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Abstract: In light of a growing population and climate change compounding existing pressures on 

the agri-food system, there is a growing need to diversify agri-food systems and optimize the 

productivity and diversity of smallholder farming systems to enhance food and nutrition security 

under climate change. In this context, improving weed management takes on added significance, 

since weeds are among the primary factors contributing to crop yield losses for smallholder farmers. 

Adopting remote-sensing-based approaches to facilitate precision agricultural applications such as 

integrated weed management (IWM) has emerged as a potentially more effective alternative to 

conventional weed control approaches. However, given their unique socio-economic circumstances, 

there remains limited knowledge and understanding of how these technological advancements can 

be best utilized within smallholder farm se�ings. As such, this study used a systematic scoping 

review and a�ribute analysis to analyze 53 peer-reviewed articles from Scopus to gain further 

insight into remote-sensing-based IWM approaches and identify which are potentially best suited 

for smallholder farm applications. The findings of this review revealed that unmanned aerial 

vehicles (UAVs) are the most frequently utilized remote sensing platform for IWM applications and 

are also well suited for mapping and monitoring weeds within spatially heterogeneous areas such 

as smallholder farms. Despite the potential of these technologies for IWM, several obstacles to their 

operationalization within smallholder farm se�ings must be overcome, and careful consideration 

must be given on how best to maximize their potential before investing in these technologies. 
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1. Introduction 

Globally, agri-food systems are under pressure to meet growing food demands. With 

this demand for food incessantly increasing due to the perpetually expanding population, 

there are growing concerns that food insecurity and malnutrition will be amplified, 

particularly under climate change [1]. Despite these concerns, only a select few crop 
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species are grown worldwide for food production. This limited variety largely results 

from the green revolution paradigm that has dominated agricultural food production 

activities [2–4]. While the green revolution has undoubtedly contributed to an increase in 

food security, there is a growing consensus that declining agro-biodiversity has 

contributed to modern food production systems being more vulnerable to stressors, which 

will likely impact their ability to meet future food and nutrition targets due to their lower 

resilience [5]. Subsequently, there is a need to diversify agricultural food production 

systems by shifting away from the intensification and over-reliance of a select few crop 

species [2,6]. 

The increase in the cultivation of neglected and underutilized crops (NUCs) offers a 

great deal of promise to aid in addressing current and future food and nutrition security 

challenges. This is primarily a�ributed to the suitability of these crops for production in 

low-input agricultural systems, their relatively high nutrient density, and their tolerance 

to both biotic and abiotic stresses [2,6–8]. In regions such as sub-Saharan Africa, where the 

prevalence of food insecurity and malnutrition remains high, the promotion and 

prioritization of NUCs take on added significance. This is because local growing 

conditions are often unfavorable for major crops typically grown in commercial 

production systems [3]. Subsequently, NUCs can play an important role as supplementary 

or alternate sources of food and nutrition [2]. Considering that NUCs are less severely 

impacted by climatic variability and their larger-scale cultivation possesses immense 

potential in contributing to alleviating food insecurity, malnutrition, and poverty, 

particularly in resource-constrained and marginalized communities, there is a need to 

optimize and incentivize their production [4,8,9]. 

NUCs are typically characterized by lower yields than major crops; however, they 

can generally compensate for this by their ability to withstand adverse climatic and 

environmental conditions [10]. Nevertheless, it is critical to ensure that optimal yields of 

NUCs can be a�ained to realize the potential of these crops to alleviate the aforementioned 

socio-economic challenges. Furthermore, improving their yield potential may make their 

production more appealing, as improved profitability will be associated with their 

cultivation [10]. From a sub-Saharan African perspective, root and tuber crops are among 

the primary sources of food for the population. Therefore, achieving good, high-quality 

production levels of these crops takes on added significance in these regions [9]. With the 

cultivation of NUCs mainly being confined to smallholder farms (typically less than 2 ha 

in size), there exists an opportunity to improve food sovereignty by enabling smallholder 

farmers to exert a greater influence in food production systems [2,4,5]. This is particularly 

important as the potential of smallholder farmers remains underdeveloped despite being 

major contributors to global food production. For example, smallholder farmers produce 

approximately 80% of the food in sub-Saharan Africa and Asia [5,11,12]. Additionally, the 

promotion and prioritization of NUCs throughout all stages of the food system has the 

potential to improve the socio-economic circumstances of poverty-stricken and 

marginalized smallholder communities as their interest in cultivating these crops will 

grow once their value is be�er established [4]. 

