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Obviously, we have F = (f, g) € D(&/). Therefore, we get 3. General Spectral Analysis

the following:
3.1. Study of Particular Case: {1, = {5, = {11 =0. In this part,

=(f.g9)=97'G. (19) we study the eigenvalue problem of the operator in order to
determine the behavior of these eigenvalues. The system (1)

b
Thus, o/ 7! exists and consequently we have 0 € p(</) and ecomes

Sobolev’s embedding theorem implies that &/~! is a compact
operator on 7.

m(x)yu (%, £) + (BL(X)Yac) o (%, 1) + 7(x)3,(x, 1) = 0, 0<x<1,£>0,

)/(O,t) :)’x(O, t) =0, t>0,

—EI(1)y, (1,t) = ay,(1,1), >0, (20)

(EI()yxc)<(1.1) = (Garye + By) (1. 1), t>0,

(x,0) = yo(x), y:(x,0) = y1 (x), 0<x<1,
\

and Our work shall follow the results from Wang [5]. Let A €
o(9f) be an eigenvalue of the operator & and let Y =
(u,v)T € (H*0,1)nV) X V: (¢, w)T € D(), the corresponding eigenfunction.
D) ={  ~El(Duu()=aun(l) . (1)
(EI()tt) (1) = Eo1v(1) + Pu(1)

A2m(x)gh(x) +( 1(x)¢"(x))" + r(x)Ap(x) =0, 0<x<I,

aY = ayem] PO =00)= (22)
—EI(1)¢"(1) = ( );
(EI(.)¢" () (1) = (Card + P)(1),
\
where the prime refers to the derivative with respect to space
variables. This equation leads to the following system:
|
iy 3 2 B ) )
P9 + H)¢<> o) + ) + g o
$(0) = ¢'(0) = (23)
—EI(1)¢"(1 )—afﬁ’( );
(EBI(.)"())'(1) = ({214 + P)p(1).
First, we use a space transformation to transform the f(2) = ¢(x).z=z(x) ~n / < ) £,

coefficient function appearing with ¢ in the first expression m(E)\ V4 (24)
of Equation (23) into a constant (see Guo [10]). where h / <F(§)> dé.
0
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A direct computation gives this system as follows: 7(x) 1 (m(x)) Ve m(x)
d(z) = 2= % =13 . (27)
h \EI h*EI
JOE) + a@f (@) + BEF() + (@) (2) + P () " (x) )
, tardlee) =0, Next, we make an invertible state transformation by Nai-
=10 )(:) } mark [13].
OB £y =0,
(1) ) z
" zzxx(l EI’ , (—i / a(f)d§> (28)
f + ijc 1) ( ):|f ( ) f(Z) :g(z)e 0 B 0<z<1.
Zeex (1) EI,( ) (D], {nd+p B
+[z 2(1) " z3(1)EI(1 )}f( )+ { zf;(l)EI(l)}f(l) =0 The function g satisfies the following:
(25)
9¥(2) +b1(2)g"(2) + c1(2)g'(2) + di(2)g(2) + Fh*g(2)
where +ihtd(z)g(z) =0,
D=3 /(1) + (D9 () + en(gl1) =
322, 4z,  62,El'(x)  EI'(x) 9" (1) +en(1)g"(1) + ex(1)g'(1) + es(1)g(1) =
O e T Y (9
_ Pxxxx 2ZxxxEIl(x) E N(x)zxx
(=) = z ZiEI(x) * ZiEI(x) ~ with
|
bi(z) = (a(2),b(2)), c1(2) = (a(2), b(2), c(2)). di(2) = (a(2), b(2), c(2))
en()=-tay 1=l @
. 2 z(1)  z(1)EI(1) 0
1, 1 ze(1)a(l) aa(1) 30
fa(l) = =24 +35a*(1) - 422(1) 4z, (1)EI(1)
3 3z, (1) Er'(1)
=320y L mE
\
3, 3 1)Er'(1 3a(1)z,, (1 k k+1
(1) = —° (1) +Ra2(1) - ZZi()l)EI((l)) - agzéz(l)( ) S = {z € (C:Zﬁs arg(z) < ( +4 )ﬂ}, k=0,1,....,7.
Zxxx(l) xx(l)EI,(l) 33
T T EWE) o
c3(1) = - ia” (1) + 13—6a(1)a’ (1) - 6—14a3(1) - m tionL;t‘l cil : a):2,06j)3;vei1:}11d w, be the roots of characteristic equa-
3¢ (1)z(1) | @(DEI'(1) | 3a°(1)z.(1)
- + +
4z2(1) 16z, (1)EI(1) 1622(1) Re (pw;) < Re(pw,) < Re(pws) < Re(pw,),Vp € S, (34)
_ a(l)zxx(l)EI/(l) _ u(l)zxxx(l) _ CZIJ' +ﬂ
4z3(1)EI(1) 4z3(1) Z(1EI(1) In sector S;, we name the roots as follows:
(31)
— 1%71_ \/_ \/_ — l%ﬂ_\/i \/E
By setting 4 = p?/h?, the first equation of the system (29) Wp=e == gy b @aEer = - o b (35)
becomes the following: 5 \/i V2 o V2 OV2,
wz=e"" = —7—71, Wy i=e4 :7—717

