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Abstract: Musculoskeletal disorders not only impact workers’ health but also result in significant 

economic losses to society. Sanitation workers often have to lift waste bags from containers, leading 

to shoulder joint flexion of 90° or more, exposing them to hazardous environments for extended 

periods. This study combines deep learning and image recognition to create a Quick Capture Eval-

uation System (QCES). By comparing body angles captured in the sanitation workers’ work envi-

ronment with those from OptiTrack motion capture, the system showed an average Root Mean 

Square Error of 5.64 for 18 different postures, and an average Spearman’s rho of 0.87, indicating its 

precision. Compared with scores assessed by three experts, the system demonstrated an average 

Cohen’s kappa of 0.766, proving its reliability. Practical assessments of sanitation workers revealed 

that tilting the waste containers could significantly improve their posture and reduce the risk of 

Work-Related Musculoskeletal Disorders. It proves that the QCES system can accurately and rap-

idly assess the on-site posture of a particular occupation. 

Keywords: convolutional neural networks; work-related musculoskeletal disorders; posture  

recognition; sanitation workers 

 

1. Introduction 

Work-Related Musculoskeletal Disorders (WMSDs) are inevitable occupational 

health issues for workers and significantly impact their quality of life. Damage caused by 

exposure to problematic work environments can hurt workers’ employment potential [1], 

and this is becoming a serious societal issue as it may lead to increased operational costs 

for businesses and society as a whole [2]. The European Union’s Labour Force Survey 

special module on “Accidents at work and other work-related health problems” report 

states that 60% of the population suffers from musculoskeletal disorders [3]. 

Early stage musculoskeletal disorders are often not immediately apparent and may 

be delayed, making them easy to overlook [4]. This not only hampers work efficiency but 

also poses significant safety risks. Research indicates that the construction industry, 

healthcare professionals, manual labor, manufacturing, and related populations are at 

high risk of WMSDs. Remaining in high-risk work environments with unaddressed mus-

culoskeletal disorders for prolonged periods can hinder workers’ ability to perform their 

duties normally and increase the likelihood of safety accidents, leading to significant so-

cio-economic losses [5]. According to the statistical research of the US Bureau of Labor, 

the total investment of the United States in WMSDs is $45 billion to $54 billion each year. 

From 1999 to 2013, 43% of the compensable claims in Washington State were caused by 

musculoskeletal diseases [6]. At the aspect of productivity, in the European Union, the 
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total cost of productivity loss due to WMSDs among the working-age population may 

reach up to 2% of the Gross Domestic Product (GDP) [7]. 

Michel Aptel and his team examined on-site labor data and the health of workers to 

determine the primary factors that affect WMSDs, including biomechanical, environmen-

tal, labor organization, and psychosocial factors [8]. Construction workers face a high risk 

of musculoskeletal diseases due to prolonged repetitive bending and uncomfortable lift-

ing positions [9]. Cleaners, who engage in sweeping, lifting, furniture moving, and han-

dling cleaning waste [10], are also susceptible to WMSDs because environmental limita-

tions frequently require cleaners to adopt static or awkward positions when cleaning dif-

ficult-to-reach areas, such as high or narrow spaces [11,12]. 

Bazazan et al. found a higher prevalence of WMSDs among control room operators. 

Through a 12-month intervention targeting work postures, the results indicated a signifi-

cant alleviation of WMSD symptoms and fatigue among the operators [13]. Furthermore, 

research suggests that conducting job assessments for workers and implementing preven-

tion and intervention measures for unfavorable work conditions is the most effective ap-

proach to addressing WMSDs. Therefore, establishing a systematic method for assessing 

and preventing WMSDs has become a focal point of research in safety management sci-

ence, human factors engineering, and related disciplines.  

1.1. Existing Ergonomic Assessment Methods 

1.1.1. Self-Report and Questionnaire Methods 

Epidemiological assessment methods are employed to investigate the distribution of 

WMSDs by examining the prevalence of the disease and its associated risk factors within 

a population. This method is the most commonly used approach for studying, analyzing, 

and evaluating WMSDs. The most renowned questionnaire for this purpose is the Nordic 

Musculoskeletal Questionnaire (NMQ) [14], designed by Kuorinka et al. in 1987. The pro-

cess involves interviewing, designing, and collecting questionnaires, investigating poten-

tial adverse factors in the actual workplace, and subsequently utilizing statistical 

knowledge to analyze the collected data and determine the prevalence of MSDs within 

the target group [15]. However, the evaluation results of such methods are overly reliant 

on the cultural level of the subjects, exhibiting significant randomness [16]. Unfortunately, 

existing research has not provided detailed methods to address and correct this issue. 

1.1.2. Direct Measurement Methods 

These methods often rely on sensors to collect the human body’s bioelectrical signals 

or posture data and analyze changes in bodily data. In ergonomic studies focused on 

WMSD risk, there are various applications of human bioelectrical signals, with the most 

common being electroencephalography (EEG) for measuring brain electrical activity [17] 

and electromyography (EMG) for measuring muscle electrical activity [18]. Additionally, 

for a more comprehensive ergonomic assessment, Ana Colim et al. utilized quantitative 

data collected from EMG and an inertial measurement unit (IMU) to achieve user-centered 

aircraft handle design [19]. Therefore, we believe that direct measurements using different 

sensors in WMSD research can provide the high-precision human motion data required 

for the study, while also serving as a standard for validating the accuracy of other assess-

ment systems, but often incurring high research costs [20]. 

1.1.3. Observational Methods 

The ergonomic assessment methods are mainly divided into motion analysis, 

strength testing, and posture evaluation, and these methods are currently more widely 

applied in WMSD assessment, with typical examples such as the Rapid Entire Body As-

sessment (REBA) [21], Ovako Working Posture Analysis System (OWAS) [22], and NIOSE 

[23]. There are differences between these methods, and this paper lists several common 
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ergonomic assessment methods at home and abroad as shown in Table 1. Although ergo-

nomic assessment methods are cost-effective and easy to master, the assessment process 

is cumbersome, and the assessment efficiency is low. Therefore, when evaluating job po-

sitions that require a large amount of data, it is easy to make mistakes due to fatigue, and 

there may be subjective biases from the assessors’ judgments [24,25]. 

Table 1. Common observation and assessment methods. 

Method Evaluation Process Main Assessment Part 

REBA [21] 

The scores for each part of the body are determined 

based on the posture angle, and the risk level is adjusted 

based on torsion and other conditions. 

Waist, neck, upper arm forearm, leg, 

wrist, frequency, grip, load 

RULA [26] 

According to the angle of the posture of different parts of 

the body, it is classified and scored, and the risk level of 

WMSDs is obtained after correction. 

