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ABSTRACT 
 

Rainfall holds critical significance for water resource applications, particularly in rainfed agricultural 
systems. This study employs the Autoregressive Integrated Moving Average (ARIMA) technique, a 
data mining approach commonly used for time series analysis and future forecasting. Given the 
increasing importance of climate change forecasting in averting unexpected natural hazards such 
as floods, frost, forest fires, and droughts, accurate weather data forecasting becomes imperative. 
The objective of this study was to develop a Seasonal Auto-Regressive Integrative Moving Average 
(SARIMA) model for forecasting weekly rainfall in Junagadh Station, Gujarat. Utilizing 53 years of 
historical data (1963 to 2016), the SARIMA model predicts weekly rainfall for the subsequent five 
years (2018 to 2022). Through comprehensive evaluation using ACF and PACF plots, AIC, SBC, 
MAPE, and MAE values, the study identifies SARIMA (0,0,4)(0,1,1)52 as the optimal model, 
offering the most accurate prediction. The robust results affirm that the SARIMA model provides 
reliable and satisfactory weekly rainfall predictions. This research contributes valuable insights into 
the precision and efficacy of SARIMA models for rainfall forecasting, aiding in strategic water 
resource management in the Junagadh region. 

Original Research Article 
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1. INTRODUCTION  
 
Efficient water resource management relies 
heavily on accurately forecasting rainfall for a 
given area or station [1,2]. In the context of 
Indian agriculture, the southwest monsoon 
(June-September) plays a pivotal role in the 
agrarian economy, with adequate rainfall being 
essential for robust crop production [1]. Rainfall, 
among various hydrological parameters, is 
crucial for tasks such as irrigation planning, 
runoff modeling, and drought and flood 
management. The dynamic nature of rainfall 
patterns, influenced by changing climatic 
conditions, gives rise to challenges like flooding, 
landslides, and drought [3], significantly 
impacting agriculture and farming. In a country 
like India, where agriculture is a backbone, the 
success or failure of crops is a primary concern, 
and even slight variations in seasonal rainfall and 
temperature can have devastating effects on 
crops [4]. The runoff characteristics, both in 
terms of quantity and quality, in the majority of 
watersheds, spanning from micro to macro 
scales, are significantly shaped and controlled by 
spatiotemporal variations in rainfall [5]. 
 
Accurately predicting future climate data is a 
challenging task [6]. The accuracy and adequacy 
of rainfall data serve as the essential cornerstone 
for determining the ultimate success of any 
progressive endeavors in natural resource 
management [7]. Despite the development of 
various algorithms, achieving precise forecasting 
remains a challenge. Time series models, 
integral in meteorology and hydrology, tackle the 
key problem of forecasting in statistics and Data 
Science. Data transforms into a time series when 
sampled based on a time-bound attribute like 
days, months, and years, inherently possessing 
an implicit order. Forecasting involves predicting 
future values using this ordered data. Stochastic 
models, evolving over time [8], encompass 
autoregressive (AR) models, moving average 
(MA) models of different orders Gupta and 
Kumar, [9] and Verma, 2004, and auto-
regressive moving average (ARMA) models of 
discrete orders [10,11,12] for annual streamflow. 
Two widely used forecasting algorithms, ARIMA 
and SARIMA, address the challenge. ARIMA 
considers past values (autoregressive, moving 
average) to predict future values, while SARIMA 
incorporates seasonality patterns, making it more 
potent for forecasting complex data spaces 
containing cycles [13]. The ARIMA model 

emerges as a valuable tool, handling various 
dimensions related to univariate time series 
model selection, parameter optimization, and 
prediction [14]. In the current study, our focus 
was on developing a seasonal rainfall forecasting 
model to predict the weekly rainfall time series 
for Junagadh city in Gujarat, India, utilizing 58 
years (1965-2022) of weekly rainfall data. 

 
2. MATERIALS AND METHODS 
 

2.1 Study Location 
 
Junagadh is geographically situated between 
latitude 21°31'23.29" N and longitudes 
70°27'17.90" E, at an altitude of 86 meters above 
mean sea level in the South Saurashtra region of 
Gujarat state. The climate of the study area is 
subtropical and semi-arid, characterized by an 
average annual rainfall of 929.81 mm, which is 
concentrated between mid-June and mid-
October. The average annual pan evaporation is 
5.6 mm/day. The coldest month is January, with 
a mean monthly temperature ranging from 7°C to 
15°C. The maximum monthly temperature is 
recorded in May, varying between 29.50°C to 
39.40°C. Relative humidity fluctuates between 
45% and 89%, while wind speeds range from 2 
to 9.70 km/h. 
 