While several factors may contribute to low yields and inferior product quality in 

many farmer’s fields, poor weed management is often the primary contributing factor 

[9,13]. This can be a�ributed to the initial slow growth of these crops, which results in 

them being poor weed competitors, particularly during the early stages of crop 

development [9,13–17]. Weeds can compete with crops for primary resources such as 

water, sunlight, nutrients, and space. Moreover, weeds may contribute to allelopathic 

reactions that inhibit crop growth and development [14,16,18]. Since weeds are deleterious 

to crop production and their control or management can be resource-intensive, 

understanding and quantifying their impacts is essential to developing appropriate 

strategies that promote sustainable crop production whilst minimizing the wasteful use 

of critical resources [18,19]. 
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Conventional weed control or management approaches typically involve uniformly 

spraying the entire field with herbicide and/or adopting manual weed control methods. 

However, weeds are usually unevenly distributed within these fields; therefore, this is 

inefficient from both a labor and economic perspective. Furthermore, applying herbicides 

can adversely impact the health of the surrounding environment [18,19], while manual 

weed control approaches may require additional laborers, which may also be challenging 

considering that many individuals shift to urban areas in search of employment, amongst 

other factors. Subsequently, weeds are not properly managed. Integrated weed 

management (IWM), also commonly referred to as precision weed management (PWM) 

or site-specific weed management (SSWM), has been advocated as an alternate approach 

to mitigating the harmful impacts of conventional methods by adopting a more efficient 

and sustainable approach [18,20]. It is centered on improving the understanding and 

quantifying crop–weed competition dynamics to develop customized weed management 

strategies [18,20]. Such an approach to weed management falls within the precision 

agriculture (PA) paradigm, which has begun to feature quite prominently within the 

agricultural arena over the past decade [21,22]. 

PA practices involve the application of several customized management 

interventions and strategies that are guided and informed by state-of-the-art data 

collection, analysis, and communication technologies to enhance crop productivity, 

reduce unnecessary losses of critical resources such as water and nutrients, as well as 

mitigate potentially harmful impacts on the environment [21–23]. The use of remotely 

sensed data acquired from satellites and manned or unmanned aerial vehicles is often 

used to facilitate PA applications and has the potential to guide and inform integrated 

weed management. However, the spatial, spectral, and temporal resolution associated 

with various sensors may dictate how and for what purposes the data they capture can be 

used. 

Considering the often fragmented and heterogeneous nature of smallholder farming 

systems coupled with their unique socio-economic circumstances, it is important to 

understand, in the context of IWM, which remote-sensing-based approaches are most 

relevant and can provide a pragmatic and feasible approach to facilitate improved weed 

management within these systems. To this end, a systematic scoping literature review and 

a�ribute analysis was conducted with the specific objectives of identifying (i) common 

remote sensing platforms, (ii) sensor characteristics, and (iii) data analysis procedures that 

are implemented to facilitate IWM and contextualizing these findings by considering the 

challenges and opportunities that exist from a smallholder agriculture perspective. 

This review is divided into five sections. Section 1 provides the background to the 

review. An overview of the methods used to identify and evaluate the literature included 

in the review is presented in Section 2. Section 3 details the key findings of the a�ribute 

analysis inter alia: (i) influential publications, (ii) prominent authors, and (iii) impactful 

journals. Section 4 provides a concise discussion of the review’s objectives, and the 

conclusions are presented in Section 5. 

2. Materials and Methods 

This systematic literature review followed the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) approach. The literature database for 

the bibliometric analysis was compiled by first searching for articles within the Scopus 

abstract and citation database. The choice of keywords and variants used in the search 

string was informed by a subset of the literature identified through Google Scholar and 

the authors’ experience in this subject area. A structured query string consisting of the 

following keywords and variants (“Remote sensing” OR “satellite” OR “UAV” OR 

“drone” OR “Unmanned aerial vehicle” AND “agriculture” OR “farm*” OR “crop” AND 

“Integrated weed management” OR “precision weed management” OR “site-specific 

weed management”) was used to source the literature on 05 September 2023. 
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The search results were first filtered by selecting full-length articles wri�en in English 

and published in accredited journals. Thereafter, the remaining articles were screened for 

eligibility based on the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses extension for Scoping Reviews (PRISMA-ScR) framework [24]. Only those 

articles that met the following eligibility criteria were retained in the final literature 

database: (i) the study must utilize at least one of the remote sensing platforms to 

implement IWM, (ii) the study applied remote-sensing-based techniques to guide and 

inform IWM decision making, and (iii) the study provided a methodological description 

of how the remotely sensed data were used to detect and map weeds. 

