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Abstract: This study represents the first assessment of plastic waste within Posidonia spheroids on
four sandy, Mediterranean beaches, each characterized by varying levels of anthropogenic influence.
Fifty-five (68.7%) spheroids, out of eighty examined, included plastic litter. A total of 202 plastic items
were isolated. Plastic abundance was 2.5 items/spheroid corresponding to 132 items per kilogram.
The length of plastic items ranged from 0.1 to 50 mm. Fibers, tangled fibers and fragments were the
most common shapes. The spheroids exhibited a substantial capacity for trapping plastic waste, with
notable differences among the beaches. Our results underscore the significance of implementing
a beach clean-up plan aimed at removing all spheroids to prevent them from disintegrating and
releasing trapped plastic waste into the environment. Manual removal is recommended to safeguard
the beaches, and this process should target all spheroids, regardless of their size. This study provides
valuable insights that can inform marine litter monitoring programs, contribute to the development of
tailored management measures, and support the implementation of specific action plans to mitigate
Mediterranean microplastic pollution.
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1. Introduction

In 2021, global plastic production reached approximately 390.7 million metric tons,
leading to significant consequences for the marine environment [1]. Plastics found in
the environment can be categorized into five classes based on their size like nanoplastics
(<1 µm), microplastics (≥1 µm to <5 mm), mesoplastics (≥5 mm to 5 cm), macroplastics
(>5 to 50 cm), and megaplastics (>50 cm) [2]. Plastic pollution poses a substantial threat to
aquatic ecosystems and their inhabitants [3,4]. Plastic litter has the potential to adversely
affect marine ecosystems by transporting toxic substances adsorbed on their surfaces [5].
Additionally, plastics can serve as vectors for invasive species [6] and can have detrimental
effects on marine organisms [7–12]. Moreover, plastic litter can affect the marine trophic
web [13,14] since plastics are also ingested by marine biota [15,16], and once ingested, can
translocate into cells and tissues [17–19].

Seagrass meadows are recognized for their capacity to filter, trap, and store various
particles, encompassing both organic and inorganic matter [20,21], among which plastics
have been documented [22–25]. These particles are typically deposited on the leaves and
within the sediment or on the soil surface [24,26,27]. Plastics have also been identified in
wrack composed of other macrophytes, including seagrasses belonging to genera such as
Halodule, Syringodium, Thalassodendron, Zostera, Heterozostera, Amphibolis, and Cymodoces [28].
In Singapore, Seng et al. [29] detected microplastic items on seagrass blades. In addition,
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in China, seagrass meadows of Enhalus acodoides harbored microplastics (from 80 to 885
items per kg of dry sediment), with fibers being the dominant shape [23], highlighting
that seagrasses acted as a trap for microplastics. Jones et al. [24], in a Zostera marina bed in
Scotland, found microplastics both in sediments and on eelgrass blades, as well as on the
associated biota of sediments and blades.

Furthermore, Gutow et al. [30] discovered microplastics in vegetation and within the
invertebrates that inhabit it. It is likely that herbivores or predators that feed on these
invertebrates also ingest microplastics, as demonstrated in studies involving seaweed, thus
introducing microplastics into the marine food web.

Additionally, in a study conducted by Remy et al. [31] focusing on the invertebrate
community inhabiting the seagrass Posidonia oceanica near Corsica, it was revealed that 27%
of the invertebrates examined contained viscose fibers.

Furthermore, the contamination of microplastics could have adverse effects on the
growth and overall health of seagrass plants. Research has highlighted the detrimental
impact of marine litter on seagrass ecosystems. Ganesapandian et al. [32] documented
these effects in the Gulf of Mannar and also in seagrass areas in the Philippines [33]. In a
study of seagrass habitats in Portugal, Cozzolino et al. [34] revealed that both macro- and
microplastics accumulate in the canopies and sediments, raising concerns that seagrass
may become a significant reservoir for plastic debris, posing serious threats to biodiversity
and marine habitats. In a mesocosm experiment conducted by Balestri et al. [35], where
plastic bags were placed on Mediterranean seagrass (Cymodocea nodosa), it was observed
that these bags led to a decrease in pH and oxygen content in the sediments and also had
an impact on plant growth.

