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Abstract: The global exploration of evolutionary trends in groupers, based on mitogenomes, is cur-
rently underway. This research extensively investigates the structure of and variations in Cephalopholis
species mitogenomes, along with their phylogenetic relationships, focusing specifically on Cephalopho-
lis taeniops from the Eastern Atlantic Ocean. The generated mitogenome spans 16,572 base pairs and
exhibits a gene order analogous to that of the ancestral teleost’s, featuring 13 protein-coding genes
(PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an AT-rich control
region. The mitogenome of C. taeniops displays an AT bias (54.99%), aligning with related species.
The majority of PCGs in the mitogenome initiate with the start codon ATG, with the exceptions being
COI (GTG) and atp6 (TTG). The relative synonymous codon usage analysis revealed the maximum
abundance of leucine, proline, serine, and threonine. The nonsynonymous/synonymous ratios were
<1, which indicates a strong negative selection among all PCGs of the Cephalopholis species. In C.
taeniops, the prevalent transfer RNAs display conventional cloverleaf secondary structures, except
for tRNA-serine (GCT), which lacks a dihydrouracil (DHU) stem. A comparative examination of
conserved domains and sequence blocks across various Cephalopholis species indicates noteworthy
variations in length and nucleotide diversity. Maximum likelihood, neighbor-joining, and Bayesian
phylogenetic analyses, employing the concatenated PCGs and a combination of PCGs + rRNAs,
distinctly separate all Cephalopholis species, including C. taeniops. Overall, these findings deepen our
understanding of evolutionary relationships among serranid groupers, emphasizing the significance
of structural considerations in mitogenomic analyses.

Keywords: serranids; Africa; next-generation sequencing; mitogenome; phylogeny; evolution

1. Introduction

The mitochondrial genome consists of compact, circular molecules, spanning 16–17 kilobase
pairs in size, housing highly conserved encoded genes that play an essential role in the vital-
ity of nearly all eukaryotes [1]. The mitogenome is typically composed of 13 protein-coding
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genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and two noncod-
ing regions—the control region (CR) and the origin of L-strand replication (OL) [2]. Notably,
the gene order within the mitogenome exhibits a remarkable degree of conservation among
vertebrates, including teleosts [3]. Due to several advantageous features, such as maternal
inheritance and a higher mutation rate, the mitochondrial genome has found extensive
use as a powerful tool for conducting phylogenetic and population genetic analyses in
vertebrates, with a particular emphasis on fish [4,5]. Consequently, it is imperative to
unravel the structure and variability of the mitogenome in any organism to comprehend its
functions [6]. While mitogenomic research on fish has been extensively initiated globally,
there exists a substantial gap in knowledge within numerous classified groups.

Groupers within the genus Cephalopholis (Serranidae: Epinephelinae) represent pri-
marily tropical and subtropical marine fish species, with a global presence encompassing
25 extant species [7,8]. The majority of these species inhabit reef ecosystems extending
from the Red Sea to the Indo-Pacific region, while a subset confines their distribution to
the Eastern Pacific and the Western to Eastern Atlantic. Economically significant, these
species are actively pursued by commercial, artisanal, and recreational fishermen [9,10].
The African hind or blue-spotted seabass, Cephalopholis taeniops, inhabits sandy or rocky
seafloors at depths ranging from 20 to 200 m in the Eastern Atlantic, spanning from Mo-
rocco south to Angola, including the Canary Islands (Spain), Cape Verde Islands, and São
Tomé and Principe [7]. Subsequently, this species has been documented in the Canary
Islands, the Mediterranean Sea in Libya and Israel, as well as in the Southwestern Atlantic
Ocean [10–16]. Beyond the Eastern Atlantic, populations in the Mediterranean and South-
western Atlantic are considered introduced populations of C. taeniops [16]. Commercially, C.
taeniops is predominantly utilized for local human consumption within its distribution area
and is frequently exported to Europe from Senegal [7,11]. Despite the scarcity of available
data regarding population biology, reproductive strategies, and the actual impact of fishing,
C. taeniops is classified as a ‘Least Concern’ species in the IUCN Red List of Threatened
Species due to insufficient evidence. Nevertheless, groupers remain highly vulnerable to
fishing pressure, owing to life history traits such as longevity, late sexual maturation, and
aggregation spawning [17].

Within the Serranidae family, focused investigations on Cephalopholis species have
primarily addressed aspects such as physiology and reproductive life history [18,19], ge-
netic connectivity, phylogeography, evolutionary implications through Pleistocene iso-
lation [20,21], and the assembly of chromosome-level genomes alongside transcriptome
comparisons [22]. Further, in conjunction with other serranid species, comprehensive
examinations of the phylogenetic relationships of Cephalopholis species have involved the
utilization of two mitochondrial (16S rRNA and 12S rRNA) and two nuclear (Tmo-4C4
and histone H3) genes [23,24]. Numerous molecular datasets have been generated for ser-
ranid species, contributing to the discovery of new species [25], the delineation of cryptic
diversity [26], species discrimination in hybrid zones [27], and the elucidation of phylo-
genetic relationships [28,29]. Nevertheless, the systematic classification of serranids has
experienced frequent changes across various taxonomic levels, leading to inconsistencies, a
situation rectified through the application of three mitochondrial genes (COI, 16S rRNA,
and 12S rRNA) and one nuclear gene (TMO4C4) [30]. The resulting molecular data have
been instrumental in estimating phylogeographic patterns, demographic history [31–34],
gaining insights into population dynamics and adaptive radiation [35], detecting biological
invasions [36], and contributing to the improvement of fisheries management and grouper
conservation [37]. Subsequent advancements in molecular tools have further facilitated the
exploration of phylogenomics and population genomics within this fish group, unveiling
intraspecific variation, adaptation differentiation, physiological changes, radiations, and
the intricate processes of speciation [38–40].

