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ABSTRACT

In this article, we will obtain some new dynamic inequalities of Hardy-type on time scales. Our results
will be proved by using Holder's inequality and Jensen's inequality. We will apply the main results to the
continuous calculus and discrete calculus as special cases.

Keywords: Dynamic inequality; Hardy inequality; Time scale.
1. Introduction

In 1920, Hardy [1] proved the following result
Theorem 1.1. Let {a(n)};=, be a sequence of nonnegative real numbers. If p > 1, then

Z% <mz: a(m)>p < (pp%l)pZa(n). (1.1)

In 1925, the continuous analogous of inequality (1.1) was given by Hardy [2] in the following
form.
Theorem 1.2. Let f be a nonnegative continuous function on [0, o). If p > 1, then

_meip([oxf(s) ds)p dx < (pp%l)p fooofp(x)dx . (1.2)

P
The constant (ﬁ) in the two inequalities (1.1) and (1.2) are the best possible.

In 2012, Sulaimn [3] proved the following inequalities

Theorem 1.3. Let ¢ be nonnegative function defined on [a, b] and G (x) = f(f @ (1) dt, then
(i) for p>1,

b cp b p b p
pfa xgx) dx < (b—a)P fa (pxgx) dx — fa (x —a)? wxgx) dx. (1.3)
(i) For 0<p <1,
b GP b — p b b
PJ xg’x) dx = ( b a) _[ o () dx = .[ (x = a)f 97(x) dx. D

In 2020, Benassia [4] gave a generalization of Theorem 1.3 as the following.
Theorem 1.4. Let ¢ and 2 be nonnegative functions defined on [a, b] and G (x) = f;q) () dt. If 2 is
nondecreasing, then
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(i) for p>1,
6" () () ()
”f ary =0T fm(»o f(‘)m’()d ()
(i) For 0<p <1,
pr(x)d>b_ap bp p b > b p
p| reg = (50) [ e [ a-ap o (16)

In 2021, Benassia et al [5], gave a generalization of Hardy's integral inequalities (1.5) and (1.6)
by using a weight p function and a second g parameter as the following.

Theorem 1.5. Let ¢, 2 be nonnegatives and integrable functions on [a, b]. Let W be a weight function
on [a, b] and

b
6,00 = | pLonGdx.

If 2 is nondecreasing and [ is nonincresing, then

() ifl<p<aq,
P
brP b
f Gu” () dx < &T) (b—a)l_g (b—a)qf <pZ(x) d
a 2 ) qa @ 04 (x)
2
f )
(x — a)q : 1.7)

Qq (x)

i) For0<g<p<1,
qa=p

P
L)) (b—a) au(b) { b
—dx = @(x)dx

: :
—f (x —a)? ¢(x) dx} . (1.8)

Now, we recall the following concepts related to the notion of time scales. In 1988, S. Hilger [6],
presented time scales theory to unify continuous and discrete analysis. We will need the following
important relations between calculus on time scales T and either continuous calculus R or discrete
calculus on Z . Note that:

(i) If T =R, then

o(t) = t, u®) =0, A0 =f, [Lf@ ot = [ f(oade. (1.9)
(ii) If T = Z, then
o) =t+1, wt)=1, fA)=f(t+1)-f(), [ f©Ae =321 F (D) .

Lemma 1.6 (see [7]). Let 0 < p < g < o, and ¢, {2 are nonnegative and rd-continuous functions
on [a, b]t and suppose that 0 < ffgo(t) At < oo, then
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b b :
fﬂ(t) At) <f Q(t) pP(t) At) : (1.10)

a a

fb(pp(t)ﬂ (t) At < (

The inequality (1.10) hold for —oo < g < p < oo and inverted for 0 < g < p < oo,
One of the forms of the chain rule on time scales is the following form.