Waist, neck, upper arm forearm, wrist, 

frequency, grip, load 

OWAS [22] 
The posture form of each part of the body is coded, and 

the risk level is distinguished by the coding sequence. 
Waist, neck, arm, leg, load 

NIOSE [23] 
Many factors in the manual handling process are meas-

ured and collected, and the lifting risk is calculated. 
Handling distance, height, speed, etc. 

RSI [27] 

Measure or estimate five task variables in the work task, 

and the RSI value is a five-variable model using continu-

ous multipliers. 

Intensity of exertion (force), exertions 

per minute (frequency), duration per ex-

ertion, hand/wrist posture, duration of 

task per day  

1.2. Examples of Technologies to Support Ergonomic Assessments 

With the development of artificial intelligence technology, Cruz-Montecinos et al. 

have proposed the integration of computer image recognition technology with self-re-

ports, questionnaires, and observational methods to improve assessment efficiency and 

accuracy [28]. However, different implementation methods of technological assessment 

have fundamental differences in the human skeleton recognition module and are typically 

divided into two categories: one involves hardware-assisted recognition, and the other 

relies solely on algorithms, such as convolutional neural networks and convolutional pose 

machines. Currently, in research utilizing hardware-assisted recognition, Kinect depth 

cameras are widely used, capable of recognizing the three-dimensional positions of over 

twenty human body joints [29]. The accompanying software uses decision trees and ran-

dom forest classification algorithms to classify and identify human skeletal joints. How-

ever, the studies by Ahmed Humadi et al. [30] and GonzÁles A. et al. [29] have both indi-

cated that when Kinect is used for the on-site assessment of workers, it exhibits significant 

instability due to on-site environmental factors, object occlusion, and lighting, leading to 

a substantial decrease in accuracy. In the purely algorithmic domain, significant progress 

has been made in the field of image processing with the advent of deep learning technol-

ogy, particularly Convolutional Neural Networks (CNN) [31]. Meanwhile, in the human 

skeletal recognition algorithm, Jian He et al. demonstrated in the field of autonomous 

driving that based on a Convolutional Pose Machine (CPM), the rapid recognition and 

prediction of traffic police gestures can be achieved [32]. Abobakr et al. predicted human 

body joints from a single image and used angle data for MSD risk assessment, achieving 

a prediction accuracy of 89% and a kappa index of 0.71 [33]. Therefore, we believe that the 

combined application of Convolutional Neural Networks (CNN) and CPMs is a means of 

the real-time recognition of work postures. Although some open-source software, such as 

Mediapipe and YOLOv7 pose capture frameworks, can generate real-time detection on 

CPUs, they lack neck capture. Seong-oh Jeong et al. mentioned in their research the use of 

inverse kinematics to calculate the neck and waist joints to supplement Mediapipe and 
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used Unity 3D for result analysis [34]. However, this approach has high computer hard-

ware requirements and has a certain installation and learning cost. 

1.3. Research Purposes 

We are focused on ergonomic methods validated to assess risk factors associated with 

WMSDs occurrence, therefore, our comparative study of the four assessment methods re-

vealed that that self-report and questionnaire methods are suitable for preliminary sur-

veys and clarifying research objectives and subjects. Direct measurement methods are 

suitable for in-depth subsequent investigations, while observational methods are suitable 

as the primary assessment method, widely used to explore the risk levels of WMSDs. Fur-

thermore, the development of an WMSD risk assessment system utilizing body skeleton 

recognition algorithms in image recognition technology can effectively enhance assess-

ment accuracy and save assessment time. Currently, in the assessment of workers’ mus-

culoskeletal disorders, the random forest algorithm is mostly used. Compared to CNNs, 

this algorithm lacks high precision and portability. The CNN method has been success-

fully integrated into surveillance detectors and has been proven to be an effective method 

for surveillance detectors [35]. However, there is limited research on the application of 

CNNs in ergonomic assessments. Therefore, this study, starting from the perspective of 

workers’ occupational health, combined knowledge from ergonomics, musculoskeletal 

models, deep learning, and image recognition to establish a posture recognition-based 

musculoskeletal disorder risk assessment system, detailed in the framework shown in 

Figure 1. 

 

Figure 1. The system architecture of the QCES system. 

The main research objectives are: (1) to integrate the risk calculation formula (HRC) 

and Convolutional Pose Machine (CPM) based on observational assessment methods and 

image recognition-based assessment methods using smartphones as carriers to improve 

the accuracy of WMSD assessment scores, eliminate human error factors during the as-

sessment process, improve the accuracy and portability of human posture recognition al-

gorithms, and simplify the use of supporting facilities; (2) to investigate whether sanita-

tion workers’ existing work postures pose a risk of WMSDs; and (3) to explore whether 

changing the tilt angle of waste containers can intervene in work postures to reduce risk. 

However, due to time constraints, we have not yet applied the QCES system to the assess-

ment of WMSDs in different occupations. Therefore, multi-occupational validation to 

demonstrate the system’s universality is our subsequent research direction. 
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2. Materials and Methods 

2.1. Rapid Evaluation System Based on CPM 

To address the aforementioned issues, this study integrates knowledge from artificial 

intelligence, human pose recognition, and ergonomics, and proposes the development of 

a simple, user-friendly, and lightweight WMSD risk assessment system named the Quick 

Capture Evaluation System (QCES). This system is based on observational assessment 

methods and image-based assessment methods, integrating the risk calculation formula 

(HRC) and Convolutional Pose Machine (CPM). Utilizing a smartphone as the platform, 

it aims to enhance the accuracy of WMSD assessment scores, eliminate the interference of 

human errors during the assessment process, improve the accuracy and portability of hu-

man pose recognition algorithms, and simplify the use of supporting facilities. 

In this work, the QCES system’s body skeletal recognition algorithm module, mus-

culoskeletal disorder risk assessment module, and assessment report generation module 

as shown in Figure 1, were developed using relevant languages, tools, and function librar-

ies such as C++, Visual studio 2015, ngrok (international version), OpenPose files, and the 

Windows Presentation Foundation library (NET Framework 4). These three modules were 

packaged as an API for server calls using the PHP language and PHP study tool. Addi-

tionally, pertinent interfaces for image and data collection modules were established. The 

current version of the QCES system has the following environmental configuration re-

quirements: operating system: Windows 10, processor: CPU Intel (R) i7-8750H 2.00 GHz, 

8 GB RAM, GPU Nvidia GeForce GTX1050Ti; memory: 2 GB (minimum); hard disk space: 

2.5 GB (minimum); CUDA version: cuda_8.0.61_win10; cuDNN version: cudnn-8.0-win-

dows10-x64-v5.1. 