9W(2) + bi(2)g" (2) + c1(2)g'(2) + di(2)g(2)

(32)

4 *h*d =0, 0<z<I.

Pig(e) +phd(z)g(2) ‘ that satisfy the inequalities (34). Similarly, the choices can
also be made for other sectors. In the following, we study

Now, to solve the eigenvalue problem (29), we divide the ~ the asymptotic behavior of the eigenvalues specific to sec-

complex plane into eight distinct sectors by Naimark [13]. tors S; and S, because this will be verified in the other



sectors with similar arguments. For this, we will use the
following lemma:

Lemma 3.1. For p €Sy, with |p| large enough, the equation

99 (2) + bi(2)g"(2) + c1(2)g (2) + di (2)g(2) (36)
+pg(z) + p*h*d(z)g(z) =0, 0<z<l.

has four linearly independent asymptotic fundamental
solutions

os(z,p) = e/”"sz<l +M+ @(p‘z)), s=1,2,3,4,
p

(37)

and hence their derivatives fors=1,2,3,4and j=1,2, 3 are
given by the following:

() _ i) ppw,z ¢S’1(Z) -2
¢S (z.p) = (par;)e” (1+p +0(p )>, (38)

where for s=1,2,3,4

b1(@) = -1 [ (e - " [a@d e

4wy
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B0 =0, ()=~ [ w0z
N i
_4(03 /Od@)df—T?,
(40)
with
1 [z W2 [z
==y [z w=-7 [Ca@de. @y
0 0

Proof. The reader can refer to the study of Touré et al. [4]. O

For convenience, we introduce the notation [a], =a+
O(p~?).

Lemma 3.2. For p€ S, If 6 = sinz/4=/2/2, then we have
the following inequalities:

Re(pw,) < = |p|5, Re(pay) 2 — |p|d, et = O(p™2) when
lpl—cc.

Furthermore, substituting Equations (37) and (38) into
the boundary conditions (29), we obtain asymptotic expres-
sions for the boundary conditions for large enough |p| as
follows:

Us(ghs.p) = ¢5(0.p) =1+ 0(p~*) = [1],.
Us(¢hs.p) = #5(0.p) = par,(1 + 6(p™2)) = pasy[1],. (42)
Us(bss p) = (p@s)*e”*[1 + (pp + mped)p™ 7],
Ui(¢s, p) = (pg)* e [1 + (1 + cx1(1))p~ 5t + myp~ 03],
\
where Us(91.p) Usldr.p) Usds.p) Ui(s.p)
¢ Alp) — Us(¢1.p) Us(da.p) Us(ds.p) Us(da.p) _
My =y = e (p) = =0.
W22 (1)EI(1) (13) Ua(#1.p) Us(dap) Ualdsp)  Ua(¢a.p)
s — _la(l)Jerx(l)Jr a Ui(@r.p) Uildr.p) Ui(ds.p) Uilds.p)
»=hT ) 2 (DEI(1) (44)

Notice that A = p? /h* # 0, is the eigenvalue of Equation (29)
if and only if p satisfies the characteristic equation as follows:

By substitution, the following expression is obtained:

[1]2 [1]2
— por (1], poa{1l;
A(p) = 0 (pwz)zepwz[l + (/’t2 + mzzw%>p—1a)£3]2 (45)

0 (pwy)*e?2[1 + (uy + ¢ (1))p~ 3" + myp~ 3],
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(1] 0
pws[1]; 0
(p@3)?e? [1 + (uy + mypa3)p~ @3], (pwy)*e (1 + (uy + mpwi)p~ ],
(pw3)’e[1+ (i) + 21 (1))p™ 03" + myp~'w37],, (pwy)’ e [1+ (uy + e (1)p™ 0f" + myp~'0}’],
(46) (47)
In sector S;, the choices are such that
|
0 =—i, 03 =i,0} =i,0} = -i,0i0} =1, 00} =1

W, — 0y =iV2, 0, — 03 =2, 07 0, =i, 0720, = i,0; = —0, (48)

0 - w3 =iV2, 0, — 0 = V2, 07> - 0> = =2i, w3% — wy? = -2i.