Examining the complete mitochondrial genome information of serranids, a compre-
hensive set of 94 species sequences is presently available in the global GenBank database
(https://www.ncbi.nlm.nih.gov, accessed on 12 December 2023). Notably, the majority of

https://www.ncbi.nlm.nih.gov
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these mitogenomes have been generated within the subfamily Epinephelinae and the tribe
Epinephelini. The database is further enriched by the inclusion of mitogenomes from nine
Cephalopholis species [41–46]. Given the demonstrated efficacy of mitochondrial genomes
in elucidating phylogenetic inferences within teleosts [47–49], there is an urgent need to
enhance taxonomic coverage for a more profound understanding of the evolutionary rela-
tionships within the targeted group. Novel mitogenomic data not only provide insights into
the structural variations in mitochondrial genes (PCGs, rRNAs, tRNAs, and D-loop), but
also shed light on their functions [50,51]. Additionally, mitogenomic data prove valuable
in environmental DNA metabarcoding studies and contribute to the conservation genetics
of teleosts [52].

Furthermore, the imperative need for the meticulous tracking of tropical marine
biodiversity extends to both established hotspots and peripheral ecosystems [53]. The
study region, situated within the West African hotspot, recognized as one of the global
biodiversity hotspots [54], is characterized by a limited understanding of the diversity,
origin, and evolution of reef-associated fish, specifically within Cephalopholis species in the
Eastern Atlantic Ocean. To overcome these challenges, leveraging genetic information and
employing phylogenetic approaches have proven to be successful strategies in elucidating
the underlying causes of richness patterns across global marine regions. This involves a
comparative assessment of the relative importance of colonization time, the number of colo-
nization events, and diversification rates [55]. The adoption of such integrated approaches
is instrumental not only in enhancing our comprehension of these aspects, but also in
formulating effective conservation priorities for global marine biodiversity. These priorities,
spanning multiple dimensions, play a pivotal role in the context of marine protected areas
(MPAs), supporting our capacity to combat and adapt to climate change [56,57]. Therefore,
the present study aims to generate a novel mitogenome of the African Hind, C. taeniops,
from the Eastern Atlantic Ocean, characterizing its genomic features in comparison with
other congeners. The research also conducts cladistic analyses to elucidate the evolutionary
relationships of the targeted species with other major lineages of serranids. The genetic
data acquired will play a crucial role in validating the population structure of the African
Hind and its applications in the field of conservation genetics.

2. Results and Discussion
2.1. Mitogenome Structure and Organization

In the current investigation, we elucidated the mitogenome of C. taeniops, revealing
a length of 16,572 base pairs (bp) with GenBank accession no. OQ420715. Notably, the
mitogenome of C. taeniops exhibited the shortest length among the Cephalopholis species,
ranging from 16,585 bp (Cephalopholis leopardus and Cephalopholis miniata) to 16,771 bp
(Cephalopholis boenak). Comprising 13 PCGs, 22 tRNAs, two rRNAs, and an AT-rich control
region, the mitogenome of C. taeniops displayed a unique arrangement. The positive strand
accommodated 12 PCGs, two rRNAs, and 14 tRNAs, while the negative strand housed
ND6 and 8 tRNAs (Table 1, Figure 1). The gene order in C. taeniops, along with other
species (C. boenak, C. leopardus, C. miniata, Cephalopholis sexmaculata, Cephalopholis sonnerati,
Cephalopholis urodeta, and Cephalopholis spiloparaea), mirrored that of the ancestral teleosts,
with the exception of Cephalopholis argus, which exhibited content duplication of trnD and
CR, as reported previously [41] (Figure 1).
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Table 1. List of annotated mitochondrial genes, boundaries, size, and intergenic nucleotides of
Cephalopholis taeniops.

Genes Start Stop Strand Size (bp) Intergenic
Nucleotide Anticodon Start

Codon
Stop

Codon

tRNA-Phe (F) 1 70 H 70 0 TTC . .

12S rRNA 71 1023 H 953 0 . . .

tRNA-Val (V) 1024 1095 H 72 0 GTA . .

16S rRNA 1096 2807 H 1712 0 . . .

tRNA-Leu (L2) 2808 2882 H 75 0 TTA . .

ND1 2883 3857 H 975 5 . ATG TAA

tRNA-Ile (I) 3863 3932 H 70 −1 ATC . .

tRNA-Gln (Q) 3932 4002 L 71 0 CAA . .

tRNA-Met (M) 4003 4072 H 70 0 ATG . .

ND2 4073 5118 H 1046 0 . ATG TA-

tRNA-Trp (W) 5119 5189 H 71 1 TGA . .

tRNA-Ala (A) 5191 5259 L 69 0 GCA . .

tRNA-Asn (N) 5260 5332 L 73 37 AAC . .

tRNA-Cys (C) 5370 5437 L 68 0 TGC . .

tRNA-Tyr (Y) 5438 5508 L 71 1 TAC . .