2.1.1. Human Skeleton Algorithm Recognition Module 

The human skeletal recognition algorithm module is a crucial application of image 

recognition technology, as it automatically extracts relevant parameters of workers’ oper-

ational postures from images, such as body pose skeletons and the states of limb bending, 

twisting, overlapping, and so on. 

Therefore, based on CPM, this paper developed a human skeletal recognition algo-

rithm for identifying the two-dimensional positions of human body joints and designed a 

multi-stage algorithm structure composed of multiple convolutional pooling groups. As 

shown in Figure 2, the different stages of the algorithm network structure are distin-

guished by different colored blocks. Here, C represents the convolution operation in the 

convolutional neural network, and 9 × 9 represents the size of the convolution kernel in 

the convolution operation. P represents the pooling operation in the convolutional neural 

network, and 2× represents the step size in the pooling operation. h represents the height 

of the image, w represents the width of the image, and the height and width of the image 

are based on pixel values. n represents the number of joints, where n + 1 represents the 

number of joints plus the background response feature map. Loss represents the calcu-

lated loss value after the algorithm runs. Concat is the image concatenation function. In 

the first stage, the algorithm can directly complete the recognition of the human skeleton, 

outputting a feature map containing joint position information. Subsequently, in the sec-

ond stage and beyond, the feature map output from the previous stage is used as input 

for iteration, with the algorithm utilizing image space features, image texture features, 

and image center constraints as joint inputs [36]. The algorithm continuously iterates to 

recognize higher-precision joint feature maps. 
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Figure 2. Algorithm architecture of human skeleton recognition of QCES system. 

Texture features are extracted in different convolution pooling groups. (i.e., shallow 

features, with smaller convolution receptive fields in the early convolutional pooling op-

erations, enabling the generated feature maps to reflect local texture features of the image) 

and spatial features (i.e., deep features, with larger convolution receptive fields in the later 

pooling operations, enabling the generated feature maps to reflect global spatial relation-

ship features of the image) are extracted separately. These features are concatenated to 

fully utilize the features extracted by the network, enhancing the detection effect. This is 

specifically manifested in (1) the feature map regression for visually observable joints, 

such as the ankles, knees, and shoulder joints, which show clear central areas; and (2) the 

feature maps for visually unobservable joints, such as the left hip joint, which appear more 

ambiguous. However, due to the algorithm network’s limb association prediction and im-

plicit modeling, the position prediction accuracy for these occluded and visually unob-

servable joints remains high, as shown in Figure 3a. 

  
(a) (b) 

Figure 3. (a) Characteristics of joints and limbs of human body; (b) The skeleton diagram of hu-

man working posture output by the algorithm. 

The human pose recognition algorithm network structure in this study is staged. 

During training, calculating the loss value using only the output of the final stage and the 

labeled results in the training dataset would lead to the gradient backpropagating to the 

previous stage. This would result in a significant decrease in error at the output layer after 

multiple layers of backpropagation, leading to the phenomenon of vanishing gradients. 
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To address this issue, the intermediate supervision algorithm is adopted. Specifically, the 

loss value is calculated between the output layer of each stage and the corresponding la-

beled results, and these loss values are then summed to form the overall network loss 

value. This approach can prevent the occurrence of vanishing gradients [37]. The specific 

calculation process is depicted in Figure 4. 

 

Figure 4. The calculation process of the loss value for the human skeleton recognition algorithm. 

The central position of the final feature map of each recognized joint corresponds to 

the coordinate position of the respective joint. After obtaining the joint position data, the 

human skeletal structure is drawn on the original image, as shown in Figure 3b. Following 

the transformation of joint coordinates, the limb angle values are calculated to determine 

the special status of the limbs. Subsequently, the data are input into the musculoskeletal 

disorder risk assessment module to further evaluate the level of WMSDs risk. 

2.1.2. Risk Assessment Module for WMSDs 

Based on the accurate capture of skeletal points, further calculations of limb angle 

values based on the human skeletal joint coordinate data are required to analyze the spe-

cial status presented by the occupational posture [38]. Additionally, differences in the spa-

tial coordinates of images in image recognition can also affect limb angles. Therefore, in 

this study, the limb Li is defined as being composed of two adjacent joints Pi = (xi, yi, zi) 

and Pi + 1 = (xi + 1, yi + 1, zi + 1), i.e., Li = PiPi + 1. Due to the complexity of three-dimen-

sional spatial angles, in this research, the projection of limbs on the sagittal plane, coronal 

plane, and vertical plane and the projection angle between the sagittal axis, coronal axis, 

and vertical axis are used to analyze the working posture. Firstly, the length Di of the limb 

Li in three-dimensional space is defined as shown in Formula (1) 

𝐷𝑖 = √(𝑥𝑖+1 − 𝑥𝑖)
2 + (𝑦𝑖+1 − 𝑦𝑖)

2 + (𝑧𝑖+1 − 𝑧𝑖)
2 (1) 

And the angles 𝜃𝑥, 𝜃𝑦, and 𝜃𝑧 between the limb Li and the sagittal axis, coronal axis, 

and vertical axis base directions can be calculated using the spatial straight line projection 

relationship, as seen in Formulas (2)–(4). 

𝜃𝑥 = 𝑐𝑜𝑠−1
𝑥𝑖+1 − 𝑥𝑖

𝐷𝑖
 (2) 

𝜃𝑦 = 𝑐𝑜𝑠−1
𝑦𝑖+1 − 𝑦𝑖

𝐷𝑖
 (3) 

𝜃𝑧 = 𝑐𝑜𝑠−1
𝑧𝑖+1 − 𝑧𝑖

𝐷𝑖
 (4) 
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Building upon the limb angle output and the REBA and RULA methods for human 

posture assessment, the foundational theory, formulas, and methods are written into 

modular code using computer programming methods. The work-related musculoskeletal 

disorder (WMSD) risk assessment module is based on the C language, with C++ as a sup-

plementary language, and the entire coding work is completed in VS2015 software. The 

specific workflow is depicted in Figure 5. 

 

Figure 5. Evaluation process of the risk assessment module for musculoskeletal diseases. 

2.1.3. Evaluation Report Generation Module 

The assessment report generation module organizes the output data from the previ-

ous modules and provides feedback to the mobile end in the form of online and offline 

reports, completing the entire process of assessing the WMSD risk of workers’ occupa-

tional postures. The online report on the mobile end simplifies the current assessment of 

the occupational posture’s WMSD risk score, risk level assessment results and descrip-

tions, and special data alerts, as shown in Figure 6a. 