\
Developing the determinant, and after a straightforward The equation below:
computation, we obtain the following:
e 4 e =, (54)
Ap)= 2,069/”""{ [1 + \/E(mzz - mu)ﬂ_l]epmz
+[1 4 V2(my + my)ip~te P22} + O(p72). has the solutions given by the following:
(49) )
1\ =i
=(k+=) = k=12, 55
p=(ki3) 2 (53)
Noting that
Let p; be the solution of Equation (53). According to
= 2 _

Hy = V2 — myy) (50)  Rouché’s theorem (see Naimark [13]), we obtain the follow-

Hy = V2(my +myy),

the characteristic determinant in sector S; becomes the fol-
lowing:

A(p): 2p6e,”m4{e/’w2 + e PP + [lusepwz

+ paie™]p™ 4+ 0(p7?)}. oy

Then, we have &_,, =2, @, =2 and @y, =0, (see Jean-
Marc et al. [6]).

We notice that @3, — 40_,,0,, # 0. Then, the following
theorem follows directly.

Theorem 3.3. The boundary conditions of the eigenvalue
problem (29) are strongly regular. Therefore, the eigenvalues
are asymptotically simple and separated.

Now, we study the asymptotic behavior for the eigenva-
lues 4,, of problem (29). The equation 4A(p) =0 implies

& + e o e + el ]p Tt + 0(p72) =0,
(52)

which can also be rewritten as follows:

e’ + e 4 O(p~?) = 0. (53)

ing expression:

~ 1\ #i
pk:pk+ak:<k+_)_+ak» a=0(k™),
2 ()
k=K,K+1,--,
(56)

where K is a sufficiently large positive integer.
By substituting it in Equation (52) and using the equality
e = — ek we get the following:

WDy _ o=@, + Msﬁ]:leasz + M4lfﬁlzle—akm2p—l (57)
+0(p;?) =0.

Moreover, expanding the exponential function according
to its Taylor series, we get the following:

o=t M i+0(k?), k=K, K+1,-,
2prwy  2pw,

~ 12 Hs | M

P ) 2. K3, P4 O(k™!

Pk <+2>7r1 CUerCl)zl+ &,

k=K,K+1,:--.

(58)

Note that 4, = p7/h? and in sector S;, , = €' and w3 =
i. So, we have the following:



A= Tg(w = p3) JF% [(kJF;)z”z +\/7§(/14 +p3) |
+0(k™),
(59)

where k=K, K+ 1, ---, with K large enough.
Now, in sector S,, the eigenvalues of the problem (29) can
be obtained by a similar computation with the choices.

2 2 . 2 2
£+£i 2:=e’%”:—£+£i,

i V2 V2. g V2 V2.
=———1i, wy=e >
2

wri=e'' = —_—
3 2 2

i1
W =e' =

)

’ 3

such that: Re(pw, ) < Re(pw,) < Re(pws) < Re(pw,),Vp €S,.
Hence, in the sector S,, the characteristic determinant
A(p) is as follows:

A(p): 2’06@0“’4{@00)2 + e P2 | [_'u3e/)w2 +ﬂ4i€_pw2}p_l
+0(p~)}.
(61)

By a similar calculation to the one done in sector §;, we
have the following:

~ Wawi 1 py o 1y _
(ke )21 ! o(k2),
Pk (+2>a)2 Z(k—l—%)ﬂIJFZ(k—i—%)ﬂ:+ k)
k=K,K+1,...,
(62)

with K a large enough integer. In the sector S,, using w, =
i3 . .
e+ and w% = —1i, we obtain for k=K,K+1,...,

V2 1 N2, V2 .
A= W(M‘/@) 2 {<k+§> n? +7(/44 +p3) |
Ok,

(63)
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Remark 3.4. By referring to Naimark [13], we can say that the
eigenvalues generated by the sectors S, coincide with those
determined in the sectors S; and S,.

Combining with Equations (59) and (63), we obtain the
asymptotic expression

Theorem 3.5. An asymptotic expression of the eigenvalues of
the problem (29) is given by the following:

V2 1 N2, V2 .
A= W(M - 43) iﬁ [(k+5) ? ‘|‘7(ﬂ4 +p3) |
+0(k™),

(64)

where k =K,K+1,---, with K a large enough integer, and

py = H3 = 2V/2p, — %’ fy + 3 = 2V/2my,
(65)

R [tyx) 1 (mx)\i,  h [Uy(x) (m(x)\i
== | ymx)h (EI(x)) e = ‘Z,/ o m(x) (El(x)) dx.
(66)

