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ABSTRACT 
 

The thermoelectric alloy N-Si0.96Ge0.04-P irradiated by 60Co gamma-photons is been studied. The 
temperature dependences of the Seebeck coefficient, power and electronic quality factors, as well 
as the universal electrical conductivity and effective masses of electrons in the interval 
(250 ÷400)°C are calculated. All these dependences are different from the results previously 
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obtained for SixGe1-x with other compositions (except for effective mass). This should be associated 
with a significant difference in specific resistivities and concentrations of charge carriers. 
 

 
Keywords: SiGe alloy; seebeck coefficient; γ-radiation. 
 

1. INTRODUCTION 
 
SixGe1-x alloys are materials widely used in             
many fields of science and technology [1-15]. 
Nuclear radiation detectors, pressure sensors, 
thermistors, thermal neutron monochromators 
and X-ray diffractometry devices are also created 
on their basis [16-19].(1) In work [20] N-type 
Si0.96Ge0.04-P was irradiated with 60Co gamma 
photons and the electrical resistance, 
concentration, and mobility of charge carriers 
were measured. According to this work, at 
temperatures ≥ 150°C, electrical characteristics 
undergo non-monotonic changes. 
 
Since the main purpose of [20] was to study N-P 
conversion, dissociation of phosphor-vacanci 
(PV) centers and formation of vacancy-oxygen 
(VO) centers, no emphasis was placed on the 
Seebeck coefficient and other thermoelectric 
characteristics. 
 

2. MATERIALS AND METHODS 
 
In the present work, the temperature 
dependences of the Seebeck coefficient, power 
and electronic quality factors, as well as the 
universal electrical conductivity in the interval 
(250 ÷ 400)°C for N-Si0.96Ge0.04-P have been 
studied. Values of resistivity and charge carrier 
concentration are used from [20]. In this work is 
shown that in the monocrystalline N-
Si+0.4at.%Ge irradiated with 60Co gamma 
photons non-monotonic changes in electrical 
resistance, charge carriers concentration and 
mobility were detected by isochron alannealing at 
a temperature range of (20-400)°C. The 
contribution of current transformations in the 
structure of radiation defects to the temperature 
changes of electrical characteristics is analyzed. 
N-P conversion was detected atthe critical 
temperature (~100°C) of isochron alannealing. 
Dissociation of PV centers and formation of 
electrically active VO centers were detected in 
the (120-150)°C range. As a result, the 
concentration of current carriers increases. At 
elevated temperatures (>150°C) non-monotonic 
changes in electrical characteristics are 
observed. The paper [20] analyzes the 

contribution of germanium to the anomalous 
temperature changes of the electrophysical 
characteristics of the N-type SiGe alloy. 
 

3. DISCUSSION 
 
Combining formulas known from the literature 
relating concentration (n), specific resistivity (ρ), 
Seebeck coefficient (S), mobility ( μ ),effective 
mass (m*) and absolute temperature (T), we 
obtain a transcendental equation for S: 
 

e11605S−2

S[1 + e−5(11605S−1)]
+

3527.5

1 + e5(11605S−1)
≅ 

      1.087·10-9(ρn)2/3,                                  (1) 
 
in which there is no longer mobility, effective 
mass and temperature, and ρ  and n are 
determined from the experimental temperature 
dependences of these parameters. 
 

The dependence of the Seebeck coefficient on 
temperature of isochron alannealing calculated 
using Eq.(1) for a given n and ρ is shown in Fig. 
1(a) (we used the values of concentration and 
resistivity at a given temperature). As can be 
seen from the figure, this dependence has a 
parabolic form, in contrast to the data for SixGe1-x 

with other compositions (without irradiation), 
which have the form of straight lines [21-23]. 
 

In the Fig. 1(b) is presented the dependence of 
the power factor on temperature of isochron 
alannealing: PF≡ σS2 (σ=1/ρ - specific electrical 
conductivity). After determining the Seebeck 
coefficient and PF, the electronic quality factor 
(BE) can be calculated: BE=PF/BS, where BS is 
the scaled power factor(2) (Fig. 2(a)). Its increase 
(change) with temperature indicates the 
presence of additional effects [29]. However, the 
temperature variation of this dependence does 
not allow us to identify a specific scattering 
mechanism. 
 