The visual recognition-based QCES system faces challenges in evaluating other fac-

tors in assessment methods such as REBA and RULA. Therefore, we have incorporated 

simple manual input options on the mobile end of the system, as depicted in Figure 6a. 

Taking the assessment of REBA as an example, the Force/Load Score, Coupling Score, and 

Activity Score are observed and recorded during the assessment process. Hence, when 

using the QCES system, users are required to input these as known variables for the as-

sessment. Furthermore, this study is capable of generating a more detailed offline report 

by invoking the basic function libraries of Microsoft Office 2015, including 
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MSWORD.OLB, VBE6EXT.OLB, and MSO.DLL, to automatically generate and save the 

report in Word format for assessors to download. The offline report comprises six main 

sections, including assessment scores and risk levels, special data alerts, human skeletal 

diagrams, REBA data, and RULA data. The assessment scores and risk levels section rec-

ord the final assessment scores or posture codes, risk level grades, and relevant risk de-

scriptions using the REBA and RULA assessment methods, as illustrated in Figure 6b. 

 
(a) 

 
(b) 

Figure 6. (a) QCES system online evaluation report. (b) QCES system offline version evaluation re-

port. Case researched and applied. 
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3. Research on Sanitation Workers 

3.1. Research Direction and Variable Collection of Sanitation Workers 

In the global service industry, sanitation workers have become a vulnerable group in 

society due to factors such as their generally older age and a higher proportion of female 

workers. Specifically, the median age of sanitation workers in the United States is 48 years 

[39], and in Guangzhou, China, 86% of sanitation workers are aged 50–60 years. JP Zock’s 

global survey found a relatively high proportion of women in the sanitation workforce 

[40], and female sanitation workers have a 50% higher probability of developing MSDs 

compared to men under similar tasks [41].  

One essential task is to remove and pack waste bags from waste containers. With a 

waste container capacity of 240 L and a height of 108 cm, the average height of women in 

China is currently 160.1 cm, and for men, it is 169.7 cm. According to the survey, the mean 

waste bag weight is 16 kg. This makes it difficult for sanitation workers to remove fully 

loaded waste bags from the containers, and during the process, it is likely that sanitation 

workers are exposed to physical risk factors associated with lower back pain (LBP) and 

Work-Related Musculoskeletal Disorders (WMSDs). 

However, research on WMSDs in this population involved in waste container emp-

tying is currently lacking, which may result in a lack of consideration for the process of 

waste removal by sanitation workers in making urban waste management decisions and 

redesigning waste containers, leading to the long-term exposure of sanitation workers to 

hazards and increased construction investment costs. 

It is evident that enabling researchers to understand the occupational hazards sani-

tation workers may be exposed to while cleaning waste is crucial in reducing unnecessary 

losses. Therefore, in this study, when using the QCES system to assess sanitation workers, 

a motion capture device is simultaneously used to compare and evaluate the body angles 

of sanitation workers when collecting waste, from the perspective of changing the way 

waste is removed. To collect more authentic and detailed experimental data and improve 

the accuracy of the experimental results, this study distributed surveys to sanitation work-

ers in schools and residential areas in Guangzhou, Guangdong Province, China, collecting 

a total of 342 questionnaires, of which 320 were valid. The processed questionnaire results 

revealed that: (1) the common capacity of waste containers at waste collection points is 

240 L, with dimensions of 71 cm × 57 cm × 107 cm; (2) sanitation workers remove waste 

bags from containers when they reach a weight of 10–15 kg, as shown in Figure 7; (3) 

sanitation workers repeat the action of removing waste bags from waste containers 28–35 

times per day; (4) sanitation workers, due to factors such as weight and height, are unable 

to vertically remove waste from the containers. The most commonly used solution is to 

tilt the waste container, lean sideways, and remove the waste with one hand, effectively 

lowering the height of the container’s opening, as shown in Figure 7. 
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Figure 7. A scene image of sanitation workers removing waste bags from containers. 

In the preliminary investigation, we discovered that sanitation workers encounter 

significant difficulties in removing waste due to their height and the weight of the waste 

bags when removing them from containers that are perpendicular to the ground. The sur-

vey results also indicated that some sanitation workers tilt the waste containers and then 

lean sideways to remove the waste bag. While this action reduces the difficulty of the task, 

it puts the body in an unbalanced state. Similarly, Allread W [20] mentioned in a study on 

the risk of WMSDs among hotel service personnel that working in an unstable posture 

increases the probability of developing illnesses, and using adjustable long-handled tools 

can enhance worker safety. Therefore, this study aims to investigate whether changing 

the angle of the waste containers perpendicular to the ground, without altering the origi-

nal structure of the waste containers, can lower the height at which sanitation workers 

remove waste, thus improving their posture. Two angles, 60° and 45°, were selected for 

the tilt, with 90° being the prevalent form of waste containers in current practice. Addi-

tionally, in this study, 45° was the maximum tilt angle considered, as excessively tilting 

the waste containers would compromise its primary function of waste storage, rendering 

it of no research value. 

3.2. Experimental Design 

This experiment was conducted in October 2023 at the Human–Machine Engineering 

Laboratory of South China University of Technology. Three types of waste containers with 

angles of 45°, 60°, and 90° perpendicular to the ground were constructed, as shown in 

Figure 8. The experiment involved capturing the posture of the subjects simultaneously 

using the QCES system and the OptiTrack motion capture system to verify the consistency 

of the two methods in identifying posture and to assess the consistency of QCES in eval-

uating WMSDs risk and expert evaluation scores. The study also aimed to evaluate the 

risk of sanitation workers developing WMSDs when removing waste and whether chang-

ing the angle of the waste containers could reduce the risk of WMSDs. Therefore, the fol-

lowing hypotheses were proposed: 
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Hypothesis H1: The QCES system and the OptiTrack motion capture system yield consistent 

body angle measurements. 

Hypothesis H2: The QCES system’s evaluation scores for REBA and RULA are consistent with 

expert evaluation scores. 

Hypothesis H3: Changing the tilt angle of the waste containers can significantly reduce the eval-

uation scores of REBA and RULA. 

 

Figure 8. Schematic diagram of experimental setup scene and container inclination angle. 