Moreover, A (k=K,K+1,-) with sufficiently large
modulus are simple and distinct except for finitely many of
them, and satisfy

s 5 ) -

From Equation (67), we find these results already known.
The following examples illustrate the special cases carried out
in certain works:

Example 1. For {,; =0 and a=f=0 and from Equation
(20), we get the system as follows:

m(x)yy (%, 1) + (EL(X) Vi) o (%, £) + 7(x)y,(x,t) =0, 0<x<1,t>0,

(0.1) =y,(0.1) =0,
_EI(I)yxx(L t) =0,
(EI()yx). (1. 1) =0,

y(x.0) = yo(x). yi(x.0) = y1 (x),

t>0,

t>0, (68)
t>0,

0<x<1.
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The asymptotic expression (67) becomes the following:

- 5 )

k——+o0

(69)

m(x)yu(x.t) + (E

This case corresponds to the one studied by Wang et al.
[5], where the result (69) is obtained.

Example 2. Suppose that a=0. Then, the system (20)
becomes the following:

( V) (X: 1) +7(X)y,(x,8) =0, 0<x<1,£>0,

y(0.1) = y,(0,1) = £>0,

Yix(1,8) =0, >0, (70)
(EI()y)x (1, 1) = (Carpr + By) (L 1), t>0,

y(%,0) = yo(x), yi(x,0) =y (x), 0<x<l.

This system has been studied by Touré et al. [4]. The

same asymptotic expression (67) is obtained.

m(x)yu(x, t) + (E

y(0,t) = ,(0,t) =

Yx(1,1) =0,

(EI()yxe)« (1. 1) = Cuye(1, 1),
y(x,0) = yo(x), yi(x,0) = yy (%),

Guo [2] studied this system. His work yielded a similar
asymptotic expression as Equation (67) in the uniform case
m(x) =EI(x) =

m(x)yy(x, t) + (E
y(0.1) = y,(0,1) =
El(l)yxx(l,t)Z—ayx(l,f),
(EI()yee)(1,1) =
y(x,0) = yo(x). yi(x,0) =y, (x),

This case was investigated by Koffi et al. [3], where the
asymptotic expression (67) was found.

Note that in the cited examples, the authors proved that
the systems are exponentially stable.

3.2. Study of General Case: {1,>0 and 1,85, > ({11 + &)
In this subsection, we study the system (1) with the

2m(x)¢h(x) +(
( )=¢'(0) =
—EI(1)¢"(1) =
(EI()¢"()) (1) =

AY =AY

Guye(1,8) + By(1,t),

Example 3. Suppose that @ = = 0. Equation (20) is equiva-
lent to the following:

( W) (X, 1) +7(X)y,(x,8) =0, 0<x<1,£>0,

t>0,
t>0,
t>0,
0<x<1.

(71)

Example 4. For {,;>0 and a,f >0, we get the following
system:

( W) (X, 1) +7(X)y,(x,8) =0, 0<x<1,£>0,

t>0,
t>0,
t>0,
0<x<1.

(72)

\
conditions {1,>0 and {5{5 > (&) + ¢5,)*. Following the
previous approach, we determine a general asymptotic
expression of the eigenvalues of the system (1) and deduce
those established by Aouragh and Yebari [1] and Touré
et al. [4].

Let A€ 6(A) be an eigenvalue of the operator & of the
system (1).

1(x)¢"(x))" + r(x)Ag(x) =

0<x<l1,

11}»(15( )+ (A +a)d' (1),
(Ca1d + B)p(1) + 2854 (1).
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The system (73) is rewritten as follows:

() (x ZEI/( ) " EIN( ) Z
PO+ g ¢ e W
¢(0) = ¢'(0) =0
(1) = = (1) - ),

" EI’() Vi 24‘221 /
PO =T PO g P+

First, by using the space transformation as follows:

fe =, =zt [*(75) e
hi/ 1(151(5))1/4615’ "

\
9(2) + al2) "'<> b(o)f"(2) +
+zh4d< (z) =
£(0)=£'(0) =0,

S (1) + kot (D" (1) + kap (1)f'(1)

where a(z), b(z), c(z) and d(z), z,, zt are defined in Equa-
tions (26) and (27)

_Zxx(l) 4’12/14—61
)=yt LB

_3Zxx(1) EI/(I)
k() =50+ - E )

X

Zue(1) | EI'(D)z (1)

)
(1) + kn (1f (1) + ki (1)f (1) =0,

Abstract and Applied Analysis

oo + 5 g =0
(74)
{nd+p
AR
\
we have
c(2)f'(2) + 2°h*f (2)
0<z<1,
(76)
+ ky3(1)f (1) =0,
204
42 =2
{nd+p

2{54

k(1) = 2(1) ' EI(1)Z22(1)  EI(1)Z3(1)