2.2 Data  
 
In this study, weekly rainfall data spanning 58 
years (1965-2022) were collected from the 
Agrometeorology Department of Junagadh 
Agricultural University, Junagadh. Forecasts 
were made for the five years (2018-2022) using a 
seasonal ARIMA model. 
 

2.3 Methodological Description  
 

2.3.1 Seasonal ARIMA (SARIMA) modelling  
 

An autoregressive model of order p is 
conventionally classified as AR(p), and a moving 
average model with q terms is known as MA(q). 
A combined model that includes p AR-terms and 
q MA-terms is referred to as an ARMA (p, q) 
model. To address non-stationarity, a generally 
non-stationary time series is transformed into a 
stationary one by computing differences shifted 
by d lags, where in most cases, d=1. Such a 
model is then categorized as ARIMA (p, d, q), 
where the symbol "I" signifies "integrated." The 
general form of the above model, describing the 
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current value y(t) of a time series by its own past, 
is expressed as: 
 

ϕp(B)ØP(Bs)∇d∇s
Dyt = ΘQ(Bs)θq(B)εt   (1) 

 
Where ϕp(B) = 1 − ϕ1𝐵 − ⋯ 𝜙𝑝𝐵𝑝 = Non 

Seasonal autoregressive (AR) operator; θq(B) =

1 − θ1B − ⋯ − θqBq =Non Seasonal moving 

average operator (MA) operator; ØP(Bs) = 1 −
Ø1𝐵𝑠 − ⋯ − Ø𝑝𝐵𝑠𝑃 = Seasonal auto regressive 

(SAR) operator; ΘQ(Bs) = 1 − Θ1Bs − ⋯ −

ΘQBsQ = Seasonal moving average operator 

(SMA). Here, B = backshift operator (i.e. B1Yt= 
Yt-1, B2Yt=Yt-2 and so on); s = the seasonal lag; 
εt= sequence of independent normal error 
variables with mean zero and variance σ2; p and 
q are orders of non-seasonal auto-regression 
and moving average parameters respectively 
and P and Q are that of the seasonal auto 
regression and moving average parameter 
respectively; d and D denote the non-seasonal 
and seasonal differences respectively.  
 
The main stages in setting up an ARIMA 
forecasting model include model identification, 
model parameter estimation, and diagnostic 
checking for the identified model's 
appropriateness for modeling and forecasting. 
The classical Box-Jenkins model describes 
stationary time series. Thus, tentatively 
identifying a Box-Jenkins model requires 
verifying the time series for stationarity. 
Stationary models assume that the process 
remains in equilibrium around a constant mean 
level, indicated when the plotting shows that the 
data fluctuates around its constant mean. A 
cursory examination of the graph of the data and 
the structure of autocorrelation and partial 
correlation coefficients at various lags may 
provide clues to the presence of stationarity. If 
the model is found to be non-stationary, 
stationarity could mostly be achieved by 
differencing the series. The next step in the 
identification process is to find the initial values 
for the orders of seasonal and non-seasonal 
parameters, p, q, and P, Q. These values could 
be obtained by looking for significant 
autocorrelation and partial autocorrelation 
coefficients. 
 
After choosing the most appropriate model (step 
1 above), the model parameters are estimated 
(step 2) using the least square method. In this 
step, values of the parameters are chosen to 
minimize the Sum of the Squared Residuals 
(SSR) between the real data and the estimated 

values. Generally, a nonlinear estimation method 
is used to estimate the identified parameters to 
maximize the likelihood (probability) of the 
observed series given the parameter values. The 
methodology uses the following criteria in 
parameter estimation: 
 

a) The estimation procedure stops when the 
change in all parameter estimates between 
iterations reaches a minimal change of 
0.001. 

b) The parameters estimation procedure 
stops when the SSR between iterations 
reaches a minimal change of 0.0001. 