Lemma 1.7 (Chain Rule on Time Scales, see [8]). Let : T — R, be a delta differentiable function on
T* and f:R - R be a continuously differentiable function. Then there is ¢ in the interval
[t, o(t)] such that

(f o )" (®) = f'(9(0)) g*(t). (1.11)
The following lemma is known as Keller's chain rule on time scales.
Lemma 1.8 (Chain Rule on Time Scales, see [9]). Assume f:R — R be a continuously differentiable
functionand g: T — R, be a delta differentiable function then

1
(fogt® = U £ (9 + hu(e) () dh} gh@. (1.12)
0
Next, we write Holder's inequality and Jensen's inequality on time scales.
Lemma 1.9 (Dynamic Holder's Inequality [10]). Leta,b € Tand f,g € C.4([a, b]T ,[0,]) . |If
p,q > 1 with %+§= 1, then
1 1

b b > /b q
f F(OgDAL < (f £200) At) (f 99(8) At>. (1.13)

This inequality isreversed if 0 <p <landif p<Oor q <O0.

Lemma 1.10 (Dynamic Jensen's Inequality [10]). Leta,b € T andc,d € R. Assumethatg €
Crq(la,blt ,[c,d]) andr € C,.4([a, b]lt ,R) are nonnegative with f;r(t) At >0.1f @ €
Crq(lc,d]T ,R) be aconvex function, then

b b
o (fa g(®Or®) At) _ Jar®©% (g)ac

f‘f r(t) At ff r(t)At
This inequality is reversed if ® € C,4([c,d]t ,R) is concave.
After these initial results, many generalizations, extensions and refinements of dynamic Hardy
inequality were made by various authors. For a comprehensive survey on the dynamic inequalities of
Hardy-type on time scales, one can refer to the papers [10,11,12,13,14,15] and [16-22].

(1.14)

In this article, we will state and prove some reverse Hardy-type dynamic inequalities on time
scales. The obtained Hardy-type dynamic inequalities are completely original, and thus, we get some
new integral and discrete inequalities of Hardy-type. In addition to that, some of our results we
generalize Theorem 1.5 on time scales.

The following section contains our main results:
2. Main results

Theorem 2.1. Let T be a time scale with a,b € T, and assume that ¢, y are nonnegative, rd-
continuous and A —integrable functions on [a,b]y . Let p be a weight function on (a, b)t and
define

6,00 = [ oot

If y is nondecreasing and | is nonincresing, then
(i) for 1<p<q,
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p
bno P b
f S (S;) Ax < (“@) b-a)'a {(b —~ a)qf q’Z(x) Ax
« X qa @ xa(x)

p

q

— fb(x —a)d (p‘;(x) Axp . 2.1)
¢ X 1(x)

ii) For0<g<p<1,
q=p

P
beup(x_) Ax > (b _pa) au(b) {fb(pq(x)Ax
« X ) EION

b q
—f (x—a)? p(x) Ax} : (2.2)

Proof . (i) By using Holder's inequality (1.13), we see that

bGup(x) B b ~ x p
fa o = jax L) (f () u(t)At> Ax

1 1\P
< [Px 7t {(f; PP () ne)at)? (f7 u(t)At)q} Ax

Pxt @) {(f;“ P (&) n(®AL ) (J u(®) At)”‘l} Ax. (23)

We use Lemma (1.6), then from (2.3), we get that

Lb G;”(S;) fx = fabx ) < fa e At)

b X
< f x (x),up(a)(x—a)g(q_l) <f 0I(t) At)q Ax

IS

p—

2 x
! (f pa(t) u(t)At)q Ax

(i

b
- w@| HE)T A, @24)

where

H(x) = fx)(%q(X)(x — )77t pl(H)AL.

a

4
Let ¢(x) = x4, be a concave function and y be nondecreasing function, by Jensen's inequality, we
get that

b 14 b
f (H(x))q Ax =f ¢(H(x)) Ax
1 b
S(b—a)gb(m LH(X)AX)

P
b rx q
=(- a)l_g (f f x M) (x — a)T1el(t) AtAx)q
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QI3

b b —
=(b- 001_g (f €0q(t)f )(Fq(x)(x —a)i7 At Ax)
a t

14

63

1P (b =q b q
< (b—a) a (f eI®xP () | (x—a)? 1At Ax) . (2.5

t

By chain rule, we have that

(x—a)??