Posidonia oceanica (L.) Delile is the primary and endemic seagrass species found in the
Mediterranean Sea, forming extensive underwater meadows at depths ranging from 0.5 to
40 m [36]. It serves a crucial ecological role by contributing to water quality enhancement,
CO2 absorption, stabilization of the sea floor and beaches, coastal protection, and providing
refuge and nursery areas for numerous marine organisms [37–40]. P. oceanica is of utmost
significance in the generation of organic carbon and stands out as the most proficient carbon
storage entity. Its remarkable resilience lies in its structure, comprised of rhizomes and
roots that can extend to great heights, allowing it to store carbon accumulated over years for
extended periods, akin to certain terrestrial ecosystems renowned for their carbon storage
efficiency, such as peatlands [41].

P. oceanica is a protected species under several international conventions ratified by
Mediterranean countries and is a priority natural habitat type for conservation under the
Habitat Directive (92/43/EEC). Moreover, P. oceanica has been selected as an indicator of
the Good Environmental Status for marine areas within the Marine Strategy Framework
Directive (MSFD, 2008/56/EC).

During the autumn season, P. oceanica loses its leaves which, through waves and
currents, accumulate on adjacent beaches as wrack beds [42]. The leaves, when decomposed,
can create huge banquettes that protect the beaches from sea erosion [43], provide feed for
invertebrate communities [44], and nutrients for dune plants [45]. P. oceanica debris can also
form fibrous assemblages, called aegagropilae (hereinafter EGs), through hydrodynamic
movements [46]. EGs, commonly known as sea balls, sea rissoles, sea potatoes, beach balls,
Neptune balls, or Kedron balls, are frequently found along Mediterranean beaches [47].
Their composition is an open question as the plant organ from which the fibers arise is not
known. During the EGs’ formation, plastic debris occurring on the sea bottom, shoreline,
and beach gets trapped within the balls [43,48].

P. oceanica provides an ecosystem service, and in the context of beach litter manage-
ment, EGs removal has been recently proposed to eliminate the associated plastic items [42].

This study represents the first assessment of plastic waste within Posidonia spheroids
on four sandy, Mediterranean beaches characterized by different anthropogenic influences.
The aims of this paper were: (i) to quantify plastic debris within EGs, (ii) to compare plastic
litter in EGs along beaches with different anthropogenic impacts, and (iii) to evaluate the
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correlation between plastic abundance and EG size. The evaluation of plastic abundance
within EGs is important as they can reflect the plastic pollution level of both marine and
beached sediments. The relation between EG size and plastic abundance can have impli-
cations in the context of beach litter management. In accordance with Pietrelli et al. [48],
we expect to find greater quantities of plastic items in the largest balls; moreover, with this
study, we expect that the removal of EGs can be used as a strategy to mitigate the impact of
microplastics in beaches.

2. Materials and Methods
2.1. Study Areas and Samplings

Mazara del Vallo falls within the geographical subarea 16—“South of Sicily”—that
is affected by several anthropic activities (commercial and tourist ports, agricultural and
industrial activities, mariculture facilities, oil refineries, and offshore platforms). The South
of Sicily also represents an important crossroads for Mediterranean trade routes (including
the oil traffic), due to its central position. The South of Sicily is one of the most important
fishing areas in the Mediterranean Sea with the fishing fleet of Mazara del Vallo [49–51].
The territory of Mazara is crossed by two rivers, the Mazaro and the Delia (also called
Arena), the latter starting from Lake Trinità, an artificial lake created by the homonymous
dam, located on the border with the Castelvetrano area. According to a study carried out
by the Sicily Region, the ecological status of the Mazaro River is sufficient while that of the
Delia River is good [52]. There are also several streams (Iudeo, Bucari) and artificial canals
used mainly in agriculture. EGs were collected from three beaches along the south-west
part of Sicily close to Mazara del Vallo, namely Capo Feto (1), Tonnarella (2), and San
Vito (3).

Capo Feto (37◦39′35.3′′ N 12◦31′40.6′′ E) is a Site of Community Importance (SCI), as
well as an area deserving of special protection (92/43/CEE). In July 2011, according to the
Convention on Wetlands of International Importance, inserted in the Ramsar wetlands’
list, Tonnarella (37◦39′36.5′′ N 12◦34′03.9′′ E) and S. Vito (37◦38′17.8′′ N 12◦36′38.7′′ E)
are beaches with high anthropogenic impact during the summer and represent important
tourist destinations. The main features of the investigated beach are briefly summarized in
Table 1.

Table 1. Description of four investigated beaches.