The structured query search in Scopus yielded 111 potentially relevant studies. 

Twenty-one of these studies were excluded as they were not wri�en in English or 

published in accredited peer-reviewed journals. The remaining 90 articles were then 

manually screened for eligibility by their titles and abstracts, and a further 19 articles were 

excluded. The authors then sought the remaining 71 articles, and a further 18 articles were 

removed after being assessed against the eligibility criteria defined for the study by 

examining the full text of each article. The final literature database containing 53 

publications was then exported into the Biblioshiny and VOSviewer (version 1.6.20) 

software applications for further analysis [25,26]. An overview of the article selection 

process is provided in Figure 1. Additional a�ributes were added to the literature database 

to perform the a�ribute analysis by extracting specific information from each selected 

study. These include remote sensing platforms, sensor type, spatial resolution, 

classification method, classification algorithms, extracted bands and features, geographic 

location, and crop type. 
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Figure 1. A conceptual flow diagram depicting how the final literature database was compiled using 

the PRISMA guidelines. 

3. Results 

3.1. General Characteristics 

Research on remote-sensing-based techniques to detect and map weeds to facilitate 

IWM has been ongoing for almost two decades. It has steadily increased annually by 

approximately 14% (Table 1). Of the 53 publications selected for further evaluation, more 

than 80% have been published in the last decade, of which approximately 53% have been 

published in the past three years (Figure 2). This may result from advancements in sensor 

capabilities, data accessibility, data processing, and computational power [27]. 

Table 1. A summary of the general characteristics of the selected studies included in the final 

literature database. 

Description Results Description Results 

Time span 2006–2023 Keywords plus (ID) 410.00 

Number of journals 24.00 Author keywords (DE) 192.00 

Number of publications 53.00 Authors 186.00 

Annual growth rate  13.80% Single-authored articles 0.00 

Document average age 4.91 Co-authors per article 4.94 

Average citations per doc 50.11 International co-authorships 15.09% 
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Figure 2. Annual distribution of published articles (years without published articles have been 

omi�ed). 

The 53 publications contained within the final literature database were published 

across 24 journals, with Computer and Electronics in Agriculture (n = 8), Remote Sensing (n = 

8), and Precision Agriculture (n = 7) accounting for approximately 43% of published articles. 

According to Bradford’s law, articles published within these journals on remote sensing 

to facilitate IWM are among the most influential and of greatest interest (Figure 3). 

Computer and Electronics in Agriculture and Precision Agriculture also retain their position 

among the top 3 most influential journals when ranked according to the total number of 

citations and h-index values (Table 2). 

 

Figure 3. Number of publications per journal and journal ranking according to Bradford’s law. 

Table 2. Journal publication metrics listed in chronological order. 

Journal Number of Publications TCs h-Index Publication Year Start 

Weed Science 1 70 1 2006 

Weed Research 3 81 3 2007 

Weed Biology and Management 1 21 1 2007 

Weed Technology 1 12 1 2007 
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Computers and Electronics in Agriculture 8 705 6 2008 

Crop Protection 1 13 1 2011 

Precision Agriculture 7 506 7 2012 

Plos One 2 363 2 2013 

European Journal of Agronomy 2 67 2 2014 

Biosystems Engineering 1 26 1 2015 

Sensors (Switzerland) 1 133 1 2015 

Agronomy for Sustainable Development 1 68 1 2016 

Remote Sensing 8 349 7 2018 

International Journal of Applied Earth 

Observation and Geoinformation 
1 85 1 2018 

International Journal of Remote Sensing 1 44 1 2018 

Pest Management Science 2 42 1 2020 

Spanish Journal of Agricultural Research 1 4 1 2020 

Agronomy 5 44 3 2021 

Plant Production Science 1 18 1 2021 

Scientific Reports 1 2 1 2022 

Remote Sensing Applications: Society and 

Environment 
1 2 1 2023 

Smart Agricultural Technology 1 1 1 2023 

A total of 186 authors contributed to the 53 publications on using remote sensing to 

facilitate IWM. Of these 186 authors, 14 published 3 or more articles (Table 3). Francisca 

López-Granados can be considered the most influential author in this research focus area, 

ranking highest for 4 out of the 5 author performance metrics (listed in Table 3). Torres-

Sánchez et al. [28] received the highest number of citations and average citations per year. 

