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Simple Summary: This study tackles the challenges of assessing treatment response in advanced
prostate cancer. The standard test, measuring the PSA protein in blood, lacks reliability in some
patients. We explored a method examining genetic material in blood samples. We focused on two
methylation markers, SHOX2 and SEPT9, as proxies of circulating tumor DNA. We collected blood
samples from 11 patients with advanced prostate cancer undergoing different treatments. The results
showed that all markers showed a response to treatment, especially SHOX2. This suggests that
tracking advanced prostate cancer through liquid biopsy might harbor potential to monitor treatment
effectiveness. This study is designed as a feasibility assessment and starting point, and more research
with a larger group of patients is needed for confirmation.

Abstract: Background: Metastatic prostate cancer (mPCA) poses challenges in treatment response
assessment, particularly in cases where prostate-specific antigen (PSA) levels do not reliably indicate
a response. Liquid biopsy, focusing on circulating cell-free DNA (ccfDNA) methylation analysis
as a proxy for circulating tumor DNA, offers a non-invasive and cost-effective approach. This
study explores the potential of two methylation markers, short stature homeobox 2 (SHOX2) and
Septin 9 (SEPT9), as on-mPCA-treatment biomarkers. Methods: Plasma samples were collected
from 11 mPCA patients undergoing various treatments. Quantitative assessment of hypermethylated
SHOX2 (mSHOX2) and SEPT9 (mSEPT9) levels in ccfDNA was conducted through methylation-
specific real-time PCR. Early and overall dynamics of PSA, mSHOX2, and mSEPT9 were analyzed.
Statistical evaluation employed Wilcoxon tests. Results: mSHOX2 demonstrated a significant decline
post-treatment in patients with a radiographic treatment response as well as in an early treatment
setting. mSEPT9 and PSA exhibited non-significant declines. In individual cases, biomarker dynamics
revealed unique patterns compared to PSA. Discussion: mSHOX2 and mSEPT9 exhibit dynamics on
mPCA treatment. This proof-of-concept study lays the groundwork for further investigation into
these markers as valuable additions to treatment response monitoring in mPCA. Further validation
in larger cohorts is essential for establishing clinical utility.

Keywords: metastatic prostate cancer; biomarkers; SHOX2; SEPT9; liquid biopsy

1. Introduction

Numerous drug-based tumor therapy options are available for metastatic prostate
cancer (mPCA) [1]. Among these, chemotherapy and radiopharmaceutical ligand treatment
are particularly associated with adverse events [2,3]. To prevent unnecessary toxicity, a
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fast on-treatment response assessment is desirable. Normally, this evaluation is based on
prostate-specific antigen (PSA) levels, whose response indicates a prolonged, progression-
free and overall survival outcome [4–8]. However, in some cases PSA may potentially
be an inadequate way to monitor disease [9]. mPCA can be PSA-negative or behave
discordantly to the PSA trend due to inter- and intratumoral heterogeneity [10,11]. A
post-hoc analysis of the ARCHES trial revealed that PSA progression and radiographic
progression behaved inconsistently among a majority of mPCA patients treated with
enzalutamide or a placebo, and in the CHAARTED trial, approximately 25% of patients
with or without docetaxel showed progressive disease in imaging despite the absence
of PSA progression [12,13]. These results emphasize the need for additional imaging
throughout treatment and follow-up, as suggested in the European association of urology
(EAU) 2023 guidelines [1]. Further biomarkers are therefore being investigated that may
provide additional guidance, and similar to other tumor entities, liquid biopsy in mPCA
has generated widespread interest [14]. Although certain blood-based tests exhibit promise
in the context of diagnosis and therapy monitoring in metastatic prostate cancer, they rely
on costly analysis of circulating tumor cells (CTCs) [15–19].

As an alternative, cost-effective non-invasive biomarkers, such as circulating cell-free
DNA (ccfDNA), might hold the potential to monitor mPCA treatment. CcfDNA is released
into the bloodstream as a consequence of tumor-related processes, which together with the
presence of cancer-specific epigenetic changes, including aberrant methylation patterns,
permits the detection of tumor-derived DNA [20]. Two extensively studied biomarkers,
short stature homeobox 2 (SHOX2) and Septin 9 (SEPT9), have been investigated in various
cancer types. As a result, hypermethylated SHOX2 (mSHOX2) and SEPT9 (mSEPT9)
genes within ccfDNA have been identified as potent pan-cancer biomarkers and proxies
for circulating tumor DNA (ctDNA) [21]. Further research has validated the diagnostic
accuracy of mSHOX2 and mSEPT9, resulting in their endorsement as diagnostic biomarkers
for lung and colorectal cancer with commercially available assay kits “Epi proColon” and
“Epi proLung” [22,23].

