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Abstract
Transformer models have been developed in molecular science with excellent performance in
applications including quantitative structure-activity relationship (QSAR) and virtual screening
(VS). Compared with other types of models, however, they are large and need voluminous data for
training, which results in a high hardware requirement to abridge time for both training and
inference processes. In this work, cross-layer parameter sharing (CLPS), and knowledge distillation
(KD) are used to reduce the sizes of transformers in molecular science. Both methods not only
have competitive QSAR predictive performance as compared to the original BERT model, but also
are more parameter efficient. Furthermore, by integrating CLPS and KD into a two-state chemical
network, we introduce a new deep lite chemical transformer model, DeLiCaTe. DeLiCaTe
accomplishes 4× faster rate for training and inference, due to a 10- and 3-times reduction of the
number of parameters and layers, respectively. Meanwhile, the integrated model achieves
comparable performance in QSAR and VS, because of capturing general-domain (basic structure)
and task-specific knowledge (specific property prediction). Moreover, we anticipate that the model
compression strategy provides a pathway to the creation of effective generative transformer models
for organic drugs and material design.

1. Introduction

By silico modeling and analysis of chemical structures, molecular computational approaches have facilitated
the development in various fields, such as drug discovery and material design [1–3]. Nowadays, deep
learning methods have made significant breakthroughs in these fields [4–6]. To go from a chemical structure
to a computational descriptor, molecules are encoded by different representations (figure 1(A)) [7], such as
the simplified molecular input line entry specification (SMILES) [8, 9] or 2D undirected cyclic graphs [10].
Then, a suitable neural network is designed and trained to connect the molecular representation to the
output related to the intended tasks, such as predictive and generative ones. It is essential to introduce a
suitable model that are optimize for one’s purposes. On the one hand, discriminative models could be
utilized for predicting physicochemical properties, reaction performance and bioactivity [11]. One the
other hand, generative models could design novel molecules efficiently and automatically with respect to
specific objectives [12–14].

In the last few years, transformer models have shown to be an efficient deep learning method within
chemical science [15]. They have formed a new paradigm and works by self-supervised learning as the
pre-training step. This self-supervised learning is based on large unlabeled chemical sequence or graph
datasets. Then the models are fine-tuned in downstream tasks [16]. More concretely, models could learn
basic molecular structure knowledge (like chemical formula, bonds and charges) in the pre-training process.
Then this knowledge is transferred in the fine-tuning to overcome data scarcity for specific tasks, such as
quantitative structure–activity relationship (QSAR) [17–21], virtual screening (VS) [22], de novo design
[14], reaction prediction [16], molecular optimization [23] and drug-drug interaction predictions [24].
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Figure 1. An illustration of the processes of the CLPS, KD methods, as well as their implementation with MolBERT forming
DeLiCaTe. (A) Molecule are encoded by SMILES representation. Next, the PSMolBERT is pretrained based on SMILES which
passes into embedding and 12 parameter-sharing attention layers in turn. Then, the loss is calculated by MaskedLM and
PhysChemPred as semi-supervised tasks [22]. The same color depth of layers in PSMolBERT represents the parameter sharing
feature in-between layers of CLPS, while the different color depth in MolBERT symbolizes that the parameters are different
among layers. (B) The KDMolBERT is obtained by general distillation in which the pretrained MolBERT is acted as a teacher
model. The student model, KDMolBERT, is distilled to reproduce the behavior of the teacher model, the pretrained MolBERT.
The behavior is evaluated by triple losses, including logits, hidden states and MaskedLM. (C) The DeLiCaTe model integrates the
advantages of the two mentioned method. It is distilled from the pretrained PSMolBERT, and a 4× speedup is realized in both
training and inference compared with MolBERT.