In their study, the authors investigated using an unmanned aerial vehicle (UAV) equipped 

with a low-cost commercial-grade camera for vegetation fraction (VF) mapping to 

facilitate early-season IWM in wheat fields. Several visible spectral indices were derived 

to quantify VF, and the influence of flight altitude and image acquisition dates on 

classification accuracy was also evaluated. Overall, the study’s results demonstrated that 

using visible spectral indices derived from a low-cost commercial-grade camera onboard 

a UAV flying at low altitudes can satisfactorily distinguish VF in wheat fields and thus 

has potential for early IWM applications. The most highly cited article based on the 

normalized TC metric was by Gallo et al. [29]. These authors employed the latest version 

of the You Only Look Once (YOLOv7) deep learning algorithm to detect weeds among 

chicory using red, green, and blue (RGB) imagery acquired from a UAV. The study’s 

results demonstrated that the YOLOv7 algorithm performed satisfactorily for weed 

detection and outperformed previous versions. However, the need for large-scale datasets 

to develop and test the model may limit its suitability for operational applications. 

Table 3. Author-level citation metrics for authors with 3 or more publications. 

Author h-Index g-Index m-Index TCs Number of Articles Publication Start Year 

LÓPEZ-GRANADOS F 14.00 18.00 0.78 1833.00 18.00 2006 

DE CASTRO AI 10.00 11.00 0.83 1397.00 11.00 2012 

TORRES-SÁNCHEZ J 9.00 12.00 0.82 1393.00 12.00 2013 

JURADO-EXPÓSITO M 7.00 7.00 0.39 282.00 7.00 2006 

PEÑA JM 7.00 7.00 0.70 1114.00 7.00 2014 

JIMÉNEZ-BRENES FM 5.00 5.00 0.83 244.00 5.00 2018 

PEÑA-BARRAGÁN JM 5.00 5.00 0.29 444.00 5.00 2007 

MESAS-CARRASCOSA FJ 4.00 5.00 0.40 265.00 5.00 2014 

RASMUSSEN J 3.00 4.00 0.33 48.00 4.00 2015 

SERRANO-PÉREZ A 3.00 3.00 0.33 326.00 3.00 2015 
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The top 10 keywords and words that frequently appear in the titles of references but 

not in the titles or keywords of articles (Keywords plus) are shown in Table 4, whereas the 

co-occurrence of keywords that appear 3 times or more are shown in Figure 4. The results 

suggest that UAVs feature quite prominently in IWM practices. Furthermore, UAV-

acquired or -derived (vegetation indices) data are often used with machine and deep 

learning techniques to aid with image analysis and classification to detect and map weeds, 

which can serve as a precursor to implementing weed control interventions. It should be 

noted that some of the keywords and keywords plus also formed part of the search query 

string used to identify the pool of literature that was reviewed and analyzed. 

Subsequently, there is an element of bias that may exist in the aforementioned finding. 

 

Figure 4. Co-occurrence network of author keywords. 

Table 4. Top 10 author keywords and keywords plus. 

Keywords Frequency Keywords Plus Frequency 

Site-specific weed 

management 
16 Weed control 31 

Precision agriculture 15 Precision agriculture 24 

Remote sensing 12 Crops 17 

Unmanned aerial vehicles (UAV) 9 Remote sensing 17 

Deep learning 8 UAV 17 

Machine learning 7 Weed 17 

Vegetation indices 5 Deep learning 15 

Weed detection 5 Image analysis 14 

Weed mapping 5 Unmanned vehicle 14 

OBIA 4 Antennas 11 

3.2. Key A�ributes 

Remote Sensing Technologies 

Satellites, manned aerial vehicles (MAVs), and UAVs have all been utilized to collect 

data to aid in weed detection for IWM applications. The earliest reported study by López-



Drones 2024, 8, 81 9 of 18 
 

Granados et al. [30] involved the acquisition of aerial imagery in southern Spain over a 

winter wheat crop with natural weed infestations using an MAV. MAVs featured almost 

exclusively during the formative years of this particular research focus area (Figure 5). 

However, as UAV technologies began to emerge, they quickly dominated this research 

space and have remained the preferred platform for weed detection to facilitate IWM. 