COI 5510 7060 H 1551 0 . GTG TAA

tRNA-Ser (S2) 7061 7131 L 71 1 TCA . .

tRNA-Asp (D) 7133 7205 H 73 8 GAC . .

COII 7214 7904 H 691 0 . ATG T--

tRNA-Lys (K) 7905 7977 H 73 1 AAA . .

ATP8 7979 8146 H 168 −10 . ATG TAA

ATP6 8137 8819 H 683 0 . TTG TA-

COIII 8820 9604 H 785 0 . ATG TA-

tRNA-Gly (G) 9605 9676 H 72 0 GGA . .

ND3 9677 10,025 H 349 0 . ATG T--

tRNA-Arg (R) 10,026 10,094 H 69 0 CGA . .

ND4L 10,095 10,391 H 297 −7 . ATG TAA

ND4 10,385 11,765 H 1381 0 . ATG T--

tRNA-His (H) 11,766 11,835 H 70 0 CAC . .

tRNA-Ser (S1) 11,836 11,907 H 72 6 AGC . .

tRNA-Leu (L1) 11,914 11,986 H 73 0 CTA . .

ND5 11,987 13,825 H 1839 −4 . ATG TAA

ND6 13,822 14,343 L 522 0 . ATG TAA

tRNA-Glu (E) 14,344 14,412 L 69 4 GAA . .

Cyt b 14,417 15,557 H 1141 0 . ATG T--

tRNA-Thr (T) 15,558 15,630 H 73 −1 ACA . .

tRNA-Pro (P) 15,630 15,699 L 70 0 CCA . .

Control region (CR) 15,700 16,572 H 873 . . . .
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Figure 1. Global distribution pattern of African Hind, C. taeniops and other congeners in marine
environment. Collection locality of C. taeniops is marked by blue pin. The circular mitochondrial
genome of C. taeniops is represented and annotated using the MitoAnnotator online server. Different
color arcs highlight the presence of PCGs, rRNAs, tRNAs, and CR. Species photograph was taken
by Fantong Zealous Gietbong from the Ministry of Livestock, Fisheries and Animal Industries
(MINEPIA), Yaounde, Cameroon. The linearized view of the complete mitochondrial genome
organization reveals the duplication of tRNA-Asp (D) and CR in C. argus comparison with other
Cephalopholis species.

The mitogenome of C. taeniops demonstrated an AT bias (54.99%), with nucleotide
composition comprising 28.93% A, 26.06% T, 16.27% G, and 28.74% C. Similar AT biasness
was observed in other Cephalopholis species, ranging from 54.99% (C. taeniops) to 56.94%
(C. boenak). In the C. taeniops mitogenome, the AT skew and GC skew were calculated as
0.052 and −0.277, respectively. Comparative analysis with other Cephalopholis mitogenomes
revealed an AT skew ranging from 0.026 (C. argus) to 0.061 (C. sonnerati) and a GC skew
ranging from −0.282 (C. leopardus and C. sonnerati) to −0.247 (C. argus) (Table S2).

Our investigation further unveiled nine intergenic spacers totaling 64 bp and five
overlapping regions spanning 23 bp in the C. taeniops mitogenome. The longest intergenic
spacer (37 bp) was identified between tRNA-Asn (N) and tRNA-Cys (C), while the most
extensive overlapping region (10 bp) occurred between ATP synthase 8 (atp8) and ATP
synthase 6 (atp6) genes. A comparative analysis with other Cephalopholis mitogenomes
disclosed intergenic spacer numbers ranging from 9 to 12, with the most extended spacer
(37 bp to 40 bp) observed between trnN and trnC (Table S3). Moreover, six overlapping
regions were consistently observed in most Cephalopholis mitogenomes, with a maximum
length of 10 bp between atp8 and atp6. Notably, an overlapping region (1 bp) between atp6
and cytochrome c oxidase subunit III (COIII) was common in most Cephalopholis species but
absent in C. taeniops. Additionally, an unconventional intergenic spacer (3 bp) was noted
between tRNA-Thr (T) and tRNA-Pro (P) in C. argus, contrasting with the single base pair
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overlap present in the same gene boundary in other species (Table S3). The observed genetic
variations within the mitogenomes of Cephalopholis species provide valuable insights into
their evolutionary processes and energy metabolism, consistent with comparable findings
in other fish species [58]. This investigation adds crucial information about the structural
characteristics of Cephalopholis mitogenomes, thereby enhancing our comprehension of the
functions encoded by these mitogenomes and their constituent genes.