Despite being high performance, given the size of at least several ten million parameters, transformer
models are computationally expensive in both training and inference processes [25]. For instance, recently
proposed models require several days of pre-training with at least four high performance graphics processing
units (GPUs) [16, 24]. Furthermore, the inference time in the fine-tuning process is much longer than in
other models [26]. Besides being time consuming, the environmental cost of the hardware running should be
considered as another disadvantage. Additionally, data shortage is common in the fields of drug and material
science, which obstacles the use of large models such as transformers. Hence, the growing computational and
hardware requirements, as well as data shortage, are likely to hinder the wide practical use of transformer
models [27].

In order to improve the parameter-efficiency, model compression has recently been an active research
area in the fields of computer vision (CV) and natural language processing (NLP). By compression, large
models, like transformers, could be scaled down and the training or inference processes are then accelerated.
Cross-layer parameter sharing (CLPS) is one strategy to decrease the computational cost of the training
process, while retaining the high performance of downstream tasks [27, 28]. In CLPS, the default decision
is to share all parameters across layers. In other words, parameters are tied across positions and time steps.
Additionally, knowledge distillation (KD) is reported to result in lighter models with faster inference [26, 29].
In KD, a student model with small size is trained to reproduce the behavior of the teacher model.
Nonetheless, neither of them has been utilized in transformer models within chemical science.

Inspired by model compression within CV and NLP applications [30–35], we aim to explore more
parameter-efficient transformer models for molecular modeling based on SMILES-based molecular
representation. The concept is illustrated in figure 1. We begin by using CLPS or KD strategies independently
to compress a high-performance chemical transformer, MolBERT [22]. Then the training and inference time
is compared among the models, as well as the model sizes. Next, we show that QSAR performances of the
two compressed models are competitive on various tasks, compared with MolBERT. Finally, given the
positive effects above, the CLPS and KD are integrated with each other to establish a new deep lite
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chemical transformer model, DeLiCaTe (shown in figure 1(C)). DeLiCaTe achieves more than 96% of the
performance of MolBERT in QSAR as well as VS applications, while being 4× faster in the rates of training
and inference due to a∼10- and 3-times reduction of the number of parameters and layers, respectively.

2. Methods

2.1. Dataset for model compression
We used the GuacaMol benchmark dataset [12] from ChEMBL [36] containing∼1.6 M compounds for
pre-training or distillation. The setting was used for the pre-training dataset in MolBERT as well [22]. For
the dataset, the ratio of training to validation was 16:1.

2.2. CLPS
MolBERT is a bidirectional chemical model derived from the BERT architecture [22]. It is a well-recognized
molecular transformer with state-of-the-art QSAR and VS performance. The backbone of the CLPS model
(PSMolBERT) uses a transformer encoder with gelu activation function, similar to MolBERT. The default
decision is to share all the parameters across the layers. In other words, the weights among different layers are
the same. The method for pre-training PSMolBERT is shown in figure 1(A). The pre-training tasks include
masked language modeling (MaskedLM) and calculated molecular descriptor prediction (PhysChemPred),
which is consistent with the original MolBERT [22]. The first one is the similar self-supervised learning
method to NLP, while the latter one predicts the normalized set of chemical descriptors for each molecule.
The general-domain chemical knowledge is well-learned by these two tasks. Following this method, the
parameter-efficiency of CLPS was studied by directly comparing the modeling performance with MolBERT
and other baseline methods.

2.3. Knowledge distillation
Regarding the mechanism of KD, as shown in figure 1(B), a student model is trained to reproduce the
behavior of the teacher model. The behavior is evaluated by the loss function which is a linear combination
of three types of losses:

L= Lmlm + Lhidn + Llogits (1)

where L is the final training loss, Lmlm is the MaskedLM loss in the self-supervised learning process, and Lhidn
and Llogits are the losses of hidden state and logits between the student and teacher model calculated by the
mean square error. Logits is the raw (non-normalized) scores for classification or regression model before
softmax. While hidden states represent the hidden representation of each token in each input sequence of the
batch. When taking into account these two losses, the student model will learn the distribution of the teacher
one. Then, the generalization of the student model can be improved. As for the loss of logits, following
Hinton et al [35], the softmax-temperature method was used and shown below,

pi =
exp(zi/T)∑
j exp

(
zj/T

) (2)

where T controls the smoothness of the output distribution and zi or zj is the model score for the class i or j,
respectively. The same temperature T is used to the student and the teacher when training. However,
T is set to 1 to recover a standard softmax at inference. Here, we find that T = 8 performs well through
trial-and-errors, as well as referring previous work [35]. Meanwhile, the ablation study for KD is conducted
by removing any one of the triple losses.