 

Figure 5. Historical evolution and percentage contribution of articles per sensing platform. 

This may be due to the unique characteristics of UAVs and their associated sensors 

that enable them to acquire very-high-spatial-resolution data at user-defined intervals in 

near-real time for most weather [18,31]. UAVs further possess fewer limitations imposed 

by weather conditions, with the ability to fly even on cloudy days; greater flexibility in 

acquisition scheduling and payload options; reduced costs of vehicles and sensors; and 

access to difficult-to-reach areas; amongst others [28,32]. The spatial resolution of the 

satellite sensors (Quickbird and Sentinel-2) used in various studies ranged from 2.4 to 10 

m, whereas the spatial resolution of the sensors onboard MAVs ranged from 0.12 to 0.30 

m. Although acceptable-to-good accuracies were a�ained at these spatial resolutions, 

detecting and differentiating weeds from crops necessitates very-high-spatial-resolution 

imagery [20,31]. UAVs are typically equipped with sensors that can provide images with 

centimeter-to-sub-centimeter spatial resolution. Furthermore, the added flexibility of 

easily flying at various altitudes allows for optimizing flight planning and data capturing 

at the most appropriate spatial resolution [20,31]. 

While very-high-spatial-resolution imagery is paramount to accurately detect weeds, 

the spectral resolution of the imaging sensor is equally important, as it influences the 

ability to differentiate between weeds and crops based on their unique spectral properties 

[20]. There are several types of sensors that can be used for remote-sensing-based IWM 

applications, of which RGB and multi-spectral sensors feature most prominently. RGB 

sensors are among the most popular and widely utilized sensors as they provide high-

quality images, can be used for several applications, are relatively inexpensive, possess 

minimal operational requirements, and do not require radiometric and atmospheric 

corrections [20,31]. While multi-spectral sensors are accompanied by, inter alia, higher 

costs and additional image processing requirements, their use remains quite popular due 

to their ability to acquire information across more than three bands (RGB), allowing for a 

wider range of potential applications beyond crop and weed mapping [20,33]. 
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Algorithms and Methodologies 

Machine-learning-based approaches have been widely used to detect and 

differentiate weeds from crops. These approaches typically involve the use of 

nonparametric methods to identify and learn complex relationships between target (e.g., 

weeds) and predictor (e.g., spectral bands, indices, or physical characteristics) variables 

[27]. In most instances, all spectral bands captured by a sensor will be used as predictor 

variables when training and applying a classification algorithm. However, the sensor type 

and classification approach influences the choice of spectrally derived indices or physical 

characteristics that may be used. For RGB sensors, simple ratios between the RGB bands, 

excess green (ExG), excess red (ExR), excess green–red (ExGR), color index of vegetation 

(CIVE), shape, texture, and canopy height are often used. While many of the 

aforementioned predictor variables are also used for multi-spectral sensors, some of the 

commonly used multi-spectral-specific indices include the normalized difference 

vegetation index (NDVI), ratio vegetation index (RVI), normalized green–red difference 

index (NGRDI), soil adjusted vegetation index (SAVI), and near-infra-red–green ratio 

(NIRG). 

Several machine-learning-based algorithms have been used to detect and map weeds 

[20], with the random forest algorithm being the most extensively applied. According to 

Bahrami et al. [27], this may potentially be due to (i) the robust nature of the algorithm, 

(ii) its ability to perform efficiently even on large volumes of data, (iii) it uses relatively 

few hyper-parameters, and iv) is less sensitive to noise and overfi�ing. In addition to the 

choice of predictor variables and classification algorithms, another important factor to 

consider when detecting and differentiating weeds from crops is the classification 

approach, i.e., pixel- or object-based. 

Pixel-based approaches have traditionally been the go-to method for land cover 

classification studies and involve using the a�ributes of individual pixels to perform a 

classification [34,35]. This approach is appropriate when the spatial resolution of the pixel 

is similar in size to the object that is being classified. However, with very-high-resolution 

imagery such as that used for crop and weed mapping, the size of the pixels can be 

significantly smaller than the object being classified. It may lead to greater classification 

inaccuracies [36]. Object-based methods overcome this limitation by performing a pre-

classification, whereby a segmentation algorithm is used to generate objects by grouping 

pixels based on their spectral properties, shape, size, or texture. The a�ributes of these 

objects are then used to perform a classification [34,35]. Although object-based methods 

overcome some of the limitations associated with pixel-based approaches, they do possess 

limitations of their own, such as the impact of the choice of segmentation algorithm, over- 

or under-segmentation, and computational effort that is required [35,37]. Subsequently, 

the strengths and limitations of each of these approaches will need to be considered before 

deciding which method to adopt. However, pixel- and object-based approaches have been 

shown to perform well for crop and weed mapping [38–40]. 