Capo Feto Tonnarella S. Vito Spiaggetta del Sole

GPS Coordinates 37◦39′35.3′′ N
12◦31′40.6′′ E

37◦39′36.5′′ N
12◦34′03.9′′ E

37◦38′17.8′′ N
12◦36′38.7′′ E

37◦14′26.0′′ N
15◦14′11.3′′ E

Area South of Sicily
GSA 16

South of Sicily
GSA 16

South of Sicily
GSA 16

Ionian Sea
GSA 19

Beach composition Sand Sand Sand Sand

Major usage beach Protected area
Local and tourist people
swimming. fishing and

other activities

Local and tourist
swimming

Local people. swimming.
sunbathing. fishing.

Surfing
Distance from the
city (Km) 4.5 1.6 0 1.3

How often is the
beach cleaned Never Once a year,

during spring
Once a year,

during spring
Once a year,

before summer
Method used to clean - Manual Mechanical Mechanical

GSA: Geographical Sub Area.

Augusta Bay (Siracusa, Italy), located in the geographical subareas 19—Western Ionian
Sea— in a harbor area with high marine traffic activity. This area has hosted a variety
of different chemical and petrochemical plants, a commercial harbor, and bases for the
Italian Navy and NATO activities. The Augusta Bay is an area with high anthropic impact,
considered one of the most polluted in the Mediterranean Sea due to the high presence
of heavy metals. The Gulf of Augusta is considered an elevated environmental risk site
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by the World Health Organization and classified as a “site of national interest” by the
Italian Ministry of Environment (G.U.R.I., L. 426/1998). Spiaggetta del Sole (37◦14′26.0′′ N
15◦14′11.3′′ E) is a touristic beach within the city of Augusta (Figures 1 and 2A). The
investigated areas are briefly summarized in Table 1.
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Figure 1. Study areas along the coast of the South of Sicily and the Ionian Sea. The investigated
beaches: (1) Capo Feto; (2) Tonnarella; (3) S. Vito; (4) Spiaggetta del Sole. Map was created using
Google Earth: https://earth.google.com/web/@37.58144601,14.57542175,322.02108172a,456382.7
4704598d,30.00066939y,0h,0t,0r (accessed on 1 May 2023).

Four hundred EGs, one hundred for each site, were collected simultaneously on the
beaches within a band 1 km long and 5 m wide starting from the shoreline, in summer 2022
before the beach clean-up.

2.2. Plastic Isolation

Once in the laboratory, samples were dried at room temperature (25 ◦C) and under
low humidity for a week [42], then 20 EGs for each beach were selected to obtain the widest
range size (Figure 2B). The samples were dried at room temperature for a week.

Selected samples were weighed (g) and the length (mm) of the three principal axes
was measured with a digital caliper assuming that an EG is like an ellipsoid (Figure S1).
After that, EGs were carefully disentangled manually into fibers under a laminal flow
microbiological hood. The fibers were sieved at 8 mm, 5 mm, 1 mm, and 0.63 mm using
stainless steel sieves, washed with water to remove sand and salt, and dried at room temper-
ature [42]. Then, the disentangled EGs were observed under a stereomicroscope in order to
isolate plastic debris. For each suspected item, the hot needle test was undertaken. The hot
needle test is an accepted and cheap method used to verify plastic particles on the bases of
their response [16,53,54]. The tip of a thin needle was heated, and each isolated particle was
tested under a stereomicroscope. When particles melted after exposition to the hot needle,
they were confirmed as plastic items [16]. Isolated plastic items were classified based on
their size (small-microplastics: 0.1–0.9 mm; large-microplastics: 1–4.9 mm; mesoplastics:
5–25 mm; macroplastics: >25 mm) and shape (pellet, fiber, tangled fiber, foam, fragment,
film, and sphere).

https://earth.google.com/web/@37.58144601,14.57542175,322.02108172a,456382.74704598d,30.00066939y,0h,0t,0r
https://earth.google.com/web/@37.58144601,14.57542175,322.02108172a,456382.74704598d,30.00066939y,0h,0t,0r
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2.3. Prevention Contamination

To limit external contamination, the samples were processed in a restricted room
and under a microbiological laminar hood. Moreover, all workspaces and tools were
meticulously cleaned with ethanol and filtered deionized water. The operators wore cotton
coats (100% cotton) and latex gloves. Moreover, the procedural blanks were run, and filters
(cellulose nitrate membrane diameter of 47 mm) were put in open Petri dishes, both under
the microbiological laminar hood and next to the stereomicroscope [14].