The dependence of the scaled power factor on 
the Seebeck coefficient is shown in Fig. 3. The 
experimental points fit well on the averaged 
curve presented in [24] for a large number (more 
than 3500) samples. 
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(a) 

(b) 
 

Fig. 1. Dependences of Seebeck coefficient (a) and power factor (b) on temperature of 
isochron alannealing 

[S]=V/K, [PF]=W/K2·m, [t]=ºC 
 

The determination of the electrical quality factor 
allows one to calculate the universal electrical 
conductivity, which is given by the following 
expression: σ'=(qe/kB)2(σ⁄ВЕ)≅1.347·108(σ⁄ВЕ). Its 
dependence on temperature of isochron 
alannealing is shown in Fig. 2(b). 
 

It should be noted that the obtained values of PF 
are two orders of magnitude lower than for P-
SixGe1-x alloys and four orders of magnitude                    
less than for N-SixGe1-xwith other compositions 
[27-29]. This should be associated with a 
significant difference in specific resistivities           

and concentrations of charge carriers.(3) It                    
should not be concluded from this that                      
radiation worsens the thermoelectric 
characteristics of the alloy: before irradiation                     
of N-Si0.6Ge0.4, the value of power factor                
was 1.44·10-7W/K2m (i.e. in radiation, on the 
contrary, the power factor increases with 
temperature). 
 

Determining the Seebeck coefficient allows you 
to calculateals the effective mass of charge 
carriers. For this purpose the following formula 
are used [25]: 

 

m∗

m0
≅1.059·10-15(

n2/3

T
) {

3[e(Sr−2)−0.17]
2/3

1+e−5(Sr−Sr
−1)

+
Sr

1+e5(Sr−Sr
−1)

} ≅
6.608∙10−15

T
[ne(Sr−2)]

2

3                                   (2) 

 



 
 
 
 

Tkhinvaleli et al.; Phys. Sci. Int. J., vol. 28, no. 1, pp. 16-22, 2024; Article no.PSIJ.112237 
 
 

 
19 

 

(m0 - electron rest mass). Fig. 4 shows the 
dependence of m*/m0 on temperature of isochron 
alannealing calculated from Eq.(2). This 
dependence can be approximately described by 
the empirical expression m*/m0≅6.918·10-11t3.373-
5.625·10-3. The obtained values of the ratio of 
effective mass to rest mass are of the same 
order as for than for SixGe1-x with other 
compositions. 
 

In conclusion, we note that the temperature 
dependence of electron mobility given in [25] 
approaches a straight line at t≅(75÷430)ºC. But 
it can be more accurately described by the 
expression: 
 

1

μ
≅8.116·103t-3/2+11.221·10-3t3/2.            (3) 

 

Eq.(3) means that simultaneous scattering by 
impurities and thermal vibrations of the lattice 
takes place. 

Footnote belows: 
 
(1)The effects of Si, Ge and SiGe irradiation have 
been studied in a fairly large number of works 
[26-30]. 
 

(2)BS= [
𝐒𝐫

𝟐𝐞2−𝐒𝐫

𝟏+𝐞−𝟓(𝐒𝐫−𝟏) +
𝛑𝟐

3
𝐒𝐫

𝟏+𝐞𝟓(𝐒𝐫−𝟏)] and 

Sr=
qe

kB
S ≅ 1.1605·104S is the reduced Seebeck 

coefficient (qe - elementary charge, kB - 
Boltzmann's constant). For relatively high values 

of S, the formula BS≅ Sr
2e(2−Sr) can be used with 

sufficient accuracy. 
 
(3)The samples studied in [21-23] had                      
the following characteristics: ρ ≅ (0.15 ÷ 3)·10-

4Ω·m, n≅(2÷3.2)·1026m-3 and m*/m0≅1÷5. 
 

 

(a) 

(b) 
 

Fig. 2. Dependences of electronic quality factor (a) and universal electrical conductivity (b) on 
temperature of isochron alannealing 

[BE]=W/K2·m, [σ']=Sim·K4/W·V2, [t]=ºC 
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Fig. 3. Dependence of scaled power factor on the Seebeck coefficient 
[S]=V/K, BS – dimensionless 

 

 
 

Fig. 4. Dependence of m*/m0 on temperature of isochron alannealing 
[t]=oC, m*/m0 – dimensionless 

 

4. CONCLUSION 
 
A formula has been obtained by means of which 
the Seebeck coefficient can be calculated 
depending on the resistance and the 
concentration of charge carriers. After 
determining the Seebeck coefficient, the power 
factor, electronic quality factor, universal 
electrical conductivity and effective mass are 
calculated. All these dependences are                  
different from the results previously obtained                    
for SixGe1-x with other compositions (except                   
for effective mass). This should be associated 
with a significant difference in specific             

resistivities and concentrations of charge 
carriers. 
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