Deep learning is a subset of machine learning (ML) that has also featured quite 

prominently in weed mapping studies and has often produced superior results to 

traditional machine-learning-based approaches [33]. Deep learning is centered on a far 

more complex image analysis process whereby meaningful features are automatically 

extracted from the raw input data, requiring relatively limited user input to develop, train, 

and evaluate the model to perform classifications. Deep learning models for weed 

mapping are usually based on some form of convolutional neural network (CNN), with 

the most popular example among the reviewed studies being the YOLO model [29,41–43]. 

Despite their ability to produce highly accurate results and requiring relatively minimal 

user intervention, these models are complex, computationally demanding, and data-

intensive, which may limit their feasibility for widespread crop and weed mapping 

applications. 

  



Drones 2024, 8, 81 11 of 18 
 

Studies on Crops Association with Weeds 

The geographic distribution and frequency of studies by region are shown in Figure 

6. Research on the use of remote sensing data to aid in detecting and mapping weeds for 

IWM applications has been conducted in 18 countries, with Spain being the leading nation 

in this research focus area. Most of this research has been conducted in European nations, 

accounting for approximately 70% of the studies undertaken globally. Contrastingly, 

limited studies have been conducted within nations that form part of the Global South. 

Regarding the detection and mapping of weeds among crops, crops that have featured 

most frequently (Figure 7) in the reviewed studies were wheat (n = 13), sunflower (n = 8), 

and maize (n = 7). This is potentially due to their status as major grain and oilseed crops. 

Consequently, these crops generally a�ract greater interest as the impacts of weeds can 

significantly affect global grain and oilseed supplies, which in turn threatens food 

security. 

 

Figure 6. Frequency of studies by region. 

 

Figure 7. Number of articles per crop type. 

4. Discussion 

To our knowledge, there has been no standard approach for systematically 

identifying a remote sensing platform and considering sensor characteristics and data 
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analysis procedures to facilitate IWM for smallholder agriculture. The information 

presented in the results section is extracted and synthesized from 53 studies published in 

various journals. This review highlights remote sensing approaches as the focus of most 

of the studies discriminating weeds from cultivated systems, which are also considered 

one of the most important technologies for PA [30]. In past decades, MAVs and satellites 

were used to capture images for PA applications [23]. However, satellites and MAVs may 

be less a�ractive for widespread IWM applications [20,23], particularly in smallholder 

farm se�ings. 

Considering the often fragmented and heterogeneous nature of smallholder farming 

systems, freely available satellite earth observation datasets are generally unsuitable for 

these environments due to the spatial, spectral, and temporal trade-offs that are 

characteristic of these datasets [44]. In addition, the large cost implications of more 

advanced satellite and manned aerial systems render these options unfeasible for many 

of these farmers [20,23]. The unique characteristics offered by UAVs, such as their ability 

to provide cost-effective spatially representative data at user-defined intervals, have seen 

this technology emerge as an important tool to facilitate PA applications such as IWM and 

are promising for smallholder farm applications [18–20,23,28,31,32,45–47]. 

As previously indicated in Section 3.2, very-high-spatial-resolution imagery is 

preferential to accurately detect and map weeds [18,20], which restricts the types of 

sensors and remote sensing platforms suitable for this task [48]. While several sensors 

exist, of which RGB and multi-spectral sensors feature more prominently than others, 

UAV-mounted RGB sensors remain the most widely used sensor for IWM [18,20]. 

Although the purchasing of UAVs and associated ancillary resources requires a 

substantial upfront investment, it provides higher-resolution images compared to other 

remote sensing systems. Furthermore, this initial investment is compensated by the 

repeatability of flights, which increases the frequency of derived datasets, thus 

minimizing the costs of labor and critical resources. Additionally, UAVs equipped with a 

relatively cheap RGB sensor may represent the most feasible option for smallholder 

farmers concerned with IWM applications, since images from these sensors require less 

additional processing, which reduces the need for purchasing additional processing 

software, thereby reducing overall operational costs [33]. 

A variety of classification methods can be implemented to detect and map weeds 

using UAV imagery and can be performed using proprietary or open-source software. 