 
In the diagnostic checking step (step three), the 
residuals from the fitted model are examined for 
adequacy. This is typically done through 
correlation analysis using residual ACF plots and 
goodness-of-fit tests via Chi-square statistics. If 
most of the sample autocorrelation coefficients of 
the residuals are within the limits ±1.96/√N, 
where N is the number of observations upon 
which the model is based, then the residuals are 
white noise, indicating that the model is a good 
fit. Otherwise, if the autocorrelations are not 
white noise, the model may not adequately 
represent our time series. In the last phase, i.e., 
forecasting, we calculate the point extrapolated 
prognosis of the time series and eventually the 
confidence lag of the prognosis. 
 

2.4 Evaluation Criteria 
 

The other statistical criteria adopted in the study 
are: 
 

1) Akaike Information Criterion (AIC) 
 

The AIC is given by  
 

𝐴𝐼𝐶 = 𝑛 ln 𝜎2 + 𝑛 +  
2(𝑘+1)

𝑛−𝑘−2
                          (2) 

 

Where n is the size of the sample used for fitting, 
k is the number of parameters excluding constant 
terms, and 2( )   is the maximum likelihood 

estimate of the residual variance.  
 

2) Schwarz Information Criterion (SIC)  
 

The SIC is given by 
 

𝑆𝐼𝐶 = 𝑛 ln 𝜎2(ɛ) + 𝑛 + 𝑘 ln 𝑛                       (3) 
 

Where n, k and 
2( )  are defined in the same 

way as for the AIC statistic. 
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3) Mean Absolute Percentage Error (MAPE):  
 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑋𝑡−𝑂𝑡

𝑂𝑡
|𝑁

𝑖=1 × 100                     (4) 

 
Where Xt= forecast value at time t; Ot= actual 
value at time t; N= number of weeks considered 
for forecasting. 
 
4) Mean Absolute Error (MAE) 
 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑋𝑡 − 𝑂𝑡|𝑁

𝑖=1            (5) 

 

Where Xt= forecast value at time t; Ot= actual 
value at time t; N= number of weeks considered 
for forecasting. 
 

3. RESULTS AND DISCUSSION 
 

In the present study the time series of weekly 
rainfall data from 1965 to 2017 were used to 
develop the Seasonal ARIMA (SARIMA) model 
and the prediction was made for next five years 
(2018-2022) using the developed model. The 
forecasted values than used for validation of 
developed SARIMA model.  
 

3.1 Analysis of Weekly Rainfall Time 
Series used for Model Development  

 

Data of weekly rainfalls were analysed using 
Statistical Analysis System (SAS) software. Auto 
correlation function (ACF) and Partial Auto 
correlation function (PACF) of the original time 
series of weekly rainfall are shown in Fig. 1. 
 

Key statistics summarizing the weekly rainfall 
time series data used for prediction spanning the 

period from 1963 to 2017 were computed. The 
mean weekly rainfall is calculated at 17.43, with 
a standard deviation of 56.75, indicating a 
notable variability in the data. The dataset 
consists of 2743 observations (N). The 
Augmented Dickey-Fuller (ADF) test results are 
presented, revealing significant negative values 
for the Zero Mean ADF (-36.45), Single Mean 
ADF (-39.03), and Trend ADF (-39.06). These 
ADF test statistics suggest a high likelihood of 
stationarity in the time series data, particularly 
with the consistently low p-values associated 
with the ADF tests, indicating a rejection of the 
null hypothesis of non-stationarity. The negative 
values further reinforce the presence of a stable 
trend in the data, laying a foundation for the 
application of time series forecasting models. 
 
The Table 1 provides diagnostic measures for a 
time series, showcasing autocorrelation 
(AutoCorr) and partial correlation (Partial) 
coefficients at different lags. The Ljung-Box Q 
statistic with associated p-values is used to test 
the null hypothesis of no autocorrelation in the 
residuals. Notably, all autocorrelation coefficients 
at various lags are significant, as indicated by the 
low p-values (<0.0001). The decreasing pattern 
in autocorrelation coefficients with increasing 
lags suggests a declining influence of past 
observations on the current one. The negative 
partial correlation coefficients imply that the 
effect of past observations is adequately 
captured by the model. These results support the 
suitability of the model for forecasting as they 
align with the assumption of white noise 
residuals, essential for robust time series 
modeling. 