The occurrence and diagnostic potential of mSHOX2 and mSEPT9 in prostate cancer
remain areas of very limited investigation. Both markers exhibit dynamics during prostate
biopsy and over the course of radical prostatectomy, indicating tumor cell release due to
mechanical damage [24]. Additionally, promising data suggests the potential of mSEPT9 as
a prognostic tool in mPCA [25].

This proof-of-concept study was undertaken with the aim of exploring the latent
capabilities and dynamic attributes of quantitative SEPT9 and SHOX2 hypermethylation in
liquid biopsy ccfDNA during mPCA pharmacological treatment, serving as on-treatment
biomarkers. Clinically established assays were harnessed for the quantitative measurement
of mSHOX2 and mSEPT9, with the objective of enhancing reproducibility and facilitating
prospective clinical applications.

2. Materials and Methods
Methods

With the approval of the local Ethics Committee (University Bonn, vote #348/19), we con-
ducted a prospective collection of plasma samples from patients undergoing pharmacological
treatment for mPCA. Eleven individuals with mPCA were included between September 2019
and July 2020. Patients underwent treatment with androgen deprivation therapy (ADT) with
additional irradiation of the prostate according to the STAMPEDE trial (n = 1 [26]), docetaxel
chemotherapy (n = 4), cabazitaxel chemotherapy (n = 4), a sequence of both chemotherapies
(n = 1), or Lutetium-177 PSMA radionuclide therapy (n = 1). The standard of care for each
treatment remained unaltered, including PSA tests and radiographic re-staging. The collection
of blood samples for methylation marker analysis was contingent on the clinical availability
of patients, with a maximum of 15 blood samples per patient.

The method of quantitative measurement of mSHOX2 and mSEPT9 has been described
before [24]. In brief, blood was sampled into ethylenediaminetetraacetic acid (EDTA)-
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stabilized collection tubes, and processed within a 2 h timeframe. Probes were centrifuged
to extract plasma, which was stored at −20 ◦C. DNA was isolated using the ammonium
bisulfite method described by Jung et al. [27]. Then, quantification of mSEPT9 and mSHOX2
was carried out using SHOX2/SEPT9/ACTB triplex quantitative methylation-specific real-
time PCR, as previously described in detail [27]. Actin-beta (ACTB) was employed as a
reference standard and quantified to represent the total DNA content of the sample. The
target regions for SEPT9 (chromosome 17:77,373,481e77,373,540) and SHOX2 (chromosome
3:158,103,550e158,103,661) were selected corresponding to the target sequences utilized in
“Epi proColon” and “Epi proLung” as described before [27]. Both absolute and relative
methylation levels were calculated using the ∆∆CT method, with relative methylation
defined as the ratio of SEPT9/SHOX2 methylation to ACTB [28].

In order to analyze PSA, mSEPT9, and mSHOX2 on-treatment, we defined early treat-
ment dynamics, referring to the biomarker changes in the first 20 days after treatment
initiation. Only men with measurable PSA, mSEPT9, and mSHOX2 at baseline, as well
as availability of the corresponding samples 10 and 20 days (+/−2) after starting therapy,
were included but regardless of treatment response. Overall dynamics represent the devel-
opment over the entire course of treatment in patients with a radiographically confirmed
response. Response was defined as stable disease or partial/complete remission according
to Response Evaluation Criteria In Solid Tumors (RECIST) criteria.

Statistical analysis was conducted using RStudio 2023.06.2 Build 561 (https://www.r-
project.org/, accessed on 27 August 2023). Levels of mSEPT9 and mSHOX2 were reported
as medians. For dynamic assessment, baseline values of mSHOX2, mSEPT9, and PSA were
considered to be 100%, and further samples were compared in relation to the baseline using two-
sided Wilcoxon rank sum tests. p-values less than 0.05 were considered statistically significant.