Recently, ML algorithms implemented within cloud computing environments are being 

implemented more frequently as they offer many advantages over traditional methods, 

particularly for processing and analyzing large complex datasets [27]. Furthermore, with 

cloud-based platforms such as Google Earth Engine (GEE) being freely available and 

easily accessible, many of the barriers that have restricted users (particularly those in 

developing countries) from exploiting technological advancements to guide agricultural 

operations have now been removed [40]. While the availability and accessibility of such a 

powerful data processing platform have opened up many new and exciting avenues to a 

wide range of users interested in utilizing remote sensing to guide and inform PA 

applications, users will require good internet connectivity. They may also be restricted 

with regards to (i) the amount of data that can be stored and processed, as well as by (ii) 

the choice of techniques that are available to them [49]. For example, users can only choose 

from selected ML algorithms when performing image classifications within the platform. 

Similarly, while deep learning has shown a great deal of promise for producing very 

accurate maps, these techniques are not directly available within GEE. Furthermore, when 

considering other major limitations of these techniques for weed detection, such as 

computational resources and large datasets for training that are expensive and time-

consuming to acquire, as well as the specialized skills required to implement them, these 

requirements typically limit their application for smallholder farmers [23,29,33,50,51]. 

Subsequently, users interested in adopting these approaches will require high-powered 

computational resources and a large volume of data to successfully implement these 
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techniques; neither are readily available nor easily accessible in resource-constrained 

regions. 

According to the geographic distribution and frequency of studies (Figure 6), using 

remote sensing for weed management is mainly concentrated in the Global North [52]. 

Considering that the demand for agricultural products will increase globally, owing to 

the rapidly growing population and rising incomes, and since a majority of food is also 

produced within sub-Saharan Africa, research to determine cost-effective ways of 

maximizing the use of technologies like UAVs for use in the Global South is equally crucial 

and required. 

While past studies mainly focused on three major food staples, namely sunflower, 

wheat, and maize, a need exists to diversify our agri-food systems with more climate-

resilient and nutrient-rich crops. In this regard, NUCs can complement the cultivation of 

staple crops, along with the potential to improve the sustainability and resilience of food 

systems, which in turn can enhance food and nutrition security [3,4]. Furthermore, with 

the cultivation of NUCs mainly being confined to smallholder farms, there exists an 

opportunity to improve the socio-economic circumstances of poverty-stricken and 

marginalized smallholder communities and improve food sovereignty by enabling 

smallholder farmers to exert a greater influence in food production systems [2–4]. 

Subsequently, research on IWM using UAVs for NUC and weed combinations is required, 

with techniques and findings from studies conducted on major crops used as guides. 

Considering the limited literature on the use of UAVs for weed detection within 

smallholder farms and on NUCs, a review of such caliber was both necessary and 

important to undertake. 

Studies conducted on crop–weed competition using UAVs were mainly limited to 

assessing crop yield losses, overlooking the significant uptake of soil water by weeds, 

which also threatens crop productivity and exceeds the global water constraints [53]. Since 

farming is not solely driven by yield and considering the global threats of climate change, 

environmental degradation, and an ever-growing population exerting pressure on over-

constrained water resources, the water use of weeds also represents a critical component 

of assessing and managing weeds in the agricultural sector ([53]. For example, several 

smallholder farms in sub-Saharan Africa are reliant on rainfed irrigation and challenged 

by water scarcity concerns. Therefore, if weeds are not properly managed, or their water 

use is not adequately accounted for, weeds may deprive crops of an already limited water 

supply, which can eventually result in lower crop productivity [54]. Furthermore, 

insufficient rainfall during crop production periods and periods of dry spells could lead 

to food insecurity issues. Hence, in addition to crop yield and crop status monitoring, 

research on the use of UAV technologies for water use estimation is required, given that 

these technologies possess the capabilities for several applications, including water use 

applications. 

With the development of UAVs, monitoring both early- and late-season weeds 

provides unprecedented opportunities for cost-effective near-real-time mapping with 

high spatial, spectral, and temporal resolutions [55]. Early-season weed monitoring is 

generally found to be more suitable and preferred for weed identification as it is critical 

for safeguarding the productivity of the growing crop, as weeds compete with the crop 

for a longer period and can cause higher yield losses if allowed to produce seed [56,57]. 