2.2. Protein-Coding Genes

The mitogenome of C. taeniops comprises 13 PCGs, with the shortest length observed
in atp8 and the longest in ND5. The total length of C. taeniops PCGs is 11,301 base pairs
(bp), constituting 68.19% of the complete mitogenome. In contrast to other Cephalopholis
species, the total PCG length ranges from 11,301 bp (C. taeniops) to 11,430 bp (C. argus).
Seven additional species (C. boenak, C. leopardus, C. miniata, C. sexmaculata, C. sonnerati, C.
urodeta, and C. spiloparaea) maintain an equal PCG length of 11,429 bp in their mitogenomes
(Table S2). The PCGs in Cephalopholis species exhibit an AT bias ranging from 54.57% (C.
taeniops) to 56.7% (C. argus). AT skews and GC skews in Cephalopholis PCGs vary from
−0.060 (C. argus) to −0.012 (C. miniata and C. spiloparaea) and −0.328 (C. leopardus) to
−0.277 (C. argus). In the mitogenome of C. taeniops, most PCGs start with ATG, except for
COI (GTG) and atp6 (TTG). The COI gene initiates with GTG in all Cephalopholis species,
while atp6 starts with TTG in three species and CTG in six others. Notably, an exception is
observed with ND4 in C. argus, which starts with GTG instead of ATG. In C. taeniops, six
PCGs terminate with TAA, COIII with GGC, and the remaining PCGs exhibit incomplete
stop codons. An exception is ND1 in C. boenak, COI in five species, ND5 in C. argus,
and ND6 in two species, where TAG serves as the stop codon (Table S4). Nucleotide
diversity analysis, using a sliding window approach on concatenated PCGs, yielded an
average nucleotide diversity value (Pi) of 0.13191, with 3582 polymorphic sites across
all Cephalopholis species (Figure 2A). A saturation analysis indicated non-saturation for
both transitions and transversions with increasing Kimura 2-parameter (TN84) divergence
values (Figure 2B).
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(s) and transversions (v) concerning genetic divergence of PCGs combining with all three codon
positions, utilizing the Kimura 2-parameter (TN84) distance method with crosses indicating transition
events and triangles representing transversion events. The curves delineate the non-saturated trends
in the variance of transitions and transversions as genetic distance increases. (C) Box plot showing
the pairwise divergence of Ka/Ks ratio for each one of the mitochondrial PCGs. (D) Abundance of
codon usage of Cephalopholis species mitochondrial genomes including C. taeniops.

2.3. Substitutions Pattern and Codon Usage

Darwinian selection stands as a pivotal hypothesis in elucidating the evolutionary
dynamics of genes under positive selection, playing a crucial role in the divergence of
species [59–63]. The examination of synonymous (Ks) and nonsynonymous (Ka) substitu-
tion rates within PCGs provides evidence for Darwinian selection and adaptive molecular
evolution in vertebrates [64,65]. The Ka/Ks ratio serves as an established indicator of
selective pressure and evolutionary relationships at the molecular level, applicable to
both homogenous and heterogeneous species [66,67]. In this study, we investigated the
evolutionary rates between homologous gene pairs by calculating Ka/Ks substitutions
for C. taeniops and comparing them with Cephalopholis species. The Ka/Ks ratio ranged
from 0.0109 ± 0.004 in nad5 to 0.1986 ± 0.030 in cox3 and the resulted following order:
nad5 < nad4L < nad3 < nad1 < nad6 < nad4 < cox2 < cox1 < atp8 < nad2 < atp6 < cytb < cox3
(Figure 2C). Most PCGs exhibited Ka/Ks values less than 1, indicating a strong negative
selection among the studied Cephalopholis species, suggesting that the mutations were re-
placed by synonymous substitutions (Table S5). A comparative analysis of the Ka/Ks ratio
among 13 PCGs of Cephalopholis species showed that all PCGs are evolving under negative
selection (Table S6, Figure S1). This observation reflects the influence of natural selection in
mitigating deleterious mutations with negative selective coefficients, aligning with general
patterns observed in other vertebrates [65,66]. Thus, the comparative analysis of Ka/Ks
within Cephalopholis species’ mitogenomes offers a platform for gaining insights into the nu-
ances of natural selection shaping the evolutionary trajectory of species. This analysis aids
in unraveling the intricate interplay between mutations and selective pressures, elucidating
their collective role in steering the evolution of proteins. The codons corresponding to
each amino acid were found to be conserved across all PCGs in the compared Cephalopholis
species. An analysis of RSCU unveiled a maximal abundance of leucine, proline, serine,
and threonine in the PCGs of C. taeniops, whereas aspartic acid, cysteine, glutamic acid, and
tryptophan were less prevalent (Figure 2D). Similar amino acid abundance patterns were
observed in other Cephalopholis species, mirroring those in C. taeniops (Table S7). Notably,
the RSCU analysis demonstrated a significant decrease in the frequency of the ACG codon
in threonine and the AGT codon in serine in C. taeniops (Figure S2). A comparative RSCU
analysis further revealed a substantial reduction in the frequency of the GCG codon in
alanine across most species (C. argus, C. leopardus, C. miniata, C. sexmaculata, C. sonnerati, C.
urodeta, C. spiloparaea), except in C. boenak where ACT was observed in threonine (Table S7).