3. Results

Baseline characteristics of the cohort are summarized in Table 1. Most patients were
treated in a castration-resistant mPCA (mCRPC) setting. PSA and methylation markers
mSEPT9 and mSHOX2 presented a broad range of values at baseline. Radiographic treat-
ment assessment was available in nine patients: two patients (18.2%) developed partial
remission; stable disease occurred in five patients (45.5%) including a mixed response
(see case presentation below). One patient (9.1%) developed progressive disease, and
in three patients (27.3%) response was not available due to lost follow-up, switching of
imaging technique, and rapid demise.

Table 1. Baseline characteristics.

Characteristic n = 11

Age
Median (IQR) 70.6 (67.4–76.5)
Range 59.7, 81.3

ECOG
0 6 (54.6%)
1 4 (36.4%)
2 1 (9.1%)

Castration-resistant
Yes 9 (81.2%)
No 2 (18.8%)

PSA (ng/mL)
Median (IQR) 52.8 (27–85.5)
Range 3.0–2193

https://www.r-project.org/
https://www.r-project.org/
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Table 1. Cont.

Characteristic n = 11

mSEPT9 in ccfDNA (%)
Median (IQR) 0.72 (0.49–5.81)
Range 0, 22.3

mSHOX2 in ccfDNA (%)
Median (IQR) 0.50 (0.08–1.94)
Range 0.1, 8.3

IQR = Interquartile Range, ECOG = Eastern Cooperative Oncology Group Performance Status Scale, PSA =
prostate-specific antigen, mSEPT9 = hypermethylated Septin 9, ccfDNA = circulating cell-free DNA, mSHOX2 =
hypermethylated short stature homeobox 2.

3.1. Early Treatment Dynamics

Six patients met the criteria to be included in this analysis. All patients exhibited
a decline in both PSA and methylation markers. Over the course of 20 days, mSEPT9
exhibited the fastest decline relative to the baseline, registering approximately one-quarter
mean relative hypermethylation after 10 days (21.6%, interquartile range (IQR): 5.3–55.4%,
standard deviation (SD) 37.6%). Nevertheless, no further reduction was observed in
the subsequent weeks (20 days: 24.8%, IQR: 4.0–47.6%, SD: 38.5%). PSA and mSHOX2
showed a more gradual but consistent decline, reaching 37.6% of baseline for PSA (IQR:
5–52.6%, SD: 41.7%) and 15.3% for mSHOX2 (IQR: 3.2–18.4, SD: 21.7%) after 20 days of
therapy. Differences from baseline to 20 days revealed statistical significance for mSHOX2
(Wilcoxon p = 0.014), with a non-significant trend for PSA and mSEPT9 (p = 0.306 and 0.126,
respectively). Early dynamics are elucidated in Figure 1.
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Figure 1. Early treatment dynamics of PSA, mSEPT9, and mSHOX2 in ccfDNA in six patients. Baseline
measurement is given alongside mean relative amount in serial liquid biopsies 10 and 20 (+/−2)
days after treatment initiation. All biomarkers exhibit a decrease, indicating treatment-associated
dynamics. Differences from baseline to 20 days were significant for mSHOX2 (Wilcoxon p = 0.014), and
revealed a non-significant trend for mSEPT9 and PSA (p = 0.126 and p = 0.306, respectively). Data are
presented as means, with error bars indicating standard deviation. PSA = prostate-specific antigen,
mSEPT9 = hypermethylated Septin 9, mSHOX2 = hypermethylated short stature homeobox 2.
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3.2. Overall Dynamics

Seven patients could be included in this analysis. All biomarkers (PSA, mSEPT9,
mSHOX2) showed a decline in this two-point measurement. mSHOX2 reached the low-
est mean value with 36.3% of baseline (IQR: 7.2–50.7%, SD 37.5%), followed by mSEPT9
with 43.6% (IQR 0.9–82.7%, SD 61.7%) and PSA with 49.5% (IQR 3.3–87.5%, SD 44.3%).
Comparing the baseline to the measurement subsequent to treatment, the mSHOX2 de-
crease reached statistical significance, denoted by a p-value of 0.028. Meanwhile, PSA and
mSEPT9 differences remained insignificant, indicating a possible trend (p = 0.240 and 0.263,
respectively). Overall dynamics are illustrated in Figure 2.
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Figure 2. Overall dynamics of PSA, mSEPT9, and mSHOX2 in ccfDNA in seven patients. Baseline
measurement is given alongside mean relative amount after radiographically confirmed treatment
response. All biomarkers show a decline, suggesting treatment-associated dynamics. Differences
were significant for mSHOX2 (Wilcoxon p = 0.028), with a non-significant trend for mSEPT9 and
PSA (p = 0.263 and p = 0.240, respectively). Data are presented as means, with error bars indi-
cating standard deviation. PSA = prostate-specific antigen, mSEPT9 = hypermethylated Septin 9,
mSHOX2 = hypermethylated short stature homeobox 2.