 

 
 

Fig. 1. Graph of weekly rainfall data series from 1965 to 2017 
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Table 1. Time series basic diagnostics 
 

Lag AutoCorr Ljung-Box Q p-Value Lag Partial 

0 1.0000 - - 0 1.0000 
1 0.2847 222.561 <.0001* 1 0.2847 
2 0.1443 279.741 <.0001* 2 0.0688 
3 0.1365 330.972 <.0001* 3 0.0861 
4 0.1840 424.070 <.0001* 4 0.1294 
5 0.1233 465.845 <.0001* 5 0.0310 
6 0.1141 501.685 <.0001* 6 0.0489 
7 0.1304 548.496 <.0001* 7 0.0638 
8 0.0290 550.819 <.0001* 8 -0.0650 
9 0.0099 551.092 <.0001* 9 -0.0261 
10 -0.0099 551.362 <.0001* 10 -0.0429 
11 -0.0133 551.851 <.0001* 11 -0.0339 
12 -0.0289 554.157 <.0001* 12 -0.0245 
13 -0.0032 554.185 <.0001* 13 0.0130 
14 -0.0651 565.877 <.0001* 14 -0.0637 
15 -0.0477 572.147 <.0001* 15 0.0020 
16 -0.0668 584.453 <.0001* 16 -0.0352 
17 -0.0785 601.493 <.0001* 17 -0.0396 
18 -0.0778 618.215 <.0001* 18 -0.0214 
19 -0.0813 636.475 <.0001* 19 -0.0338 
20 -0.0868 657.292 <.0001* 20 -0.0355 
21 -0.0848 677.179 <.0001* 21 -0.0150 
22 -0.0872 698.220 <.0001* 22 -0.0334 
23 -0.0869 719.121 <.0001* 23 -0.0216 
24 -0.0885 740.823 <.0001* 24 -0.0265 
25 -0.0880 762.299 <.0001* 25 -0.0295 

 

3.2 Model Development and Parameter 
Estimation 

 
Figs 3 and 4 provide a detailed depiction of the 
Autocorrelation Function (ACF) and Partial 
Autocorrelation Function (PACF), offering 
profound insights into the periodic nature of the 
variables associated with weekly rainfall. These 
graphical representations consistently reveal 
patterns indicative of seasonal variations within 
the time series. Building upon these findings, we 
assume a yearly period of 52 weeks for the given 
rainfall time series. 
 
Figs 5 and 6 provide a concise overview of the 
SARIMA (0,0,4) (0,1,1) model's performance in 
predicting weekly rainfall. Fig 5 illustrates the 
model's predictions, showcasing its ability to 
capture both non-seasonal and seasonal 
components. The parameters (0,0,4) indicate the 
absence of non-seasonal autoregressive and 
moving average effects, while (0,1,1) signifies 
first-order differencing in the seasonal part for 
stationarity. This visualization offers a clear 
representation of how well the SARIMA model 
aligns with observed weekly rainfall trends. In Fig 
6, the Residual Plot for SARIMA (0,0,4) (0,1,1) 

allows for a quick assessment of model 
residuals. A well-behaved residual plot             
indicates a well-fitted model, and analysing it 
provides insights into the accuracy and reliability 
of the SARIMA model in predicting weekly 
rainfall. 
 
Following the essential stationarities steps, we 
systematically explored various orders of 
Seasonal ARIMA models tailored to the weekly 
rainfall series. The model selection process 
involved a thorough assessment, considering not 
only the ACF and PACF charts but also key 
metrics such as the Akaike Information Criterion 
(AIC), Mean Absolute Percentage Error (MAPE), 
and Mean Absolute Error (MAE). Following a 
meticulous evaluation, the Seasonal ARIMA 
model (0,0,4) (0,1,1) 52 emerged as the optimal 
choice for accurately forecasting weekly rainfall 
in the Junagadh region. Subsequently, a 
comprehensive five-year forecast spanning 2018 
to 2022 was executed. Visual representations of 
the selected model dynamics are thoughtfully 
presented in Figs 7 and 8, while a detailed 
breakdown of parameters and statistical insights 
is thoroughly documented in Table 2 and           
Table 3. 
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Fig. 2. Spectral density plots of weekly rainfall time series 
 

 
 

Fig. 3. ACF plot of weekly rainfall time series 
 

 
 

Fig. 4. PACF plot of weekly rainfall time series 
 

 
 