2.4. Ribosomal RNA and Transfer RNA Genes

The mitogenome of C. taeniops encompasses two ribosomal RNA molecules, namely,
12S rRNA (953 bp) and 16S rRNA (1712 bp), collectively contributing to 16.08% of the entire
mitogenome. A comparative analysis with other Cephalopholis species revealed varying
lengths of rRNAs, ranging from 2663 bp (C. miniata and C. spiloparaea) to 2679 bp (C. argus).
The rRNA genes exhibit AT bias, ranging from 53.03% (C. taeniops) to 54.91% (C. argus)
(Table S2). The AT skews and GC skews range from 0.184 (C. argus) to 0.263 (C. boenak) and
−0.136 (C. boenak) to −0.084 (C. argus), respectively. In C. taeniops, the cumulative length
of tRNA genes is 1565 bp, contributing 9.44% to the entire mitogenome. A comparative
assessment with other Cephalopholis species shows the total tRNA length varying from
1562 bp (C. sonnerati) to 1638 bp (C. argus). The tRNA genes of Cephalopholis species display
AT bias, ranging from 55.62% (C. boenak) to 57.63% (C. argus), with the AT skew ranging
from 0.008 (C. taeniops) to 0.031 (C. boenak) (Table S2). Ribosomes, universally conserved
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ribonucleoproteins, facilitate the translation of genetic information from mRNAs to proteins.
The structural arrangement of these rRNA genes, especially conserved loops, provides
crucial insights into the catalytic processes underlying protein synthesis [68]. In C. taeniops,
most tRNAs exhibit classic clover-leaf secondary structures, except for trnS1 (GCT), which
lacks the DHU stem (Figure S3). Wobble base pairings are observed in 18 tRNAs, with
the highest number in trnA and trnE (Figure S3). These pairings occur in various tRNA
regions, including the DHU stem, acceptor stem, TψC stem, and anticodon stem, indicating
sites with G × U/T pairs for recognition by proteins and other RNAs. The anticodons
of all 21 tRNAs exhibited uniformity across all Cephalopholis species, with the exception
of tRNA-Ser (S1) (AGC), which was exclusively identified in three species, C. taeniops, C.
argus, and C. boenak. Notably, a duplication event of tRNA-Asp (D) in C. argus resulted
in both tRNAs featuring the GAC anticodon (Table S8). This allows wobble pairs to play
essential roles in diverse biological processes [69,70]. tRNAs, acting as adaptor molecules,
facilitate the translation of genetic information into protein sequences by delivering amino
acids during translation. Additionally, gene rearrangements of tRNAs and high levels of
length heteroplasmy in the WANCY region contribute to illuminating the evolution of
mitochondrial genes [71,72].

2.5. Features of Control Region

The CR of C. taeniops spans 873 base pairs (bp), representing 5.27% of the total mi-
togenome. A comparative analysis across various Cephalopholis species reveals a diverse
range of CR lengths, ranging from 813 bp (C. argus) to 1064 bp (C. boenak). The CRs ex-
hibit an AT bias, varying from 62.24% (C. argus) to 70.11% (C. boenak), with AT skews
ranging from −0.035 (C. boenak) to 0.103 (C. argus) (Table S2). In scrutinizing the extant
mitogenomes of six Cephalopholis species, a comprehensive examination of diverse domains
was conducted, following the methodology outlined for C. sonnerati (KC593378) [41]. A
comparative analysis reveals the presence of six central conserved domains (CCDs), CSB-A,
CSB-B, CSB-C, CSB-D, CSB-E, and CSB-F, along with three conserved sequence blocks
(CSBs), CSB-1, CSB-2, and CSB-3, within the CR of C. taeniops and the other six Cephalopholis
species (C. leopardus, C. miniata, C. sexmaculata, C. sonnerati, C. urodeta, and C. spiloparaea).
This observation aligns with patterns identified in other teleost mitogenomes [6,41]. Among
the CCDs, CSB-D stands out as the longest at 33 base pairs, while CSB-A, CSB-B, CSB-C,
CSB-E, and CSB-F exhibit lengths of 18 base pairs, 18 base pairs, 28 base pairs, 19 base
pairs, and 20 base pairs, respectively (Figure 3). Comparative analyses unveil significant
nucleotide variability within CSB-A and CSB-E (four and six base pairs, respectively),
while other CCDs remain largely conserved across all Cephalopholis species. Within the
CSBs, CSB-1 is the longest at 23 base pairs, with CSB-2 and CSB-3 exhibiting lengths of
18 base pairs and 20 base pairs, respectively (Figure 3). Comparative analyses of CSBs
reveal notable nucleotide variability within CSB-3 (four base pairs), while CSB-1 and CSB-2
remain predominantly conserved. Due to unprecedented length variation and hetero-
plasmy, the CRs of C. argus (KC593377) and C. boenak (KC537759) were not investigated.
The CR of C. argus lacks certain sequence elements found in other grouper species, shares
no significant sequence similarity, and features an additional tRNA-Asp (D) insertion in
the middle of the region. Except for C. sexmaculata (2.7 copy number of consensus 17 bp:
CATATATGTATAGTAAC), no other Cephalopholis species’ CRs contain tandem repeats in
the extended termination-associated sequences (ETAS) region. The repeat-rich extended
termination-associated sequence (ETAS) region emerges as the most dynamically variable
segment within the CR, characterized by specific motifs. This variability prompts the
formation of stable hairpin loops, hypothesized to function as sequence-specific signals for
the termination of mitochondrial DNA (mtDNA) replication [41]. Beyond the conserved
attributes, the CRs of Cephalopholis species harbor highly polymorphic sequences, offering
a robust tool for distinguishing between species and elucidating population structures
in fish, a phenomenon well documented in other fish species, including groupers [73,74].
Furthermore, the intricate mechanisms governing the CR, such as genomic rearrangement
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through double replications, random loss, dimer-mitogenomes, and non-random loss,
contribute significantly to comprehending the structural diversity of mitogenomes and the
complexities inherent in the evolution of mitochondrial genomes.
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2.6. Genetic Distances and Phylogenetic Relationship