< % [(x — a)9]A (2.6)

Then

QT

-q b

b 12 1P (1 (P —q
f (H))T Ax < (b — a) q(a f PUOXP () [(x—a)q]AAtAx>.

t

Therefore,

q

boD b -
[ ax < w@ro -0 (2 [ o O - af - ¢ - o)

a X ()
(@) ’ D P pa(t) b @I(1)
= ”1 (b_a)l‘a (b—a)qf 7 At—f(t—a)q i
q4 @ xa(®) @ x4()

which is the desired inequality (2.1).

(ii) By using reverse Holder's inequality (1.13), we see that

pr_p(X) B b ) < x )p
L x (x) Ax= LX ) L () p(®At | Ax

1 1P
= ff)( ) {(f; oP () we)At)? (f7 @) At)q} Ax

14
q
At

L x @ {(f(f oP(t) n(OAL) (7 u(t)At)p_l} Ax . 2.7)

Applying reverse inequality (1.10), then from (2.7), we get that

p P
bGHp(x) b _ x p_a x £
fa x (%) Ax = _L X 1(X) (L u(t) At) (L pa(t) u(t)At) Ax

p
b x 14
= f X‘l(x)u”(a)(x—a)g(q_l) <f Pi(t) At)q Ax

b
- o | HE)T A, 2.8)

where

H(x) = fo%q(X)(x — )77t ()AL
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14
Let ¢p(x) = x4, be a convex function and y be nondecreasing function, by Jensen's inequality,
we get that

b P b
f (H(x))7 Ax =f d(H(x)) Ax

1 b
> (b—a)¢<m f H(x)Ax)

b P
=(b-a) 7 x 1) (x — a)T1pi(t) AtAx)q

a

QT

a

Q3

b

f qoq(t)f (x —a)i~ 1AtAx> . (2.9)

a

(b—a)

b
=(b-a)" a ( éoq(t)f )(p () —a)?” 1AtAx>
BOE (

By chain rule, we have that

(x—a)i?
> % [(x — a)9]~ (2.10)
Then
p
b B p
f (H(x))gAx > % <%f 7 (t)f (x —a)9]2 AtAx)q.
Therefore,

fbaf(x) OO

2
b P
x (%) g x(b) <qf PIO[b —a)? - (t —a)T] At)

QI3

1-B b b

_ .U(b)(:’ —a) 1 {(b _a)qf pI(t) At — f (t —a)lepi(t) At}
q9x(b) ¢ e

which is the desired inequality (2.2).

Remark 2.2. In Theorem 2.1, if we take T = R, then we get Theorem 1.5.

Corollary 2.3. In Theorem 2.1, if we take T = Z, and a = 1 then we get the following inequalities
(i) for 1<p<q,

p-1 p b—
G,P(s) u(1) <Pq(m)

q4 m= 1)(q(m)

2}

Q3

x 4(m)
(i) For 0<g<p<1,
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Q3

b-1 1-P b-1 b-1

G, (s b— au(b

Z ORI pa) u(){z q(m)_z(m_a)q(pq(m)}
s=1 X (S) qa)( p(b) m=1

where G, (s) = X=1@(m) u(m) .

In the same data on the functions y, ¢ and u with G, (x) = f(f @(t)u(t)At and by reasoning

analogously to the proof of Theorem 2.1, we obtain the following remarks.