Fig. 5. Prediction of weekly rainfall using SARIMA (0,0,4) (0,1,1) 
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Fig. 6. Residual plot for SARIMA (0,0,4) (0,1,1) 
 

 
 

Fig. 7. ACF plot for SARIMA (0,0,4) (0,1,1) 
 

 
 

Fig. 8. PACF Plot for SARIMA (0,0,4) (0,1,1) 
 

3.3 Comparison of Actual and Predicted 
Weekly Rainfall Value  

 
Fig 9 serves as a visual guide for comparing the 
actual and predicted values of weekly rainfall 
over the five-year span from 2018 to 2022. The 
graph offers a detailed examination of how well 
the SARIMA model performs in forecasting 
weekly rainfall. A closer inspection reveals a 
remarkable proximity between the predicted time 
series and the actual data series. This visual 

coherence signifies the SARIMA model's 
exceptional capability to provide accurate                   
and reliable forecasts of rainfall patterns. The 
model adeptly captures the nuances and 
fluctuations present in the observed data, 
emphasizing its effectiveness as a                         
valuable forecasting tool. The visual 
representation  in Fig 9 serves as a compelling 
endorsement of the SARIMA model's                     
robust performance in predicting weekly rainfall 
values. 
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Table 2. SARIMA (0,0,4) (0,1,1) model summary 

 

DF 2672 

Sum of Squared Innovations 7060778.92 

Sum of Squared Residuals 7258474.63 

Variance Estimate 2642.50708 

Standard Deviation 51.4053215 

Akaike's 'A' Information Criterion 28827.5382 

Schwarz's Bayesian Criterion 28862.8951 

RSquare 0.16994209 

RSquare Adj 0.16839635 

MAPE 09.5698 

MAE 19.5382271 

 -2LogLikelihood 28815.5382 

 
Table 3. SARIMA (0,0,4) (0,1,1) parameter estimates 

 

Term Factor Lag Estimate Std Error t Ratio Prob>|t| 

MA1,1 1 1 -0.1159690 0.0193688 -5.99 <.0001* 

MA1,2 1 2 0.0346565 0.0188537 1.84 0.0661 

MA1,3 1 3 0.0436783 0.0193018 2.26 0.0237* 

MA1,4 1 4 -0.0665500 0.0196808 -3.38 0.0007* 

MA2,52 2 52 0.9500147 0.0106861 88.90 <.0001* 

Intercept 1 0 0.1583824 0.0904021 1.75 0.0799 

  

 
 

Fig. 9. Comparison of actual and predicted weekly rainfall value of five years 
(2018-2022) 

 

4. CONCLUSION 
 
The study conclusively asserts the efficacy of the 
Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model as an indispensable 
tool for forecasting weekly rainfall in the 

Junagadh region. Boasting commendable 
accuracy, as evidenced by robust statistical 
measures, the SARIMA model emerges as a 
reliable asset for predicting the intricate patterns 
of weekly rainfall. This finding underscores the 
pivotal role of the Box-Jenkins methodology, 
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which, through SARIMA, equips decision-makers 
with valuable insights. Decision-makers are 
empowered to forge better strategies and 
prioritize actions to fortify themselves against 
impending weather changes. Such strategic 
planning is particularly crucial given the potential 
enduring impacts of weather fluctuations on the 
water resources in Junagadh. 
 

The SARIMA model's predictive prowess not 
only enhances forecasting precision but also 
facilitates proactive decision-making to navigate 
the dynamic nature of climatic conditions [15]. By 
embracing SARIMA within the Box-Jenkins 
framework, decision-makers can not only 
anticipate and plan for upcoming weather 
variations but also establish resilient strategies 
for long-term water resource management [16]. 
This holistic approach aids in setting priorities 
and allocating resources efficiently. In essence, 
the SARIMA model, bolstered by the Box-
Jenkins methodology, emerges as a key ally for 
decision-makers, offering a strategic advantage 
in mitigating the effects of weather changes and 
fortifying the water resources of the Junagadh 
region against the uncertainties of the future. 
 

COMPETING INTERESTS 
 

Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 

1. Kumar U, Meena VS, Singh S, Bisht JK, 
Pattanayak A. Evaluation of digital 
elevation model in hilly region of 
Uttarakhand: FA case study of 
experimental farm Hawalbagh. Indian J. 
Soil Conserv. 2021a 49: 77-81. 