The serranids exhibit an overall mean genetic distance of 25.4% in the current mi-
togenomic dataset. Among the Cephalopholis species, inter-species genetic distances range
from 0.06% (C. miniata and C. spiloparaea) to 20.8% (C. argus and C. spiloparaea). In the four
tribes (Epinephelini, Diploprionini, Grammistini, and Liopropomini) within the subfamily
Epinephelinae, genetic distances range from 28% to 30.9%. Furthermore, the subfamily
Epinephelinae demonstrates genetic distances of 30.2% to 32.5% with other serranid sub-
families, Serraninae and Anthiinae, respectively. The maximum likelihood (ML) topology,
constructed using concatenated protein-coding genes, distinctly separates all serranids, elu-
cidating their phylogenetic relationships (Figure 4). Taxa from different taxonomic lineages,
both at the tribe and subfamily levels, exhibit clear clustering patterns. Cephalopholis species
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display a cohesive and monophyletic clustering pattern in the cladistics analysis, aligning
with previous evolutionary hypotheses on groupers [24,30]. Compelling evidence supports
the consideration of Cephalopholis as a valid genus, as indicated by both the recent cladistic
analysis based on mitogenomes and previous screenings using partial mitochondrial and
nuclear genes [24,28,30]. Notably, the mitogenome of Aethaloperca rogaa clusters closely
with C. argus and C. boenak in the ML phylogeny. The classification of the genus Aethaloperca
is contentious, and A. rogaa, based on morphological features, was previously considered
to belong to a monotypic genus [7]. However, recent studies propose synapomorphic
characters that unite Aethaloperca with Cephalopholis, supporting its placement within the
latter. The present mitogenome-based ML phylogeny corroborates this, designating A. rogaa
nested under the Cephalopholis clade. Nevertheless, it is essential to subject this hypothesis
to scrutiny through a comprehensive examination of additional morphological character-
istics pertaining to these groupers and their related counterparts. Within Cephalopholis
species, two subclusters emerge in the ML phylogeny. Three species (C. argus, C. boenak,
and C. rogaa) cluster together, while the other seven species form a separate subclade. This
subclustering does not seem to reflect any distributional distinction of these groupers in
marine environments.

Additional studies on taxonomy and in-depth molecular data may provide further
clarity on their evolutionary significance in marine ecosystems. Notably, the targeted
species, C. taeniops, closely clusters with six other Cephalopholis species (C. leopardus, C. mini-
ata, C. sexmaculata, C. sonnerati, C. spiloparaea, and C. urodeta) (Figure 4). Nevertheless, based
on the cladding pattern, it can be asserted that C. taeniops serves as the ancestral species
when compared to other closely related Cephalopholis species. In addition to the PCGs, the
phylogenetic assessment of the studied serranids was reevaluated by incorporating both
PCGs and rRNAs. rRNAs play a crucial role in protein synthesis, and their structures are
highly conserved among different organisms [75]. Consequently, accounting for structural
considerations becomes particularly important when aligning rRNA genes, especially for
phylogenetic analyses, as such inferences necessitate comparisons of homologous char-
acters across diverse sequences [76,77]. The NJ and BA topologies, based on 13 PCGs
and 13 PCGs + two rRNAs, reveal a clustering pattern similar to that depicted by the
concatenated PCGs alone (Figures S4–S6). Overall, this study underscores the effectiveness
of mitochondrial genes in discriminating and elucidating the evolutionary relationships
of serranids, as observed in other fish [78,79]. Large-scale genomic data offer valuable
insights into time-calibrated phylogeny, adaptation to euryhalinity, and speciation [80].
Nevertheless, the adverse effects of global warming and extreme temperature events have
impacted marine biodiversity, ecosystem functions, and services across all ocean basins
over the past two decades, leading to significant losses in fisheries revenues and livelihoods
in most maritime countries [81]. Recognizing the crucial role that genomic data play in
conservation genetics and fish management [82], this study advocates for the generation
of additional large-scale genomic data on groupers. This initiative aims to contribute to a
more profound understanding of their evolution, diversification, and adaptation in marine
environments.
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3. Materials and Methods
3.1. Sampling and Species Identification