3.2.1. Experimental Participants 

Six subjects were recruited, and garbage weighing 12 kg was taken out of the waste 

containers with the above-mentioned three inclined angles. None of the subjects had any 

physiological diseases and could normally complete the required actions in the experi-

ment. The participants consisted of three males and three females, with an average height 

of 158.3 cm an average weight of 58.3 kg for the males, an average height of 156.7 cm, and 

an average weight of 64.5 kg for the females. All participants were sanitation workers with 

six or more years of waste collection experience. Additionally, three human factors engi-

neering experts with over ten years of experience in WMSDs-related research were in-

volved in the experiment. The REBA and RULA evaluation methods were used for assess-

ment throughout the experiment. Prior to the commencement of the experiment, all par-

ticipants were required to sign informed consent forms. 

3.2.2. Equipment and Instruments 

The motion capture system, produced and installed by OptiTrack in 2020, consisted 

of eight infrared digital cameras (Slimx13, resolution 1280 × 1024, native frame rate 240 

HZ), a set of medium-sized motion capture suits, and a Windows 10 system with an Intel 

Core i7-13700H CPU laptop. The Motive 2.3.0 software, paired with the OptiTrack cam-

eras, was used to drive the instrument for skeletal data acquisition, while the seeker soft-

ware was installed to analyze the obtained data and calculate limb angles. Furthermore, 

the QCES system was connected to a Windows 10 operating system with an Intel Core i7-
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13700H CPU running its backend server. The QCES program was installed on an iPhone 

15 Promax, connected to a tripod to capture the target data. 

The experimental setup included 240 L outdoor waste containers with standardized 

dimensions of 71 cm × 57 cm × 107 cm, a 12.5 kg bag of household waste, a 60° tripod, and 

two 45° tripods. The simulated data were generated using survey data to mimic actual 

work situations. 

For the three human factors engineering experts, laptops were provided with Ki-

novea-0.9.4-x64 [42], calibration angle software and REBA and RULA evaluation forms to 

facilitate rapid, intuitive, and accurate assessment of operational postures at different tilt 

angles. 

3.2.3. Experimental Setup and Process 

The experimental setup is depicted in Figure 8. A green mat is positioned at the center 

of both capture methods to prevent data errors. Each participant is required to wear a 

motion capture suit compatible with OptiTrack during every experimental session. Refer-

ring to the research by Manghisi et al., a total of 18 motion markers are placed on the body 

at specified locations and quantities [43]. Following the participants’ preparation, the 

OptiTrack motion capture system is calibrated using L-shaped and T-shaped rods. The 

QCES system is positioned beside the participant, supported by a tripod to ensure that the 

smartphone is 130 cm from the ground and 220 cm from the participant’s sagittal plane. 

Three ergonomics experts were allowed to walk outside the green carpet when the 

subjects took out the garbage at different inclination angles, so as to record the information 

needed for evaluation at all times. 

The specific experimental procedure, as illustrated in Figure 8, consists of three dif-

ferent tilt angles for waste contains, as mentioned earlier: 90°, 60°, and 45°. To assess the 

participants’ working postures during waste removal and ensure that they are always po-

sitioned at the center of the field, all six participants complete one angle, then rest for 10 

min before repeating the simulation following the aforementioned steps. This process is 

repeated for each angle. Once the simulations for the three angles are completed, the 

OpTirack motion capture system saves the data for each posture as c3d files. The QCES 

system uploads the data to the backend for automatic posture analysis and generates 

RULA and REBA assessment reports in PDF format. The experts independently assess the 

postures by scoring using a computer, calculate the REBA and RULA risk scores for all 

postures, and store the results in an Excel (Microsoft Excel 2021) file. 

3.3. Data Collection and Analysis 

The data collected in the aforementioned experiment were statistically analyzed us-

ing SPSS version 29.0. Prior to analysis, the data documents were divided into three cate-

gories: (1) the c3d files saved from OptiTrack were imported into Nokov seeker 1.6.2.1 

software for coordinate point processing and output of limb angle data, (2) ten limb angle 

data were extracted from the assessment reports generated by QCES for each posture, and 

(3) experts provided detailed REBA and RULA scores for each posture. 

Firstly, to verify hypothesis H1, Knova seeker software was used to output ten joint 

angles required for REBA and RULA assessment based on the skeletal point coordinate 

data, as shown in Table 1. t-test analysis was applied to evaluate the differences between 

the OptiTrack motion capture system and the QCES system in different parts of the body, 

verifying whether there were differences between the two capture methods overall. Sub-

sequently, the Root Mean Square Error (RMSE) was used to compare the ten limb angles 

identified by the OptiTrack motion capture system and QCES system, verifying whether 

there were significant differences between the two systems in detail. Finally, the Spear-

man’s rho (p) correlation coefficient was used to compare the consistency of the two sys-

tems in angle recognition under each working posture, verifying the consistency of the 

two systems in angle recognition. 
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Secondly, to verify hypothesis H2, the RMSE and Cohen’s kappa coefficient based on 

linear weighting were calculated to compare the consistency of the QCES system with the 

human factors engineering experts in evaluation scores [28,44], verifying whether the 

QCES system can simulate expert scoring in evaluation scores. 

4. Feasibility Validation of the QCES System 

In order to analyze the reliability of the QCES system designed in this study in rec-

ognizing the limb angles of working postures, a comparison was first made between the 

QCES system and the OptiTrack motion capture system in terms of the mean, standard 

deviation, and t-test of limb angles of working postures, as shown in Table 2. 

From the table, it can be seen that the mean (standard deviation) of the QCES system 

in limb positions such as the neck, right leg, left upper arm, right upper arm, right forearm, 

left wrist, and right wrist are relatively close to the corresponding data of the motion cap-

ture system. The two systems have certain similarities in recognizing the limb angles of 

working postures. Moreover, there is no significant difference in the angle values of all 

limb positions. These results to some extent prove that the QCES system can replace the 

OptiTrack motion capture system as a tool for recognizing the limb angles of workers’ 

working postures. Secondly, in terms of arm angle capture, there is a certain difference 

between the QCES system (64.48 ± 32.09) and the OptiTrack motion capture system (69.46 

± 37.01) in the left upper arm, as well as in the limb angle of the right forearm, where the 

QCES system (79.2 ± 35.40) and the OptiTrack motion capture system (108.07 ± 31.93) also 

differ slightly. However, the differences between the two are not significant. Therefore, 

this study analyzed the captured limb angles of each posture in more detail. 

Table 2. Results of t-tests between the OptiTrack motion capture system and the QCES system. 