The teacher model here was the pre-trained MolBERT with 12 transformer layers, while the student only
had three layers of which the weights were randomly initialized. The other structures between these two
models remained the same and are shown in supplementary table 1.

3. The DeLiCaTemodel

In order to obtain DeLiCaTe, firstly, PSMolBERT was first pre-trained by CLPS. Then, the PSMolBERT
model was distilled to obtain DeLiCaTe (figure 1(C)). The detail parameter and architectures are shown in
section 3.1.

3.1. Experiments, baseline and evaluation
The performances of the aforementioned models were evaluated in QSAR and VS experiments. In addition,
three baseline methods were used: (a) RDKit descriptors [37], (b) Extended Connectivity Fingerprints with a
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Table 1. Overview of the ten different QSAR datasets.

Dataset Acronym Number of molecules Reference Type of tasks

Human β-secretase 1 inhibitors BACE 1483 [39] Classification
Blood–brain barrier penetration BBBP 1879 [39] Classification
Inhibition of HIV replication HIV 41 101 [39] Classification
Mutagenicity AMES 6130 [40] Classification
Endocrine disruptors Eds 817 [41] Classification
Aqueous solubility ESOL 1128 [39] Regression
Free solvation energy FreeSolv 642 [39] Regression
Lipophilicity Lipo 4200 [39] Regression
Epidermal growth factor inhibition EGFR 4113 [42] Regression
Fibroblast growth factor receptor FGFR1 4177 [43] Regression

diameter of 4 (ECFP4), and (iii) continuous and data-driven descriptors (CDDD) [38], which is a recurrent
neural network model that today achieve state-of-art performance in QSAR and VS experiments.

Ten QSAR tasks were selected to compare the performance of the different models. The QSAR datasets
were taken fromMoleculeNet [39] and other sources in which one half of them are classification tasks and
the other half are regression tasks. Table 1 summarizes the description of ten datasets. As for the classification
tasks, they are datasets containing active and inactive labeled molecules for specific targets. Regarding the
regression tasks, the first three tasks represent basic physicochemical properties for molecules, which are
essential to successful drug design considering drug metabolism. For example, the lipophilicity for a
molecule should be generally less than 5 to ensure drug absorption by cells. In addition, the last two
datasets are kinase inhibitors for specific anti-cancer targets with corresponding molecular bioactivities.
The data splitting method followed the strategy provided from ChemBench in which the splitting ratio
was 80% on training, 10% on validation, and 10% on testing. Then, a 3-fold cross validation was conducted.
Finally, the area under the receiver operating characteristic (ROC-AUC) and precision-recall AUC-ROC
(PR-AUC) values were used as the metrics for classification tasks. Additionally, coefficients of determination
(r2) and root-mean-square deviation (RMSE) were used in regression tasks.

The VS was conducted on 69 datasets of which each one represents an individual protein target and
contains a small number of active molecules amongst a much larger number of inactive ones. The
benchmarking protocol by Riniker et al [44] was followed. Then, the ROC-AUC was used as the metrics to
report the result.

3.2. Implementation and hardware
The models were implemented by PyTorch [45] and Hugging Face Transformers [46], and TextBrewer [47]
was adapted for chemical model distillation. Additionally, an Adam optimizer was used for both the
pre-training and fine-tuning processes. The vocabulary size for all the chemical transformer models was 42.
One NVIDIA RTX 3080 was used for all the training.