X

Then, by making the invertible state transformation

f(2) =g(z)e<_i/:a(§)d§>7 0<z<l. (78)

\
the system (76) can be written as follows, for any

0<z<1:



Abstract and Applied Analysis 11
W(2) + b1 (2)g" (2) + c1(2)g (2) + di(2)g(2) + 2*h*g(z) + ah*d(2)g(z) =0,
2(0) = 40) =0 )
g'(1) + b1 (1)g' (1) + b12(1)g(1) =0,
9" (1) + by (1)g"(1) + byp(1)g'(1) + by3(1)g(1) =0,
\
where
|
bi(z) = (a(2).b(2)). c1(z) = (a(z).b(z).c(2)). di(z) = (a(z). b(2), c(2))
_ 1, L, Zxx(l)a(l) (§124 + @)a(l) 20114
o)== O g ") T e T EWE)
3 3z.(1)  EI'(1)
bu() = =20+ 0y + ey
3, 3, a(1)EI'(1)  3a(1)z(1)
bu(1) = =20 (W) + 500 - 0 E0) ™ 220)
Ze(1) 2004z (1EI'(1) (80)
Z2(1)  Z(EI() " Z()EI(1)
R 3 , - d(1)EF(1)  3d'(1)zy(1)
b23(1) - _Za (1) +Ea(1)a (1) - aa (1) - 4ZX(1)EI(1> - 42)2{(1)
L POB) | 3@()ea() _alza(DE()
16z,(1)EI(1) 1622(1) 4z3(1)EI(1)
_ a(1)zyy (1 ) Cud+p 2{x4a(1)
4z}(1)  Z(LEI(1)  4zz(1)EI(1)

By setting 4 = p?/h?, the first equation of the system (79)
becomes the following:

9" (2) +b1(2)g" (2) + c1(2)g (2) + di(2)g(z) (81)

+p*g(z) + p*h*d(z)g(z) =0, 0<z<1,
which has four linearly independent asymptotic fundamental
solutions given by Equations (37) and (38). To solve the

eigenvalue problem (79), we make a study in the sector S;
which is defined like this

S = {ze(C:ZSarg(z) Sg} (82)
|
U4(¢sv ) = ¢s(0 ,0) =1 + @(p—Z) = [1}2’
Us(¢hs p) = $(0,p) = par(1+ O(p72)) =
Us(¢s, p) = (pag)?e™ [1 4 (231 + 107 )
U1(¢sv ) = (

2 (1307 4 1o4 + 12507 )p T 07 + Toepai ],
pw)* e (1 + 11,077 4 (uy + by (1))p7 07" + (115 + 713072 )p ™ 07,

\
Let w,, ®,, w3, and w, be the roots of characteristic equa-
tion w* 4+ 1 =0 that are arranged so that

Re (pw,) < Re(pw,) < Re(pw;) < Re(pawy), Vp
€S,. (83)

In sector S, the choices are the same as in Equation (35).
Substituting Equations (37) and (38) into the boundary con-
ditions (79), we obtain asymptotic expressions for the
boundary conditions for large enough |p|:

wg[1];. (84)
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with
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= Ciath {1pa(1) + 201 = C1aka
2 k22, (1)EI(1 )  4kPz (1)EI(1) ' h*22(1)EI 27 W2z, (1)EI(1)’
Zxx(l) a _ {12
o= = 300+ B0+ S 7 (BT
{na(l)u, 28114, 20y
= - 22— 85
5= T gz (DEIL) | R2()EI) T TR E) (85)
o Cnpa(l)m 201140 S 2000kn
2T g, (DEIL) | P2(0)EI() BT T R2(1)EI()
n 2pa(l) $a 20
TR T P2(DEI)  R2(VEI(L) | WZ2(1)EI(L)
\
By substituting the expression (84) into (44), the charac-
teristic determinant of the eigenvalue problem (79) is given
by the following:
|
[1]
Pwl[ ]
ap) = |1 6
0
0
[1]
pws[1], (87)
(pw,)?e’”2[1 + (151 + 1205703 + (13303 + 1oy + 155052 )p ™' @3 + Tyepw3 '],
(pwy)*e’2[1 + 7157 + (1 + by (1))p~ 03" + (715 + 713057 )p~ 03],
[1],
pws[1], (88)
(pw3)?e’ (1 + (151 + 1037037 + (13303 + T4 + 155052 )p 7' 037 + Ty6pw3 '],
(pws)*e’s [1 4 711035 4 (4 + by (1)) 03" 4 (713 + 7305°)p ™ 037,
0
0
(89)

(pwy)?e" (1 + (11 + 105 )0;? + (12305 + 724 + To5037)p 7 07 + Tr6pwy’],

(pwy)* e [1 + 1 @3* + (uy + by (1))p ' 0i" + (71, + 113037 )p~ 03],
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Developing the determinant, and after a straightforward
computation, we obtain the following:

1
H3 =
7’-26\/2

1

Hq =
726 \/i

Then, we have @_jy=2v21yi, O19=21/27y, and
Oy =0.