3.3. Case Study

A consistent correlation between PSA and methylation patterns was noted in the ma-
jority of patients; however, we wish to highlight one case in particular: A 76-year-old male
patient underwent docetaxel treatment subsequent to the progression of metastatic disease
involving osseous and lymphogenous sites while on enzalutamide. Following three cycles,
scheduled staging (prostate-specific membrane antigen positron emission topography and
computed tomography; PSMA-PET/CT) demonstrated a favorable response in the osseous
metastases, yet indicated asymptomatic progression in the pelvic lymph node metastases.
Consequently, the patient underwent a transition to cabazitaxel, yielding a state of stable
disease in the subsequent staging evaluation. The development of the biomarkers PSA,
mSHOX2, and mSEPT9 is shown in Figure 3. Notably, PSA displays minimal dynamics,
specifically demonstrating no progression throughout the entire treatment regimen. In
contrast, the methylation markers distinctly reveal secondary progression to docetaxel and
subsequent response to cabazitaxel.
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Figure 3. Case presentation of serial measurements of PSA, mSEPT9, and mSHOX2 in ccfDNA in
a mCRPC patient. Interim staging after three cycles of docetaxel revealed a radiographic mixed
response (lymph node metastasis oligoprogression) resulting in a switch to cabazitaxel, eventually
leading to stable disease. While PSA showed little dynamics, both methylation markers congruently
give an indication of tumor progression matching the oligoprogression of the disease depicted on
PSMA-PET/CT. PSA = prostate-specific antigen, mSEPT9 = hypermethylated Septin 9, ccfDNA = cir-
culating cell-free DNA, mSHOX2 = hypermethylated short stature homeobox 2, mCRPC = metastatic
castration-resistant prostate cancer, PSMA-PET/CT = prostate-specific membrane antigen positron
emission topography and computed tomography.

4. Discussion

Liquid biopsy, specifically ccfDNA methylation analysis, demonstrates a shift towards
non-invasive and cost-effective monitoring tools. The exploration of mSHOX2 and mSEPT9
as potential on-treatment biomarkers builds on their established roles in other cancer enti-
ties, underlining the importance of investigating their diagnostic and prognostic potential
in the context of mPCA. The evaluation of treatment response in mPCA poses a multi-
faceted challenge, given the limitations inherent in PSA-based response assessments [9,10].
A substantial amount of mCRPC patients do not respond to chemotherapy or radioligand
therapy [29–31]. In light of the potentially severe side effects, early identification of men
without treatment response is desirable. As evidenced in our case illustration and cor-
roborated by findings from the CHAARTED and ARCHES trials, the PSA value may not
consistently indicate progression [12,13]. In this context, ccfDNA methylation markers
mSHOX2 and mSEPT9 show promise for on-treatment monitoring. Its utilization could
serve as a cost-effective adjunct to PSA in guiding decision making in the event of a dis-
crepancy between imaging and PSA value development. Furthermore, they could function
as markers to prompt delayed or early imaging, particularly considering the absence of
established guidelines defining imaging intervals in mPCA [1]. In the rare scenario of
“PSA-negative” metastatic disease, mSHOX2 and mSEPT9 may play a role, mitigating the
absence of reliable non-invasive surrogate markers for tumor burden that often lead to
diagnostic delays and hinder effective management [11].

With our findings, a rationale for investigating these methylation markers as biomark-
ers for medical anti-tumor therapy for mPCA emerges. While our study represents an
initial feasibility analysis not yet powered to detect significant deviations during treat-
ment, our data provide valuable insights: mSEPT9 and mSHOX2, similar to PSA, show
dynamics during the course of therapy, which can even reveal significant differences in
small cohorts for mSHOX2. This suggests a possible correlation to tumor burden and
metabolic activity as shown before [24]. Additionally, our study aligns with existing ev-
idence, affirming the value of quantitative analysis of mSEPT9 and mSHOX2 in plasma
for individually monitoring the response of mPCA to chemotherapy [21]. Looking be-
yond response prediction, survival analyses of CTC dynamics during mPCA treatment
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confirmed their prognostic value [18,19]. Further research may investigate whether the
surrogates mSEPT9 and mSHOX2 can provide similar prognostic information, offering a
more cost-efficient alternative.