4. Results and discussion

4.1. Configurations and speeds of models
The main differences among the chemical transformer models in this study are the number of parameters
and attention layers. Table 2 outlines the used configurations and relative rates of models. As for the CLPS
method, the number of parameters of the new model (parameter sharing MolBERT (PSMolBERT)) was
compressed into∼12% of the original one, which accelerates pre-training with 1.3× per epoch. Meanwhile,
according to the validation loss curve (shown in supplementary figure 1), the loss function of PSMolBERT
converges much faster than MolBERT. This phenomenon has previously been observed within the NLP field,
where parameter-sharing has an effect on stabilizing network parameters [28]. Hence, it is hypothesized that
the pre-training could be significantly accelerated, not only in the rate per epoch but also by a fewer number
of epochs for convergence. However, even though the number of parameters is tremendously decreased, the
inference is not speeded up, which is consistent with previous work in NLP [27, 28]. As for the KD method,
the 3-layer KDMolBERT was distilled from the original 12-layer MolBERT, while other settings were left
unchanged. Given the significantly reduced number of transformer layers, a 3.8× speedup on inference was
achieved. DeLiCaTe was distilled from PSMolBERT. It is∼4× faster on both training and inference
compared with the original model. The reduced number of parameters obtained by CLPS and layers
obtained by KD significantly speeds up the pre-training and inference processes, respectively. In other words,
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Table 2. The configurations and training/inference time of the chemical transformer models.

Model Parameters (M) Training or KD timea (h) Time/epoch (h) Layers Inference speedup

MolBERT 86 192 (100)b 1.92 12 1.0
PSMolBERT 8 44 (30)b 1.47 12 1.0×
KDMolBERT 21 12.5 (13)b 0.96 3 3.8×
DeLiCaTe 8 4 (6)b 0.67 3 3.8×
a The value given for MolBERT and PSMolBERT relates to the pre-training time, whereas the value given for KDMolBERT and

DeLiCaTe represent the KD time.
b The values in parentheses represent the number of epochs for pre-training or KD. The epoch training time was calculated as the ratio

between the training time and number of epochs.

Table 3. The area under the receiver characteristic curve (ROC-AUC) for classification datasets (the higher is better, and best scores are
highlighted with bold font).

Methoda BACE BBBP HIV AMES EDC Avg

RDKit 0.844 0.757 0.776 0.801 0.853 0.807
ECFP4 0.855 0.749 0.768 0.783 0.836 0.798
CDDD 0.832 0.823 0.771 0.807 0.872 0.821
MolBERT 0.907 0.910 0.830 0.894 0.941 0.896
PSMolBERT 0.891 0.904 0.823 0.879 0.917 0.883
a The standard mean errors are shown in supplementary table 2.

Table 4. Coefficient of determination (r2) for regression datasets (the higher is better, and best scores are highlighted with bold font).

Methoda ESOL FreeSov Lipop EGFR FGFR1 Avg

RDKit 0.870 0.795 0.729 0.659 0.666 0.744
ECFP4 0.843 0.738 0.738 0.625 0.641 0.726
CDDD 0.920 0.834 0.797 0.671 0.715 0.787
MolBERT 0.905 0.816 0.780 0.720 0.730 0.790
PSMolBERT 0.892 0.832 0.758 0.710 0.721 0.784
a The standard mean errors are shown in supplementary table 3.

it combines the advantages of CLPS and KD. In the next sections we will discuss the performance of achieved
models, in relation to QSAR and VS tasks.

4.2. Effect of CLPS onmodel performance
4.2.1. Retained QSAR performance with CLPS
Having settled the model size and rate of training using the CLPS method, we now turn our attention to the
performance. This was done by comparing the predictive capacity in QSAR of PSMolBERT and MolBERT as
well as with other baseline methods, including RDKit descriptors, ECFP4 and CDDD [38]. Tables 3 and 4
outline the results for classification (AUC-ROC as the metric) and regression (r2 as the metric) tasks,
respectively. As for classification tasks, MolBERT pre-trained with 100-epoch performs the best among all
models, which is in agreement with the results from previous work [22]. Meanwhile, PSMolBERT
pre-training with 30-epoch is not far behind MolBERT and outperforms traditional methods. Quantitatively,
it retains 98.5% of the performance of MolBERT. In addition, PR-AUC has been utilized as the other metric
of the performance as well and shown in supplementary table 4. It is a better indicator for imbalanced dataset
(here the HIV dataset is imbalanced). The ratio of the PR-AUCs between PSMolBERT and MolBERT is
98.9%, which further indicates the retained performance of the compressed model.