Limb Parts 
Mean (SD) 

Significance 
QCES System OptiTrack Motion Capturer 

Neck 14.56 (12.37) 17.13 (16.19) No Significance 

Waist 0.67 (10.12) 3.00 (8.81) No Significance 

Left Leg 163.41 (9.37) 163.33 (11.83) No Significance 

Left upper arm 64.48 (32.09) 69.46 (37.01) No Significance 

Left forearm 88.24 (27.20) 91.18 (29.47) No Significance 

Left wrist 19.74 (9.33) 21.85 (9.66) No Significance 

Right Leg 155.2 (14.07) 157.46 (12.10) No Significance 

Right upper arm 79.2 (35.40) 81.48 (38.10) No Significance 

Right forearm 103.7 (29.54) 108.07 (31.93) No Significance 

Right wrist 17.72 (8.81) 16.82 (8.46) No Significance 

To conduct a more detailed analysis of the differences between the QCES system and 

the OptiTrack motion capture, this study expanded on the limb angles recognized by both 

methods, as shown in Table 3. The table lists the RMSEs and ρ correlations calculated by 

the QCES system and the OptiTrack motion capture for all limb angles. These results in-

dicate that the RMSE errors of different limb angles in various working postures are rela-

tively small, with an average RMSE error of 5.64 for 18 movements. Among them, the 

capture situation of the working posture labeled as W2-60 is the best, with an average 

RMSE value of 3.16 (where 9 out of 10 limb angles have error values less than 5), while 

M1-60 exhibits a poorer performance with an average error value of 8.93 (where only 4 

out of 10 limb angles have error values less than 5). Furthermore, this study conducted a 

more detailed analysis of the correlation between the QCES system and the OptiTrack 

motion capture in limb angles across 18 different postures. The average Spearman’s rank 

coefficient of correlation for 10 limb angles is 0.87, with the Neck, left upper arm, Left 

forearm, Left wrist, right upper arm, and Right forearm all exceeding 0.85. These results 
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clearly demonstrate the validity of hypothesis H1. The QCES system designed in this study 

maintains consistency with the OptiTrack motion capture in the recognition of limb angles. 

Table 3. Comparison of RMSE (SD) and ρ correlation between QCES system and motion capture 

system. 

RMSEs 

Limb Parts  

Average 
Neck Waist Left Leg 

Left Upper 

Arm 
Left Forearm Left Wrist Right Leg 

Right  

Upper Arm 

Right 

Forearm 

Right 

Wrist 

M1-45 7.56 6.06 17.96 5.47 3.80 1.44 2.21 6.35 4.79 4.15 5.98 

M1-60 3.22 12.22 12.74 4.16 3.56 4.32 12.81 8.20 22.78 5.31 8.93 

M1-90 4.08 3.14 16.68 9.91 9.05 5.95 3.20 13.16 4.72 1.87 7.17 

M2-45 3.98 2.44 2.41 8.11 1.22 0.45 12.96 0.75 0.96 5.12 3.84 

M2-60 5.56 5.25 6.16 11.70 0.46 0.72 0.41 13.79 3.24 3.09 5.04 

M2-90 0.72 7.60 2.23 17.39 1.99 3.84 4.62 3.41 3.57 7.91 5.33 

M3-45 12.67 3.60 8.10 5.22 4.51 1.89 8.08 6.87 3.70 5.84 6.05 

M3-60 7.55 3.60 5.16 4.81 0.89 1.92 13.35 5.42 7.06 1.44 5.12 

M3-90 4.65 3.85 9.37 5.25 12.51 0.55 13.66 4.51 15.53 3.88 7.38 

W1-45 2.50 4.96 0.78 5.02 5.42 1.76 12.90 3.27 4.69 8.25 4.95 

W1-60 4.60 4.30 2.17 5.22 7.75 6.65 4.68 2.02 2.92 0.45 4.08 

W1-90 7.34 5.20 0.48 8.19 4.99 3.86 3.20 5.03 8.72 1.16 4.82 

W2-45 12.30 0.75 1.28 9.01 8.99 7.72 0.74 8.72 10.74 4.19 6.44 

W2-60 2.20 3.00 4.35 2.70 2.77 0.84 0.66 1.38 11.68 2.00 3.16 

W2-90 3.92 6.00 1.01 1.71 14.28 6.04 0.71 0.82 3.87 2.27 4.06 

W3-45 3.84 4.35 1.12 9.26 13.74 0.30 6.25 1.01 8.25 4.77 5.29 

W3-60 7.83 4.27 6.65 15.38 8.89 6.15 5.41 6.62 11.43 3.61 7.62 

W3-90 9.75 8.18 2.22 12.03 2.18 10.59 0.57 3.99 11.41 2.55 6.35 

Average 5.79 4.93 5.60 7.81 5.94 3.61 5.91 5.30 7.78 3.77 5.64 

ρ 0.86 ** 0.82 ** 0.75 ** 0.97 ** 0.88 ** 0.9 ** 0.80 ** 0.98 ** 0.89 ** 0.83 ** 0.87 

**: significant strong correlation (p < 0.01). The left serial number in Table 4 represents 18 working 

posture references. 

Table 4. Comparing linearly weighted Cohen kappa and RMSE, the consistency between QCES sys-

tem and expert evaluation results was observed. 

Title 1 RMSE Cohen’s Kappa p-Value 

RE-Grand Score 0.471 0.712 <0.01 

RE-Score A 0.471 0.664 <0.01 

RE-Score B 0.408 0.793 <0.01 

RU-Grand Score 0.236 0.894 <0.01 

RU-Score A 0.236 0.866 <0.01 

RU-Score B 0.624 0.665 <0.01 

Average 0.408 0.766  
1 RE represents the REBA assessment method. RU represents the RULA assessment method. 

In the previous sections, this study verified the consistency of the QCES system in 

capturing data for 10 limb angles compared to the data captured by the OptiTrack motion 

capture system. In the evaluation results, this study separately calculated the average 

scores of three experts and the QCES system for the final REBA scores, scores A and B, 

and RULA final scores, scores A and B, as benchmarks for subsequent validation. As 

shown in Figure 9, bar charts and independent sample t-tests were used to demonstrate 

the comparison between the expert ratings on the final REBA and RULA scores and the 

QCES system’s capture. The results in the figure indicate significant differences in the 

REBA scores for postures M2-60 and M2-90 (p < 0.01), and significant differences in the 

RULA scores for posture M2-60. However, the scores for other postures are consistent 

with the expert assessments. 
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Figure 9. Comparison of QCES system and experts in the final scores of REBA and RULA, **: signif-

icant difference (p < 0.01). 

As shown in Table 4, it is evident that there is a “strong” consistency between the 

QCES system proposed in this study and the experts in terms of the REBA and RULA 

assessment scores (p < 0.01, 0.664 < kappa < 0.894, with an average RMSE value of 0.368). 