2. Kumar U, Panday SC, Kumar J, Parihar M, 
Meena VS, Bisht JK, Kant L. Use of a 
decision support system to establish                  
the best model for estimating reference 
evapotranspiration in subtemperate 
climate: Almora, Uttarakhand. Agric. Eng. 
Int. CIGR J. 2022;24(1):41-50. 

3. Shivhare N, Kumar AL, Dwivedi SB, 
Dikshit PKS. ARIMA based daily weather 
forecasting tool: A Case Study for 
Varanasi. MAUSAM. 2019;133-140. 

4. Kumar U, Srivastava A, Kumari N, Rashmi 
Sahoo B, Chatterjee C, Raghuwanshi NS. 
Evaluation of spatio-temporal 
evapotranspiration using satellite-based 
approach and lysimeter in the agriculture 
dominated catchment. J. Indian Soc. 
Remote Sens. 2021b;49:1939-1950. 

5. Ram B, Gaur ML, Patel GR, Kunapara  
AN, Damor  PA. Stochastic Disaggregation 
of Daily Rainfall Using Barlett Lewis 
Rectangular Pulse Model (BLRPM): A 
Case Study of Middle Gujarat. 
International Journal of Environment and 
Climate Change. 2023a;13(4):37–47. 
Available:https://doi.org/10.9734/ijecc/2023
/v13i41710 

6. Nikam Valmik B, Meshram BB.                  
Modeling rainfall Prediction using                   
data mining method: A Bayesian 
approach, Computational Intelligence, 
Modelling and Simulation (cimsim). Fifth 
International Conference on. IEEE. 
2013;132-136 

7. Ram Bhavin, Gaur, Murari, Patel, Gautam, 
Kunapara A, Pampaniya, Nirav,  Damor P, 
Balas Duda. Assessment of diurnal 
variability and region-specific connection 
across intensity, depth & duration of 
rainfall. International Journal of 
Environment and Climate Change. 2023b; 
13:595-606.  
DOI:10.9734/ijecc/2023/v13i92275 

8. Box GEP, Jenkins GM. Time series 
analysis, forecasting and control, Revised 
Edition, Holden-Day, San Francisco, 
California, United States; 1994. 

9. Gupta RK, Kumar R.. Stochastic analysis 
of weekly evaporation values, Indian J. 
Agric. Eng. 1994;4(3-4):140-142. 

10. Katz RW, Skaggs RH. On the use                      
of autoregressive moving average 
processes to model meteorological time 
series, Monthly Weather Rev. 
1981;109:479-484. 

11. Inderjeet K, Singh SM. Seasonal arima 
model for forecasting of monthly rainfall 
and temperature Journal of Environmental 
Research and Development. 2008;3(2). 

12. Kumar U, Singh DK, Panday SC, Bisht JK, 
Kant L. Development and evaluation of 
seasonal rainfall forecasting (SARIMA) 
model for Kumaon region of Uttarakhand. 
Indian Journal of Soil Conservation. 
2022;50(3):190-198. 

13. Mohan S, Arumugam N. Forecasting 
weekly reference evapotranspiration 
series. Hydrological Science.1995;40(6), 
689-702. 

14. Nury AH, Koch M, Alam MJB. Time   
Series Analysis and Forecasting of 
Temperatures in the Sylhet Division of 
Bangladesh, Environmental Science. 
2013;65-68. 

https://doi.org/10.9734/ijecc/2023/v13i41710
https://doi.org/10.9734/ijecc/2023/v13i41710


Galley Proof 

 
 
 
 

Damor et al.; Int. J. Environ. Clim. Change, vol. 13, no. 12, pp. 773-782, 2023; Article no.IJECC.111217 
 
 

 
782 

 

15. Popale PG, Gorantiwar SD. Stochastic 
Generation and Forecasting Of Weekly 
Rainfall for Rahuri Region International 
Journal of Innovative Research in Science, 
Engineering and Technology An ISO 3297: 
2007 Certified Organization Two days                

National Conference – Vishwatech. 2014; 
3(4). 

16. Shoba G, Shobha G. Rainfall prediction 
using Data Mining techniques: A Survey, 
Int. J. of Eng. and Computer Science. 
2014;3(5):6206-6211. 

 

© 2023 Damor et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.  
 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here: 

https://www.sdiarticle5.com/review-history/111217 

http://creativecommons.org/licenses/by/2.0