The Cephalopholis grouper specimen was obtained from the Atlantic Ocean, situated
off the coast of Cameroon, Africa (Figure 1). Species identification was corroborated as
C. taeniops, relying on morphological characteristics outlined in prior literature [7,11,12].
The body of the species is robust and slightly compressed, displaying a red-orange hue. It
is adorned with numerous light blue spots, each surrounded by black margins, and the
posterior part of all fins exhibits a slightly darker shade. The head and mouth are large,
with a protruding lower jaw that features two robust canines at the anterior of each jaw.
The upper arch boasts four knob-like undeveloped gill rakers and four fully developed
ones, while the lower arch comprises three knob-like undeveloped gill rakers and 12 fully
developed ones. The dorsal fin is continuous and equipped with nine spines, the anal fin
features three spines, and the pelvic fin is supported by one spine. The posterior nostril is
positioned close to the eye at the upper third level, while the anterior nostril is very close
and slightly lower, furnished with a small flap. Muscle tissue from the ventral thoracic
region was precisely excised and placed under sterile conditions within the Department
of Marine Biology at Pukyong National University in Busan, Republic of Korea. Voucher
specimens were accurately preserved in 10% formaldehyde at the Fisheries and Animal
Industries (MINEPIA) facility in Yaoundé, Cameroon. Approval for the research protocol,
granted by the Institutional Animal Care and Use Committee (IACUC) under the code
PKNUIACUC-2022-72 on 15 December 2022, confirms that the use of biological material
in the experiments adhered to ethical standards, ensuring that the targeted fish were not
subjected to harm by the researchers. The range distribution of C. taeniops is mapped
according to the IUCN data (.shp files) and the additional records published in the previous
literature [7,10–16] (Figure 1).

3.2. DNA Extraction, Sequencing, and Assembly

The extraction of genomic DNA was conducted using the AccuPrep® DNA extraction
kit from Bioneer, situated in Daejeon, the Republic of Korea, following established standard
protocols. The quality and quantity of the genomic DNA were thoroughly assessed using
a NanoDrop spectrophotometer (Thermo Fisher Scientific D1000, Waltham, MA, USA).
To obtain the complete mitogenome of C. taeniops, sequencing procedures were carried
out on the NovaSeq platform at Macrogen (https://dna.macrogen.com/, accessed on 12
December 2023) in Daejeon, the Republic of Korea, facilitated by the Illumina platform.
Sequencing libraries were prepared according to the manufacturer’s specifications for the
TruSeq Nano DNA High-Throughput Library Prep Kit (Illumina, Inc., San Diego, CA, USA).
In summary, 100 ng of genomic DNA underwent fragmentation utilizing adaptive focused
acoustic technology (Covaris, Woburn, MA, USA), resulting in double-stranded DNA
molecules with blunt ends and 5′-phosphorylation. Following the end-repair step, DNA
fragments were size-selected using a bead-based method, modified with the addition of a
single ‘A’ base, and ligated with TruSeq DNA UD Indexing adapters. The products were
purified and enriched through PCR to generate the final DNA library. Library quantification
was carried out using qPCR, following the qPCR Quantification Protocol Guide (KAPA
Library Quantification Kits for Illumina Sequencing Platforms), and a quality assessment
was performed using Agilent Technologies 4200 TapeStation D1000 screentape (Agilent
Technologies, Santa Clara, CA, USA). Paired-end (2 × 150 bp) sequencing was conducted
via Macrogen on the NovaSeq platform (Illumina, Inc., San Diego, CA, USA).

3.3. Mitogenome Assembly and Validation of Control Region

The processing of over 20 million raw reads was undertaken using the Cutadapt tool
(http://code.google.com/p/cutadapt/, accessed on 12 December 2023) to trim adapters
and remove low-quality bases with a Phred quality score (Q score) cutoff of 20. An assembly
of the targeted genome from high-quality paired-end next-generation sequencing (NGS)
reads was performed using Geneious Prime version 2023.0.1, employing reference map-

https://dna.macrogen.com/
http://code.google.com/p/cutadapt/
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ping with the mitogenome of a closely related species as a reference and utilizing default
mapping algorithms. To validate the mitogenome assembly, the alignment of overlapping
regions was scrutinized using MEGA X [83]. The boundaries and orientations of individ-
ual genes were confirmed through the MITOS v806 (http://mitos.bioinf.uni-leipzig.de,
accessed on 12 December 2023) and MitoAnnotator (http://mitofish.aori.u-tokyo.ac.jp/
annotation/input/, accessed on 12 December 2023) web servers [84,85]. For the validation
of protein-coding genes (PCGs), the translated putative amino acid sequences underwent
analysis using the Open Reading Frame Finder web tool (https://www.ncbi.nlm.nih.gov/
orffinder/, accessed on 12 December 2023), based on the vertebrate mitochondrial genetic
code. Additionally, to confirm the full-length control region, a target-specific primer pair
(5′-CGAGCACTAACCTTCCGACC-3′ and 5′-GGCTAAGCAAGGTGTCGTG-3′) was de-
signed for further amplification. The PCR was conducted using the TaKaRa Verity Thermal
Cycler with a 1X PCR buffer, 1 U Taq polymerase, 10 pmol primers, 2.5 mM dNTPs, and
1 µL template DNA. Purification of the PCR products was carried out using the AccuPrep®

PCR/Gel Purification Kit (Bioneer, Daejeon, Republic of Korea). Subsequently, the ampli-
cons were subjected to amplification with the BigDye® Terminator v3.1 Cycle Sequencing
Kit (Applied Biosystems, Foster City, CA, USA) and sequenced in both directions utilizing
the ABI PRISM 3730XL DNA analyzer available at Macrogen (https://dna.macrogen.com/,
accessed on 12 December 2023), Daejeon, the Republic of Korea. The assembly of the control
region with the complete mitogenome involved ensuring the alignment of overlapping
regions through MEGA X, after eliminating any noisy segments via the SeqScanner version
1.0 (Applied Biosystems Inc., Foster City, CA, USA). The resulting C. taeniops mitogenome
was appropriately submitted to the global GenBank database to acquire a unique accession
number.