Remark 2.4. If u and y are nondecreasing functions, then
(i)for1<p<gq,

P b b q
f G @, _ QLRSS Fp f LS A

— | x—a)
= g1 @ xP(x) | e

(ii)For0< g <p<1,

_p
f () 0, w@b-a)
= p
x() q? x(a)
Remark 2.5. If y is nonincreasing and u is nondecresing, then

(i)for1<p<gq,

QI3

f (6" @, P O)b- )

2@ ) qg x(b)

a

(i) For0<q<p<1,

14
b b
f 6" @, o (B9 o h L — e [ g f (— a1 229y,
22 g “xri) XP)
Remark 2.6. If y and u are nonincresing functions, then
(forl<p<gq,
RS b b b
f (Gu)(x)(x) < up(a)éb a) 4 {(b—a)qf (pq(x)Ax—f (- @)1 09 (x)Ax }q.
q? x(b) “ “
(i) For1<q<p<1,
14
b b
f (Gﬂ)(x)(x) s u(ll7) DT - PR J wz(x) e J )t <P:(x) "
X qa “ i) e (%)

3. Applications
Now, we give some new consequences of the above results.
3.1. The reverses weighted Hardy's type inequalities on time scales

If we put p = g in Theorem 2.1, we get the following corollary.

q b b g
{(b —a)l j @1(x)Ax — f (x —a)? (pq(x)Ax} .

q b b
{(b —a)l f @1(x)Ax — f (x —a)? (pq(x)Ax} .

Q3

QS

65
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Corollary 3.1. Let T be time scale with a, b € T, and assume that ¢, y are nonnegative, rd-
continuous and A —integrable functions on [a, b]. Let u be weight function on [a, b]t and

6,00 = | ot

If ¥ in nondecreasing and y is nonincresing, then

(i) for1 <p,

bG6)" @ _wP@ (o (PeP@) (P eP(x)
fa <00 Ax < > {(b a)pfa 70 Ax L(x a)p)((x) Ax}.

(ii) For0<p <1,

fb (G, (x))P (x) Ax > uP (b)
a x(x) px (b)

b b
{(b —a)? f QP (x)Ax — f (x — a)? pP(x)Ax }

3.2. The reverses Hardy's type inequalities on time scales
If we putu =1 in Theorem 2.1 we get the following corollaries.

Corollary 3.2. Let T be time scale with a, b € T, and assume that ¢, y are nonnegative, rd-
continuous and A —integrable functions on [a, b]y. Define

G(x) = [ p(®)At.
If yis nondecreasing, then

(for1<p<g,

P
b b b

f 6" () Ax < il (b - a)l_g (b —a)? &Ax —| (x—a)? goZ(x) Ax
a x(x) qa a y (5) (x) a XE(X)

(i) For0<q<p<1,

Q3

1P
f”G”(x)A L b-a) 1

X =
« X0 4 (b)

Remark 3.3. In Corollary 3.2, if we take T = R and g = p we get Theorem 1.4.

b b
{(b —a)? f @(x)Ax — f (x —a)? (pp(x)Ax} .

Corollary 3.4. Let T be a time scale with a, b € T and assume that ¢, y are nonnegative, rd-
continuous and A —integrable functions on [a, b]y. Define

G(x) =_[ p(t)At.

If yis nonincreasing, then

(Dfor1<p<g,

b

QI3

- [ ’ p1Gax - |

a a

b 1-2
pr(x)A PG q{

o X ST

(x —a)? q)q(x)Ax} :
qix (b)

Q3
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(ii)For0<q<p<1,
P

X = T

b
f (G)P (x) A
q4

a X

—| b—-a) 7 {(b-a)

b b
00y [ e
a Xa(x) a Xa(x)

If we putp = g, in Corollary 3.4, then we obtain the following result.

Corollary 3.5. Let T be a time scale with a, b € T and assume that ¢, y are nonnegative, rd-
continuous and A —integrable functions on [a, b]y. Define

G(x) =f p(t)At.

If yis nonincreasing, then
(i) for1 <p,

fb GP(x)
a XX)

(ii) For0<p <1,

4. Conclusions

In this paper, by applying Holder's
inequality and its inverse, Jensen's integral
inequality and its inverse on time scale, we
generalized some integral inequalities relating
to the inverse-weighted Hardy inequalities to a
general time scale. Besides that, in order to
obtain some new inequalities as special cases,
we also extended our inequalities to discrete
and continuous calculus. In the future, we can
generalize these inequalities in a different way
by using other mathematical tools.
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