2.4. Data Analysis

The roundness of EGs was calculated using the equation:

Roundness =
1
3
× W×H× L

Dmax

where W represents the width, H is the height, L stands for the length, and Dmax is the
maximum dimension measured (see Figure S1). Roundness is 1 for a perfectly round object
and less than 1 for any other object [55].

We compared the different sampling sites based on the frequency of occurrence (FO%)
and abundance (number of plastic items per spheroid). To check for potential significant
differences in the occurrence of plastic items between sites, we performed a chi-squared
test (χ2). Spearman correlation was performed to assess the correlation between: (1) plastic
abundance vs. EGs weight; (2) plastic abundance vs. EGs length; (3) plastic abundance
vs. EGs height; (4) plastic abundance vs. EGs width; and (5) plastic abundance vs. EGs
roundness. The Kruskal–Wallis non-parametric test was used to test whether there were
any significant differences in the plastic abundance between sampling sites. All graphs and
statistical analyses were performed using GraphPad Prism 8.4.2.3.

3. Results
3.1. Plastic Abundance

A total of 80 EGs were analyzed (length: from 17.2 to 87.4 mm; width: from 13.7 to
72.3 mm; height: from 27.2 to 114.4 mm; weight: from 1 to 74 g). Detailed information
about each beach is reported in Table 2. A total of 240 suspected items were isolated; of
these, 202 were positive for the needle test. Fifty-five EGs (68.7%) included plastic items.
Within these, 32.7% contained one plastic item, 14.5% contained two items, 9.1% contained
three items, and 43.6% contained more than four items. The highest number of plastic
items found within an EG was equal to 19. Plastic abundance was 2.5 items/spheroid,
corresponding to 132 items/kg. The smallest EG with plastic items weighed 1 g.

Table 2. Morphometric data of EGs sampled in the four investigated beaches.

Beach N
Length

Range (mm)
(mean ± SD)

Width Range
(mm)

(mean ± SD)

Height
Range (mm)
(mean ± SD)

Roundness
(mean ± SD)

Weight
Range (g)

(mean ± SD)

N
Items/Spheroid N Items/kg

Capo Feto 20 17.2–73.0
(50.6 ± 18.2)

16.5–61.0
(45.8 ± 17.0)

27.2–86.5
(56.6 ± 18.4)

0.7–0.9
(0.9 ± 0.1)

1–49
(20 ± 15) 0.5 26.9

Tonnarella 20 21.8–87.4
(54.5 ± 23.0)

15.4–72.3
(41.5 ± 17.8)

29.1–98.3
(60.4 ± 19.8)

0.5–0.9
(0.8 ± 0.1)

3–73
(25 ± 22) 1.5 58.8

S. Vito 20 20.0–85.4
(47.6 ± 18.6)

17.5–57.6
(37.0 ± 14.0)

30.5–106.7
(57.7 ± 24.7)

0.5–09
(0.8 ± 0.1)

1–71
(18 ± 21) 3.2 175.7

Spiaggetta del Sole 20 23.7–79.2
(49.6 ± 14.6)

13.7–30.9
(35.4 ± 10.1)

28.2–114.4
(56.0 ± 20.4)

0.6–0.9
(0.8 ± 0.1)

1–34
(12 ± 9) 4.8 408.5

TOTAL 80 17.2–87.4
(50.6 ± 15.3)

13.7–72.3
(39.9 ± 20.6)

27.2–114.4
(57.7 ± 20.6)

0.5–0.9
(0.8 ± 0.1)

1–73
(19.0 ± 17.9) 2.5 132.5

SD: standard deviation.

No correlation between plastic abundance and weight/width/height/roundness was
found (rs: from 0.15 to 0.19; p > 0.05). There was a weak positive correlation between plastic
abundance and EG length (rs: 0.24; p < 0.05).
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The length of plastic items, excluding tangled fibers (unmeasurable), ranged from 0.1
to 50 mm. The plastic items were categorized as follows: small microplastics (1%), large
microplastics (26.7%), mesoplastics (54.5%), and macroplastics (17.8%). The types of debris
found were primarily fibers (48.5%), tangled filaments (41.6%), fragments (8.4%), and films
(1.5%). In terms of color, the most common were white (37.1%), followed by transparent
(19.3%), green (9.9%), dark blue (8.9%), black (7.4%), red (5.9%), light blue (4.1%), and
others (7.4%).