This is particularly true for an NUC crop such as taro, which can take up to 49 days to 

emerge [58]. Furthermore, taro is relatively slow growing, taking up to 300 days to reach 

physiological maturity. Hence, it is important to keep the site weed-free. Furthermore, 

performing early discrimination of the types of weeds growing in the crop field provides 

the added advantage of selecting the correct type of herbicide treatment to be applied, 

thus avoiding using a wide-spectrum herbicide [40]. For smallholder farmers, this could 

result in reduced costs, and given that manual weed removal is often practiced, it presents 

the best time to manage weeds, as they are easier to control [51]. 
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Compared to early-season weeds, late-season weeds do not directly affect crop yield 

as they do not compete for resources during the crop’s critical growth [59]. However, 

weeds that survive early weed management methods due to herbicide resistance or 

incorrect herbicide selection or application can persist, thus resulting in a higher weed 

seedbank that affects subsequent growing seasons [55,56,59–61]. Therefore, mapping of 

late-season weeds can provide information for developing long-term weed management 

strategies and for farmers to evaluate the efficiency of their previous weed control 

methods [59,60]. For smallholder farmers, these late-season weed maps can be useful in 

reducing herbicide use and crop management costs. Considering the merits of mapping 

both early- and late-season weeds for smallholder farmers, the two approaches can 

complement each other, with a useful application being to combine them to determine the 

effectiveness of the management decisions made in such farm se�ings. 

Despite the economic and environmental advantages that PA techniques can 

potentially bring, adopting geospatial information technologies is lagging in the 

developing world, with the biggest gap in PA adoption for smallholder farms [62]. The 

hesitancy of these farmers is due to feasibility considerations, being less high-tech-

oriented and the high initial investment costs, and still preferring traditional practices that 

are no longer practical [62]. Consequently, it is very important to develop cost-effective 

tools and utilize open-source software where possible to address the specific issues faced 

in such countries, and thus its adoption worldwide, especially in weed management, to 

control and increase yield production, leading to a be�er economy for the country and 

farmers. While UAV technology may remain unaffordable for many small-scale farmers, 

specialists can leverage innovative UAV-based business enterprises to offer a more 

affordable option where the investment cost is shared across multiple farms by a UAV 

service provider [12]. 

Other key barriers that have not been identified through the bibliometric and 

a�ribute analysis but will significantly influence the adoption of UAV technologies by 

smallholder farmers include a lack of awareness and digital skills among farmers, 

requiring co-learning and participatory approaches among the public and private sectors, 

civil society, and academia [12,49]. The public and private sectors can partner with non-

governmental organizations and leverage their on-ground presence (e.g., agricultural 

extension workers) for delivering hands-on training, building digital capacities of farmers 

[12], and creating decision support systems that offer advisory services to the farmers. 

Further addressing these barriers requires creating solutions within a user-centered 

framework accounting for local contexts, such as language and societal barriers, and 

enabling policies to support the digitalization of the sector. For example, with supportive 

policy frameworks and subsidies for purchasing UAV models, China has become one of 

the most UAV-friendly countries, possessing over 50,000 agricultural drones in operation 

[12]. Considering these favorable policies and technological support mechanisms, it is 

envisaged that at least 80% of the future UAV market will be in the PA segment [12]. 

5. Conclusions 

NUCs have the potential to address food and nutrition insecurity, given their 

adaptability to low-input agricultural systems, high nutrient density, and tolerance to 

biotic and abiotic stresses. Given that approximately 80% of the food produced in Asia 

and sub-Saharan Africa comes from smallholder farms and that NUCs are the main 

sources of food consumed by the la�er population, there is a need to support smallholder 

farmers in achieving good, high-quality production levels of these crops. Poor weed 

management primarily contributes to low yields and inferior product quality. Since 

conventional weed management techniques are unfavorable for several reasons, IWM 

represents an alternate approach to mitigating the harmful impacts of conventional 

methods and is also well suited for smallholder farm applications. While the findings 

presented herein should be contextualized within the confines and context of this study, 

this review has demonstrated and detailed how UAVs stand out as a promising 
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technology for weed identification and management within small- to medium-scale farms 

due to their unique characteristics. However, the adoption of PA facilitated by UAVs for 

smallholder farmers is still nascent. It is limited by several obstacles to their operational 

application within smallholder farm se�ings, which must be overcome. Thus, careful 

consideration is first required on how best to optimize the potential of UAVs before 

investing in these technologies for smallholder applications. 
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