We notice that 2, — 40_,,0,, # 0. Then, the following
theorem follows directly.

Theorem 3.6. The boundary conditions of the eigenvalue
problem (79) are strongly regular. Therefore, the eigenvalues
are asymptotically simple and separated.

Now, we study the asymptotic behavior for the eigenva-
lues 4,, of problem (79). The equation 4(p) =0 implies

e+ ie P2 + [zl + pye "2 Jp7t + O(p7) =0,
(92)

which can also be rewritten as follows:

e’ +ie P + O(p~!) = 0. (93)

The equation e””2 +je™”*2 =0, has the solutions given
by the following:

@y

3 .
Pk — <k+z>ﬂ, k:1,2,"'. (94)

Let p; be the solution of Equation (93). According to
Rouché’s theorem (see Naimark [13]), we obtain the follow-
ing expression:

~ 3\ zi
Pr=pPr+ o= <k—|—> l—kak,ak = @(k_l),
4 (0}
k=K.K+1,-,
(95)

where K is a sufficiently large positive integer.
By substituting it in Equation (92) and using the equality
ek = jelk®2 - we get the following:

13

Ap)= 23/ Zragp P {0 + ie [y

o ) (90)
+uge"2)p™t + O(p72)},

with

(14731 = T = 71y + 711721 + 711720 + Tos (U1 + b21) = T26T12 = Ta6713)s

(91)

(1 =7 = 79 + 711 + 711721 = T11T20 — Ta6 (U1 + bay) = Ta6712 + T26713)-

\
kW2 _ o=k _|_Iu35]:1€akw2 _|_ﬂ4i’pv]:le—akw2 + @(ﬁ]:Z) —=0.
(96

)

Moreover, expanding the exponential function according
to its Taylor series, we get the following:

H3 Ha

ap=— -————i+0(k?),k=K,K+1,-,
¢ 2prwy  2pm, &5
~ 3\ w1 puz 1 oy _
=\kt+g)—+3 -5 +0(k2),
Pk < 4>a)2 2(k—|—%)7rl 2(k+3)n (k)
k=K,K+1,
(97)

Note that 4, = p2/h? and in sector S;, @, = " and w3 =
i. So, we have the following:

= —27\;5(/14 + p3) JF% [<k+431>2”2 +\/7§(ﬂ3 — pa) |
+0O(k™1),
(98)

where k=K, K +1, ..., with K large enough.

By applying the same proof to the sector S,, the eigen-
values of the problem (79) can be obtained by a similar
computation with the same choices as in Equation (60).
Hence, in the sector S,, the characteristic determinant 4(p)
is as follows:

A(p)= =2v/2155p "™ {2 — i — [u3eP™

+use")p™ + 0(p7) ) )

By a calculation similar to the one done in sector S;, we
have the following:

. 3\ 7zi 1 H3 . 1 Hy _

(k) 2L L o(k2),
Z (+4)w2 AT (T P
k=K,K+1,....

(100)
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In the sector S,, using w, = " and w2 = — i, we obtain
the following:
V2 1 3\ ,, V2 :
A= —W(m + p3) e {<k+z> * +7(M3 — pa) |
+0(k™),
(101)

where k =K, K+ 1, ..., with K a large enough integer.

Theorem 3.7. Consider that {1, >0 and {1,¢5; > (&11 + $2)%
then an asymptotic expression of the eigenvalues of the prob-
lem (79) is given by

V2 1 3\, V2 :
A= —zhz(//‘4+ﬂ3)ihz[<k+4> ”2+2(ﬂ3—ll4)]1

+O(k™),
(102)

where k =K,K+1,..., with K a large enough integer, and

V2h (m(l))‘%

Vet e Em\a)
($12821 — 4855811 + m(1)EI(1)),

m(x)yy(x,t) + (EI
y(0.1) = y,(0,1) =0,
(EI()yue)(1,£) =0

—EI(1)y,(1,t) =
y(x.0) = yo(x). yi(x,0) = 1 (x),

This system has been studied by Jean-Marc et al. [6]. If
(1 =Cn=_{1=p=0, then £=m(1)EI(1) and Equation
(105) becomes the following:

x%
_2h0m I(x)

1 1 ;
dx—@( m(1))Ji(EI(1))3,

lim Re
k—+o00

(107)

m(x)yy(x, t) + (E
y(0.1) = y,(0,1) =
~EI(1)y,(1,t) =
(EI()y)x(1,t) =
y(x,0) = yo(x). yi(x,0)

Sy + ay,)(1,0),

( D) (%5 1) = 0,

(24'11}& +{ya ay) (1),
(Corye + 2800y + By)(1.1),
=n(x),

Abstract and Applied Analysis

(104)

Moreover, A (k=K,K+1,--) with sufficiently large
modulus are simple and distinct except for finitely many of
them, and satisfy

-] 2 ()

where € = {1,051 — 485,81, +m(1)EI(1).