3.2. Beach Comparison

Plastic items were found in the EGs of all beaches. In particular, the occurrence was
highest in the EGs from Spiaggetta del Sole (100%), followed by San Vito (80%), Tonnarella
(70%), and Capo Feto (25%). Significant differences in the occurrence of plastic items were
only detected between Spiaggetta del Sole and Capo Feto (χ2: 62.5, p < 0.05).

Similarly, plastic abundance (items/spheroid) was highest in the EGs from Spi-
aggetta del Sole (4.8 items/spheroid), followed by S. Vito (3.2 items/spheroid), Tonnarella
(1.5 items/spheroid), and Capo Feto (0.5 items/spheroid) (Table 2, Figures 3 and S2). The
Kruskal–Wallis test revealed significant differences in plastic abundance values between
beaches (H: 27.5, p < 0.01).
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found at each beach.

Concerning size, large microplastics were the most abundant in the EGs from Capo
Feto beach; mesoplastics were more abundant in EGs from Tonnarella, S. Vito, and Spi-
aggetta del Sole beaches (Figure 4). Fibers and tangles fibers were the most frequent in all
beaches investigated, except for Tonnarella, where fragments prevailed (Figure 5).
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As for colors, Capo Feto had a higher quantity of green and white debris, while
Tonnarella predominantly featured white debris. In San Vito, transparent debris was the
most abundant, while Spiaggetta del Sole had predominantly white debris (see Figure 6).
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4. Discussion

Studies focused on plastic litter have been carried out in marine and coastal ecosys-
tems [56,57]; but only recently has the analysis of litter ashore from the sea to the beach
received the attention of the scientific community [42,48,58,59].

This study evaluated, for the first time, the presence of plastic litter entrapped in
Posidonia EGs on four Sicilian sandy beaches. Although the survey is limited to a single
year and a single season, it was possible to collect the first data on plastic abundance within
EGs in the considered areas. EGs, during their development, can incorporate debris from
the sea bottom, seawater, beach sediments, and in the air. Plastic occurrence in the EGs
used in this study (68.7%) is higher than those reported by Sanchez-Vidal et al. (17%) [42]
and Pietrelli et al. (53%) [48]. Similarly, the plastic abundance reported in this study
(2.5 items/spheroid) was higher than that reported in EGs in the central Tyrrhenian Sea
beaches (0.6 items/spheroid) [48]. Unlike what we expected, there was a weak correlation
between the size of the EGs and the abundance of plastic litter. In fact, plastic items were
found even in the smallest EGs, and sometimes even in greater quantities than in the
larger balls.

In this study, we found that EGs act as a trap for plastic litter ranging from micro
(<5 mm) to macro (>25 mm), which aligns with findings in P. oceanica meadows [60]. Like
other plants, including dune plants and mangroves [61–63], Posidonia EGs entangle a
significant amount of plastic litter (132 items/kg). This underscores the valuable role of
EGs in monitoring plastic pollution.

Regarding the shape of the plastic items, we predominantly found fibers, consistent
with the results of the study by Sanchez Vidal et al. (filaments and fibers: 65%; fragments:
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22%; film: 8%) [42]. The occurrence of fibers can be linked to textile pollution, as textiles
are currently a primary source of microfibers in the environment. Manshoven et al. [64]
reported that wearing and washing synthetic textiles is regarded as being responsible for
the discharge of between 0.2 and 0.5 million tons of anthropogenic particles into the oceans
each year. Conventional wastewater treatment, including tertiary treatment techniques,
may remove up to 98% of microfibers. Fishing is the primary marine-based source of
plastic pollution [65,66]. Abandoned, lost, or otherwise discarded fishing gear have been
recognized as a major problem [67]. Fishing ropes, nets, and lines are the main contributors
to beached fishing litter. Beached fishing litter may release hundreds of microplastic pieces
per meter [68].

Tangled fibers have been reported in crustacea decapoda as Nephrops norvegicus [69],
Eriocheir sinensis [70], Aristeus antennatus [71], Pontastacus leptodactylus [72], and Parapenaeus
longistroris [73]. This is the first time that these kinds of fibers have been reported in the EGs.