3.4. Characterization and Comparative Analyses

We utilized the MitoAnnotator (http://mitofish.aori.u-tokyo.ac.jp/annotation/input/,
accessed on 12 December 2023) to construct a three-dimensional representation of the
generated mitogenome. Our comprehensive comparative analysis aimed to evaluate the
mitogenomic architecture and variations in our sequenced data in comparison to eight exist-
ing mitogenomes of Cephalopholis species [41–46] (Table S1). Due to taxonomic uncertainties
found in Eschmeyer’s Catalog of Fishes, GenBank, and previous investigations [7,30], the
mitochondrial genome of Aethaloperca rogaa (currently Cephalopholis rogaa) (KC593376) was
excluded from the comparative analysis of structure and variation. Manually calculated
values included the intergenic spacers between adjacent genes and overlapping regions.
Nucleotide compositions within protein-coding genes (PCGs), rRNAs, tRNAs, and the
control region (CR) were determined using MEGA X. A sliding window analysis of nu-
cleotide diversity, with a window size of 200 bp and a step size of 25 bp, was conducted
using DnaSP6.0 [86]. Base composition skews were computed using established formulas:
AT-skew = [A − T]/[A + T] and GC-skew = [G − C]/[G + C] [87]. The saturation of the
transition codon of the mitochondrial PCGs based on transition (s) and transversion (v),
as well as AT and GC skews, was depicted using DAMBE6 [88]. The validation of the
initiation and termination codons for each PCG, along with compliance with the verte-
brate mitochondrial genetic code, was performed using MEGA X. The analysis involved
the computation of relative synonymous codon usage (RSCU), the relative abundance of
amino acids, and the distribution of codons using DnaSP6.0. Subsequently, pairwise tests
for synonymous (Ks) and nonsynonymous (Ka) substitutions were conducted between
Cephalopholis taeniops and other Cephalopholis species, employing DnaSP6.0. Additionally,
the boundaries of rRNA and tRNA genes were confirmed through the utilization of the
tRNAscan-SE Search Server 2.0 in conjunction with ARWEN 1.2 [89,90]. The identification
of structural domains within the control region was achieved by conducting CLUSTAL X
alignments, following previous research [41,91].
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3.5. Genetic Distance and Phylogenetic Analyses

Pairwise genetic distances among various taxonomic levels within the Serranidae fam-
ily were calculated using the Kimura 2-parameter (K2P) method within MEGA X. For the
phylogenetic analysis, excluding Cephalopholis species, 16 mitogenomes from representative
species across four tribes of the subfamily Epinephelinae (Epinephelini, Diploprionini, Gram-
mistini, and Liopropomini) were retrieved from GenBank [6,41,46,92–94] (Table S1). Anthias
nicholsi (OP056908) from the subfamily Anthiinae and Serranus papilionaceus (OK054500)
from the subfamily Serraninae were designated as outgroup taxa [94,95]. Two concatenated
datasets (13 PCGs and 13 PCGs + two rRNAs) were assembled using the iTaxoTools 0.1 tool
to elucidate the primary evolutionary relationships among serranids, with a particular fo-
cus on Cephalopholis species within the subfamily Epinephelinae and tribe Epinephelini [96].
The neighbor-joining (NJ) phylogeny was constructed using the PCGs dataset and the
K2P model through MEGA X. Model selection analysis identified the ‘GTR + G + I’ model
as the most suitable, serving as the optimal model for all PCGs and yielding the lowest
Bayesian information criterion (BIC) scores. This model selection process was conducted
through PartitionFinder 2 on the CIPRES Science Gateway v3.3 and JModelTest v2 [97–99].
The maximum likelihood (ML) phylogeny was constructed using the IQ-Tree web server
with 1000 bootstrap samples and PhyML 3.0, following the standard protocol [100,101].
A Bayesian (BA) tree was constructed using Mr. Bayes 3.1.2, with nst = 6, involving one
cold and three hot metropolis-coupled Markov chain Monte Carlo (MCMC) chains. The
analysis ran for 10,000,000 generations, with tree sampling at every 100th generation, and
25% of the samples were discarded as burn-in [102]. The resulting BA tree was visualized
using the iTOL v4 web server (https://itol.embl.de/login.cgi, accessed on 12 December
2023) [103].

4. Conclusions

The escalating impacts of global warming and extreme temperature events pose
a threat to marine biodiversity, resulting in considerable losses in fisheries worldwide.
Groupers (Perciformes: Serranidae) are economically and recreationally valuable reef-
associated fish. Beside species invention, the understanding of evolutionary patterns
in groupers based on mitogenomes is currently limited on a global scale. This research
extensively delves into the structure of and variations in Epinephelinae mitogenomes,
emphasizing the complete mitogenome of Cephalopholis taeniops from the Eastern Atlantic
Ocean. The study reveals substantial genetic divergence between C. taeniops and its con-
geners, providing crucial insights into the evolutionary dynamics of groupers. These
findings offer valuable resources for further investigations into grouper species identi-
fication, conservation genetics, speciation, and other evolutionary biology studies. The
acquired genetic knowledge is pivotal for formulating effective conservation strategies
in MPAs, safeguarding species diversity, and ensuring the sustainability of marine life,
especially within the Serranidae family.
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