Jm Re gy =

(105)

According to the condition (2), the constant ¢ is positive.
From Equation (105), we find the following results:

Example 1. Suppose that €12>0 and é’ll == é‘zz == 4’21 :ﬂ =0.
Then, the system (1) becomes the following:

(X)) (%, 8) + ()%, £) =0, 0<x<1,£>0,

t>0,
t>0,
t>0,
0<x<1.

(106)

\
The asymptotic expression (107) is equivalent to the one
in Theorem 8 by Jean-Marc et al. [6].

Example 2. Suppose that {;,>0 and y =0, the system (1) is
equivalent to the following:

0<x<1,t>0,
t>0,

t>0,

t>0,
0<x<1.

(108)
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which has been studied by Aouragh and Yebari [1], where
they get the same result as Equation (105) in the uniform
case m(x) =EI(x)=1.

Remark 3.8. In the cited examples, the authors proved that
the systems are exponentially stable.

4. Riesz Basis Property and Exponential
Stability of the System in the General Case

In this section, we consider the system (1) in the general case
Wlth the COnditiOnS C12>0 and 512521 Z (Cll + 6_:22)2.

4.1. Riesz Basis Property of the System. Here, we discuss the
Riesz basis property of the eigenfunctions of the operator &/
of the system by following an idea due to Wang et al. [5]. We
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begin by considering a bounded invertible operator defined
on # by the following:

Z(f.9) = (pw). (109)

¢(x) =f(z), w(x)=g(2),
1 &)\ 1/4
h

[E&) e = (EE)

(110)

Then, we define the ordinary differential operator as
follows:

L(f) =fW(2) +al2)f" (2) + b(2)f"(2) + c(2)f (2).
p(z) = h*d(z),
B,(f) =f(0) =0.B,(f) = f'(0) =0, (111)
Bs(f) =f"(1) + kn(1)f'(1) + ki (1)f (1) =0,
By(f) =" (1) + kot (Df"(1) + kap(1)f'(1) + ks (1) (1) = 0,
\
Let H be the Hilbert space defined by Wang [7] and FD(2) + al2)f"(z) + bl2)f"(2) + c(2)f'(2)
define the operator A in H by the following: +nu(z)f(z) + n*f(z) = 0. (113)
A(f.9) = (9. =L(f) = u(x)g)
D(A)={(f.g9) €H| A(f.g) €H.B;(f) =0.j=1....4}. Now by taking
(112)
i=h and Z(f.9)= (@) . (14)
Let 7 € 6(A) be an eigenvalue of A and (f, g) the corre-
sponding eigenfunction. Then we obtain g =7f and f satis-
fies as follows: we see that y = A¢ and ¢ satisfies
|
y 2EI'(x) ,, El'"(x) ,, 22m(x) Ay (x) B
$(0) = ¢'(0) =0,
#(0) =- -2y e
P10 == G P + ) + S g )

Hence, we have that: 7 € 6(A)el € o(A).

Theorem 4.1. Let operator of be defined by Equations (9) and
(10).Then the eigenvalues of operatorsfare all simple except
for finitely many of them, and the generalized eigenfunctions
of operatorglform a Riesz basis for the Hilbert state spaceZ .

\
Proof. We have shown that the boundary problem (79) is
strongly regular (see Theorem 3.6). Therefore, the eigenva-
lues are separated and simple except for finitely many of
them. Thus, the first statement follows. Moreover, Theorem
4.1.1 in the study of [7] ensures that the strong regularity of
the boundary problem leads to the sequence of generalized
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eigenfunctions F, = (f,,n,f,) of operator A forms a Riesz
basis for H. Since Z is bounded and invertible on H, it
follows that w,, = (¢, 1,¢,) = ZF, also forms a Riesz basis
on Z. O

4.2. Exponential Stability of the System (1). Referring to the
study of Curtain and Zwart [14], we note that the Riesz basis
property implies the spectrum-determined growth condition
and Equation (105) describes the asymptote of o(</), for any
small £>0 there are only finitely many eigenvalues of & in
the following half-plane:

. 1 [Uy(x) (m(x)\i
LRA> =50 | ym(x) (EI(x))

¢ m(1)\ 4
o e LEID) <T<1>) e

Following Theorem 2.4 in the study of Gao [10], all the
properties of operator &/ found above, allow us to claim that
for the semigroup {e'},,, generated by o the spectrum-
determined growth condition holds the following:

(116)

(117)

Re({(d¥.¥)5) = =(Caly (DI + 2(Zo + Su) ' Dy (1) + Lialy' (D) = /;Y(x)lw(x)lzd(x) <0.