4.1. Beach Comparison

The monitoring we conducted allowed us to identify differences between the beaches,
which can be attributed to their different locations and varying degrees of use. The
EGs collected at Spiaggetta del Sole exhibited the highest abundance of plastic items
(4.8 items/spheroid). This may be attributed to the high level of urbanization along the
coast, extensive fishery activities, and the presence of a wastewater treatment plant drain-
pipe, all of which can contribute to the accumulation of debris on the sea floor [38,40]. The
fragmentation and degradation processes acting on this debris can induce the formation of
small particles. The ingestion of plastic items by mollusks, teleosts, and elasmobranch in
the Ionian Sea has been reported [74,75].

Regarding the South of Sicily, Tonnarella and S. Vito beaches were also impacted by
plastic litter and mainly by fibers. The South of Sicily falls in an area strongly affected
by several anthropic activities (commercial and tourist ports, agricultural and industrial
activities, mariculture facilities, oil refineries, and offshore platforms) and represents one of
the most important fishing areas in the Mediterranean Sea. All these activities, together
with environmental processes led to high marine litter abundance and density in the South
of Sicily, as reported by Spedicato et al. [76] and Garofalo et al. [49]. Moreover, a high
percentage of the small spotted catshark (Scyliorhinus canicula) ingesting microfibers has
been recorded by Mancia et al. [77] and Mancuso et al. [16] in the South of Sicily.

EGs from Capo Feto beach (SCI) showed the lowest plastic items abundance
(0.5 items/spheroid). This result could reflect the protected status of the site, characterized
by a lower anthropogenic impact than Tonnarella and San Vito beaches.

4.2. Implications for Cleaning Up

The fact that plastics might be intercepted by EGs has useful implications for beach
clean-up management. The removal of EGs should be carried out by being mindful of
vegetation, in fact, the removal of the balls should be manual at least in those stretches
of coast where the EGs are on the banquettes (which play an important ecological role
within the beaches and should be preserved [78]. This kind of management should be
the best practice, especially in protected areas (i.e., Capo Feto). Moreover, it is necessary
to implement a beach cleaning plan for the removal of all EGs, both small and large, in
order to prevent them from flaking and releasing the marine litter trapped inside them
back into the environment. In this study, the small EGs could include up to eight pieces
of plastic debris. In other words, EGs should be removed regardless of their size as their
removal can help to mitigate plastic pollution in the marine environment. The degradation
time of EGs is not currently known [42]. We can hypothesize that the dense outward shell
of the EGs and the refractory character of their lignocellulosic fibers make EGs resistant
to degradation. In any case, what happens to “old EGs” and relative plastic debris once
ashore deserves further investigations.
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The removal of the EGs would gain the approval of stakeholders (tourists, local
administrators) that generally dislike their presence on the beach. EGs have structural,
mechanical, and physical properties that make them useful in different applications. The
uses of EGs might also help in the future to sustain the economic growth of all the countries
of the Mediterranean Sea. The removed EGs could be used as a renewable substrate
to produce bio-absorbents in environmental remediation, as insulation and reinforcing
materials for building and construction, as new material to create paper, textiles, or biofuel,
and for bioplastic generation for the next generation [79–82].

5. Conclusions

The analysis of four beaches along the Sicilian coast demonstrated a significant pres-
ence of plastic litter within Posidonia spheroids. In the future, additional data on a larger
time scale should be acquired to understand the different dynamics of the beach. The fact
that plastics might be intercepted by spheroids has useful implications for beach clean-up
management. In general, beach clean-ups are carried out by volunteers and operators and
are focused on beached macrolitter. Instead, specific clean-ups should focus on Posidonia
spheroids where a large amount of plastics can accumulate. The removal of spheroids can
represent an important step towards environmental sustainability as it helps to mitigate
the severe negative impacts of plastic on the marine ecosystem and the health of the en-
vironment. To successfully promote environmental sustainability through the removal of
spheroids from beaches, it is important to establish regular cleaning programs, involve
local communities, and raise public awareness on the issue. Additionally, it is essential to
address the underlying causes of plastic pollution, such as excessive plastic production and
usage, through targeted policies and initiatives. The attention of administrations should
used to set up “working groups” which analyze the situations and, depending on the case,
adopt the right solutions. Additionally, the authors propose conducting citizen science
initiatives for gathering Posidonia spheroids. Combining plastic pollution studies with citi-
zen science not only enhances research capabilities but also fosters greater environmental
awareness among the public, ultimately enabling the collection of substantial volumes of
waste within a brief timeframe.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su152215740/s1, Figure S1: Biometry of Posidonia EG: length (L),
width (W) and height (H); Figure S2: Map of abundance of plastic debris in EGs for each beach.
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