However, in addition to reliability, responsiveness of biomarkers plays an important
role in the on-treatment setting. Particularly in mCRPC, it takes up to four cycles before a
significant survival benefit becomes apparent from PSA half-life [32]. Rapid-response markers
would be desirable to shorten this period during the ongoing burden of treatment side effects.
The initial dynamics observed in this study regarding mSEPT9 and mSHOX2 imply the
potential for discernible changes within a three-week timeframe after initiating therapy.

The case study offers a compelling illustration of the potential clinical utility of these
biomarkers. The methylation markers’ behavior in response to different chemotherapy
agents emphasizes the complementary role of liquid biopsy in capturing treatment-specific
nuances and guiding therapeutic decisions to overcome the divergence of PSA and imaging
revealed in large-scale trials [12,13]. Standardized recommendations on the intervals
of imaging in mCRPC are pending. The EAU guideline currently does not contain a
recommendation; the Prostate Cancer Radiographic Assessments for Detection of Advanced
Recurrence (RADAR) group recommends imaging only at the end of treatment in the
absence of symptoms and clinical progression [1,33]. However, based on these suggestions,
the diagnosis of oligoprogression might have been significantly delayed in the presented
case. Additive low-cost biomarkers such as mSEPT9 and mSHOX2 can be particularly
valuable here to aid clinicians’ decisions to initiate imaging, allowing for a timely detection
of progression.

This study’s commendable strengths are evident in the strict adherence of its meth-
ods to established protocols [27]. Quantitative methylation-specific real-time PCR for
assessing mSHOX2 and mSEPT9 ensures robust and reproducible measurements, critical
for future clinical applications. Moreover, mSHOX2/mSEPT9 analysis can be conducted
using commercially available assays (“Epi proColon” and “Epi proLung”) targeting the
corresponding DNA sequences.

Despite the gained insights, our study has certain limitations. First, due to a real-
world treatment setting, both serial liquid biopsies for early dynamics and radiographic
response were not collected at certain times. As a result, not all patients can be included
in the final analyses, which compromises the conclusions. Nonetheless, encouraging
results support further investigation in a more controlled trial setting. Second, ccfDNA
is subject to limitations, with highly variable individual baseline levels reflecting unique
tumor biology, including some patients with a negative mSEPT9 baseline. This creates
a heterogeneous pattern of relative hypermethylation. Thus, comparable to PSA, the
biomarkers appear to be useful only in the dynamic response rather than in a single-point
measurement. Third, designed as a pilot feasibility report, it does not allow for sound
conclusions to be drawn about the dynamics being monitored. Nevertheless, this proof-
of-concept study lays the groundwork for the exploration of mSHOX2 and mSEPT9 as
on-treatment biomarkers in mPCA, especially in “PSA-negative” or incongruent PSA level
cases. Our findings contribute to the growing body of evidence supporting the use of liquid
biopsy for monitoring metastatic prostate cancer treatment. Further validation studies with
larger cohorts are warranted to establish the clinical utility and generalizability of mSEPT9
and mSHOX2 in clinical practice.

5. Conclusions

Additional liquid biopsy-based biomarkers are desirable to overcome the shortcom-
ings of PSA in treatment monitoring of mPCA, and pan-cancer ccfDNA methylation
markers mSEPT9 and mSHOX2 may provide a promising tool. However, to date, limited
data is available for them in mPCA. In this proof-of-concept study, we explored the dynam-
ics of mSHOX2 and mSEPT9 as on-treatment biomarkers in mPCA. Encouragingly, both
mSHOX2 and mSEPT9 demonstrated relative declines during therapy, aligning with PSA
dynamics, and captured treatment-specific nuances in individual cases. Despite limitations,
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our study supports further investigation, emphasizing the complementary role of liquid
biopsy in monitoring mPCA treatment and opening up the prospect of a cost-effective
surrogate for neoplastic load.
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