We also know that o/ generates a semigroup of contrac-
tions {e”'},5, on . Moreover, the spectrum of the operator
g/ has an asymptote as follows:

1 [1y(x) (m(x)\1 ¢ m(1)\ _s
Ret~ =2 om(x) (Ef(x)> d - he L,EI(1) (T(l)) "
(121)

Then, the study of the exponential stability is equivalent
to verifying that ReA<0. Let A =ib with b € R* be an eigen-
value of operator &/ on the imaginary axis and ¥ = (¢, )"
be the corresponding eigenfunction, then y = 1¢.

Re((A¥, ¥)s)=||¥||3ReA=0, then

—nly ()P = 2(Cn + E) W' (Mw(1)] = Sy (1)
- [ @ e o
(122)

Since y(x)>0 and y/(x) are continuous with {;,>0, ¢,
$2, 851 20, we obtain the following:

Abstract and Applied Analysis
with

1
w(d) = tlggo? et and

s(of) = sup{Re(A)| A € () }.

(118)

By using Theorem 4.1, the exponential stability of system
(1) can be concluded.

Theorem 4.2. Consider that {1,>0 and {1,¢5; > (&11 + $20)*
If y(x)>0, then the system (1) is exponential stable for any
$11.622. 8 =2 0and a, > 0. That is, there are constants M >0
and w>0 such as the energy

B =) ( [imytas+ [ Erpas+ 2 +ﬂy2<1>),
(119)

of system (1) satisfies E(t) < ME(0)e™", V't > 0, for any initial
condition (y(x, 0), y,(x, 0))T € Z.

Proof. The operator & is dissipative. In effect, For ¥ =
(#. w)" €D().

(120)
\
y'(1)=0 and
y(x)lw(x)? =0.vx €[0.1]. (123)
Then,
¢'(1) =0 andy =0,Vx € [0, 1]. (124)

Moreover y = A¢, then from Equations (74) and (124),
the following differential equation is satisfied by ¢(x):

0<x<1,

{ﬂzm(x)d)(x) + (EI(x)@" (x))" + Ay (x)p(x) = 0,
#(0) =¢'(0) =¢'(1) = ¢"(1) = ¢"(0) = ¢(1) = 0.
(125)

We show with the help of Rolle’s Theorem that the null
function is the unique solution of Equation (125). For this, the
reader is invited to follow a method used by Jean-Marc et al.
[6].

From Theorem 4.1 and the spectrum-determined growth
condition, the system is exponentially stable for any {;,>0
and {15851 > (11 + ¢52)* with @, > 0. O
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Now, using an idea of Wang [7], we study the situation
where y(x) is continuous and indefinite in [0,1]. We have the
following theorem.

Theorem 4.3. Note y*(x)=max(y(x),0),7 (x) = max( —
7(x),0) and let

t(£.9)" = (909, = 5 I + (093 ).

(126)
¥(f.q)T € D(t*) = D(st), (127)
B (f.g)" = (o,%)w, gTex. (128

Hence, the operator of can be written as of = + RB~.
Note s(At) =sup{ReA|A € a(AT)}. If

285 o <P

then the system (1) is exponentially stable.

, (129)

Proof. According to Section 2 of this paper, the operator %~
is bounded and symmetric, so it is a self-adjoint operator (see
Brezis [15]) and

o) = max {7

xelo1] | m(x)

(130)

By Theorem 4.2 and the definition of operator /7,
{e?"*} is a contraction semigroup and s(/*)<0. Applying
the perturbation theory of linear operator’s semigroup (see
Pazy [12]), we have 1 € (/) whenever ReA>s(/ ") + || B~ |
Furthermore, Theorem 4.1 ensures that

o(A) =s(A) <s(LT) + || B || (131)

Therefore, the system (1) is exponentially stable if || B~ ||
<[s(/™)]. m

5. Conclusion

During our analysis, after showing the basic properties of the
operator, we established an asymptotic expression of the
operator, which generalizes several other results. Then, using
the Riesz basis property, we have shown that the system is
exponentially stable in the general case following the sign of
y. In addition, our results can also be extended to other
Euler—Bernoulli beam problems.
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