Therefore, this study can demonstrate that the QCES system can perfectly replace expert 

scoring in outputting assessment results and rapidly generate assessment results compa-

rable to those of experts. This also confirms the validity of hypothesis H2. 

In the previous sections, the accuracy of the QCES system in assessing WMSDs was 

thoroughly validated. Therefore, this study utilized the assessment data from the QCES 

system to visually demonstrate the scores of different tilt angles of waste containers in the 

REBA and RULA assessment methods using bar charts, as shown in Figure 10. When 

waste collectors retrieve garbage from waste containers positioned at a 90° tilt angle per-

pendicular to the ground, both the REBA and RULA assessments indicate a moderate risk 

of WMSDs, necessitating further investigation and posture modification. However, after 

modification, the tilt angles of the waste containers at 45° and 60° show significant im-

provement in the workers’ postures, leading to a significant reduction in WMSD risk. Par-

ticularly, the waste containers with a 45° tilt angle are assessed as having a low WMSD 

risk. This confirms the validity of hypothesis H3, indicating that the QCES system can be 

fully utilized for WMSD risk assessment in a specific occupation and supports in-depth 

analysis for posture improvement. 
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(a) (b) 

Figure 10. (a) The total REBA assessment score for males and females. (b) The total RULA assess-

ment score for males and females. 

5. Discussion 

5.1. Discussion on Experimental Results 

The QCES system performs human skeleton recognition on all the working posture 

images collected in the experiment, generating human skeleton diagrams as shown in Fig-

ure 11. The generated human skeleton diagrams show no obvious defects or limb misa-

lignments, indicating that the QCES recognition effect is good, and the coordinate data of 

the identified key points can be used for subsequent analysis. 

 

Figure 11. In this experiment, all subjects QCES identified the human skeleton map generated. 
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The skeletal points of the working posture recorded by the OptiTrack motion capture 

system are depicted in Figure 12a, and the joint angles created in the seeker software from 

these three skeletal points are shown in Figure 12b. The overall recorded posture data is 

complete, with no missing key points, and the coordinate data of the identified key points 

can be used for subsequent analysis. 

  
(a) (b) 

Figure 12. (a) The human skeleton points identified by OptiTrack motion capture device in this ex-

periment (b) The joint angles generated by seeker software. 

The previous sections completed the quantitative statistical identification and analy-

sis of the verification experiment, validating the reliability and feasibility of the QCES sys-

tem. The study demonstrated that the QCES system has good consistency with the motion 

capture system in recognizing limb angle data. It also maintains strong consistency with 

expert assessments in REBA and RULA evaluation scores. However, some detailed data 

in the experimental results show differences, requiring further analysis and discussion. 

In the angle analysis, the average Spearman correlation coefficient for 18 postures is 

0.87, slightly higher than the coefficient mentioned in Shum et al.’s study [45] as shown in 

Table 3. In the REBA and RULA assessments, 81.45% of the QCES system’s evaluation 

results are entirely consistent with the expert assessment results. The Cohen’s kappa co-

efficient’s average value in the six evaluation tables is 0.766, and the average Root Mean 

Square Error (RSME) is 0.408. Both are higher than the results of Shum et al.’s study [45] 

(average Cohen’s kappa coefficient of 0.624), Abobakr et al. [33] (average Cohen’s kappa 

coefficient of 0.71, average RSME of 0.41), and Shum et al. [45] (average Cohen’s kappa 

coefficient of 0.714, average RSME of 0.646). This demonstrates that the QCES system cur-

rently exhibits higher accuracy and stability in limb angle recognition and RULA and 

REBA assessment results, outperforming similar available products. 

However, as shown in Table 3, the RMSE values for the two arms in limb angle are 

relatively high, with the RMSE values for the left upper arm, left forearm, right upper arm, 

and right forearm being 7.81, 5.94, 5.30, and 7.78, respectively. This could be due to the 

fact that when the subjects are removing garbage bags, the bags may obstruct the arms to 

varying degrees, affecting the recognition performance. It is recommended to handle the 

objects held in hand during the evaluation calculation to avoid obstruction. 

The study found that the QCES system and expert assessment results showed slight 

differences in the REBA scores for postures W3-45, M2-60, and M2-90, as well as in the 

RULA score for posture M2-60. However, for all other postures, the QCES system’s as-

sessment results were entirely consistent with the expert assessments. Upon retracing the 

original data, it was discovered that in the REBA assessment of posture W3-45, the expert 

assessment score for score A was 5 points, while the QCES system assessment score was 

4 points. This discrepancy was due to a deviation in the judgment of the forward tilt angle 

of the neck. The REBA assessment rules state that a neck twist exceeding 20° is scored as 

+4 points, while a twist within 20° is scored as +2 points. The QCES system identified the 
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angle as 18.16°, while the expert subjectively judged that the forward tilt of the neck ex-

ceeded 20°. Similarly, in the assessment of posture M2-90, the discrepancy arose because 

the assessment result for the right upper arm was close to the boundary angle specified in 

the assessment rules. The QCES system’s recognition result was 97.49°, while the REBA 

assessment uses 90° as the boundary angle for the assessment of the right upper arm, 

leading to a slight difference in the assessment score. In the assessment of posture M2-60, 

the discrepancy also occurred due to a deviation in the assessment angle of the right wrist. 

The QCES system’s recognition result was 18.17°, while both REBA and RULA use 15° as 

the boundary angle for the assessment of the wrist. It was analyzed that at the wrist, due 

to the need to grab garbage bags, many working postures exhibit bending while also twist-

ing upward or downward, necessitating consideration of the overall spatial angles. How-

ever, it is difficult to make accurate judgments solely through observation. This demon-

strates that the QCES system’s more objective image analysis method can compensate for 

potential errors made by experts. 

5.2. Discussion on Theposture of Sanitation Workers 

Sorting and removing urban waste is one of the primary tasks of sanitation workers. 

Nayak Sudhir et al. indicated that sanitation workers perform physically demanding tasks 

in malodorous environments while removing garbage, significantly impacting their phys-

ical health [4]. In China, sanitation workers are required to remove garbage at least once 

a day at centralized urban and rural waste collection points to ensure daily cleaning [46]. 

One essential task involves removing and packaging garbage bags from trash bins. With 

a height of 108 cm, a 240 L trash bin poses challenges for sanitation workers, especially 

considering that the average height of women in China is 160.1 cm, and for men, it is 169.7 

cm. Based on surveys, the mode weight of garbage bags was found to be 16 kg. This makes 

it difficult for sanitation workers to lift heavy garbage bags out of the bins, potentially 

exposing them to physical risk factors associated with Lower Back Pain (LBP) and Mus-

culoskeletal Disorders (MSDs) during their work. Da Silva et al. [47] found that in devel-

oping countries, the activity of lifting waste bags from waste containers often involves 

shoulder flexion exceeding 90°, increasing the likelihood of developing WMSDs. How-

ever, their study had a small sample size of only three individuals without gender differ-

entiation, making it challenging to delve into the specific causes of WMSDs. Furthermore, 

based on preliminary questionnaires and literature, we have learned that sanitation work-

ers often cannot work in a stable posture due to reasons such as inappropriate dimensions, 

which can increase the probability of WMSDs risk. However, intervention and changes in 

working posture can have a mitigating effect [20]. 

This research is dedicated to investigating the work postures of sanitation workers 

to understand the causes of work-related musculoskeletal disorders (WMSDs) and fill in 

existing research gaps. The specific findings of this study indicate that the posture of re-

moving a bag from the waste container at a 90° angle to the ground poses a significant 

risk, warranting immediate attention and further investigation. Furthermore, the study 

observed a noticeable improvement when considering the two methods of changing tilt 

angles, where 45° tilted waste containers were more effective in improving posture than 

the 60° tilted containers, with a negligible difference. The maximum difference in REBA 

and RULA scores was 0.5. However, 60° tilted waste containers have a smaller impact on 

the waste containers’ capacity. In the preliminary field visits, it was noted that sanitation 

workers typically do not wait for the waste containers to fill up before removing garbage, 

as fully loaded garbage bags usually weigh between 23–27 kg, making the removal of the 

garbage bags more difficult. Additionally, this study classified the evaluation results by 

gender and found that under the same conditions, women generally have a higher prob-

ability of suffering from WMSDs than men. As shown in Figure 10, the average REBA 

assessment result for men was 4.43, and for RULA, it was 3.67, while for women, the REBA 

assessment result was 5.67, and for RULA, it was 4.43. This may be due to the greater 
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strength of men compared to women, which is consistent with the results of Choi et al.’s 

study [41]. 

5.3. Research Contribution and Limitations 

The theoretical and practical contributions of this research are as follows: 

(1) This study constructs a human body skeletal joint model for analyzing workers’ 

working postures, defines limb angle calculation formulas and limb state judgment 

procedures, and discusses the feasibility of musculoskeletal disorder assessment 

from work posture analysis, enriching the fundamental theoretical research of mus-

culoskeletal disorder risk assessment. 

(2) This study combines artificial intelligence algorithms such as convolutional neural 

networks, pose machines, and convolutional pose machines to apply body skeletal 

recognition algorithms to musculoskeletal disorder risk assessment, enriching the 

application of image recognition and other artificial intelligence algorithms in the 

field of human factors engineering. The research also develops calculation modules 

for the REBA and RULA assessment methods, improving the accuracy of the sys-

tem’s assessment and providing new ideas for the development of subsequent as-

sessment methods. 

(3) This study conducts comparative validation experiments of the QCES system with 

OptiTrack motion capture and human factors engineering experts, verifying the reli-

ability of the body skeletal recognition algorithm in the application of musculoskele-

tal disorder risk assessment and the feasibility of automated assessment procedures 

for musculoskeletal disorder risk assessment. The experimental design and data 

analysis methods and results in this study can provide new insights and references 

for subsequent research on musculoskeletal disorder risk assessment and system val-

idation experiments in the field of human factors engineering. 

From an academic paper perspective, the engineering contributions of this study are 

as follows: 

(1) The proposed system in this study utilizes smartphones as carriers, addressing the 

cumbersome and time-consuming nature of musculoskeletal disorder assessments. 

This innovation enables the widespread application of intelligent assessment systems 

for evaluating factory workers’ working postures. For example, as mentioned in this 

paper, city management personnel can use the assessment results of the QCES system 

to improve the tilt angle of waste containers in decision-making, thereby minimizing 

the risk of WMSDs for sanitation workers when handling garbage bags and reducing 

the consumption of human and material resources. 

(2) In experimental validation, we found that the QCES system exhibits high assessment 

efficiency and accuracy. The assessment reports provide detailed evaluation data for 

multiple assessment methods, offering a powerful assessment tool for researchers in 

related fields to conduct in-depth investigations and analyses. 

(3) In the study of sanitation workers, this research found that adjusting the tilt angle of 

waste containers, without altering their original design, can improve the working 

posture of sanitation workers when removing garbage and reduce the risk of muscu-

loskeletal disorders associated with such tasks. 

There are still some limitations that need to be addressed, including: 

(1) The current system only completed comprehensive assessments of the REBA and 

RULA assessment methods, providing detailed data for the assessments conducted 

by these two methods. However, each assessment method has its own strengths and 

limitations in practical work. Therefore, it is necessary to further expand the muscu-

loskeletal disorder risk assessment methods based on the proposed system to meet 

the needs of different working environments for musculoskeletal disorder risk as-

sessment methods. 
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(2) The experimental design included the assessment of WMSDs risks for sanitation 

workers when clearing waste containers and the comparative assessment of the im-

proved solution, forming a relatively complete process of assessing-dangerous pos-

tures-improvement-results comparison. However, this study only evaluated and 

tested one occupation. In terms of algorithm extension, it is necessary to test the im-

pact of different operational positions on the system’s recognition and assessment 

accuracy. 

6. Conclusions 

This study proposes a Work-Related Musculoskeletal Disorder risk assessment sys-

tem based on posture recognition. The system does not interfere with workers’ normal 

tasks during usage and does not require complex equipment. Assessors only need to use 

a smartphone to capture images of workers’ postures and input the necessary data. After 

uploading, the QCES system provides musculoskeletal disorder risk assessment results 

for the current task posture in the form of a report on the mobile end. Assessors can di-

rectly guide workers to correct their task postures based on improvement suggestions 

provided in an online report or download detailed offline reports for in-depth analysis. 

Furthermore, this study verified the accuracy of the QCES system in recognizing limb an-

gles through a comparative analysis with OptiTrack motion capture. The study also found 

high consistency between the scores of the REBA and RULA assessments and those pro-

vided by three experts. Finally, the application of the QCES system in assessing the pos-

tures of sanitation workers and exploring optimal intervention methods demonstrated 

that the existing work methods pose safety hazards, and changing the angle of the trash 

bin can improve WMSDs. Additionally, the study confirmed that the QCES system not 

only helps managers quickly identify problems but also supports researchers in conduct-

ing more in-depth studies. 
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