According to the result in table 4 for regression tasks, the trends are very similar to the ones for
classification. PSMolBERT is able to compete with MolBERT for regression modeling, achieving 99.2% of the
performance of MolBERT on average. In addition, the only difference compared to classification tasks is that
the performance of CDDD now is comparable to two chemical transformer models. Among the individual
tasks, CDDD performs the best in aqueous solubility (ESOL), FreeSov and Lipop, while the two transformer
models do better in epidermal growth factor inhibition (EGFR) and fibroblast growth factor receptor
(FGFR1). It indicates that CDDD could extract physicochemical correlations from SMILES more efficiently,
while transformer-based methods could perform better on bioactivity tasks, which is also found in previous
literature [48]. Due to three regression tasks for physicochemical prediction, PSMolBERT is slightly worse
than the CDDD. However, the result in table 4 still indicates that CLPS methods not only accelerate the
modeling rate, but also retain the QSAR performance compared with original MolBERT. Additionally, RMSE
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Figure 2. The QSAR performance of MolBERT and PSMolBERT as a function of pre-training epochs (each model were
pretrained 3 times with different random seeds and error bars represents the standard deviation of the performance).

has been used as another indicator of the performance as well and is shown in supplementary table 5.
MolBERT achieves the smallest average RMSE (0.467). Meanwhile, the RMSE for PSMolBERT (0.475) is
slightly larger than the one for MolBERT, which indicates efficient model compression as well.

4.2.2. The effect of number of pre-training epochs on QSAR performance
According to the results of QSAR modeling, PSMolBERT achieves competitive performance and is 4.4×
faster (table 2, 192/44= 4.4) on pre-training compared with MolBERT. Besides less training time per epoch,
we assume that a quicker convergence contributes to the pre-training acceleration. We will therefore examine
the QSAR performance as a function of pre-training epochs in more detail. PSMolBERT and MolBERT
pre-trained with 10, 30, 60 and 100 epochs were compared with each other. Figure 2 displays the results of
regression task performance. It demonstrates that the performance variation trends differ between
PSMolBERT and MolBERT. For MolBERT, the performance improves as the pre-training epoch increases.
However, in the case of PSMolBERT, no significant improvement is achieved after 30-epoch training. In
other words, the best performance with respect to computational cost is achieved when the model is trained
with 30 epochs. The result strengthens our hypothesis in section 3.1 that PSMolBERT converges much faster
than MolBERT, which leads to less pre-training time.

Summing up, by CLPS, a 4.4× faster training speed is achieved while retaining about 99% of the
performance of the original model. Therefore, CLPS can be concluded to be a parameter-efficient method
for molecular modeling, reducing the high hardware requirements for pre-training transformer models. In
the next section, we will discuss the effect of KD on inference speed and modeling performance.

4.3. Effect of KD onmodel performance
4.3.1. Retained QSAR performance by KD
We concluded in section 3.1 that distillation resulted in a faster rate of inference due to less attention layers.
We will now explore the effect of KD on the QSAR performance as well. Model distillation contains two lines
of strategies, general- and task specific distillation [26]. General distillation is conducted by self-supervised
learning to get general-domain knowledge, while task specific distillation compress models for specific tasks.
In this work, only general distillation is studied on the chemical transformer models. By general distillation,
the chemical knowledge is distilled from a teacher model to the student one using unlabeled data. The
teacher model here was MolBERT, while the student model, KDMolBERT, was obtained after KD for 12.5 h.
Additionally, one random initialized 3-layer MolBERT model was pre-trained using the same time (12.5 h),
named MolBERT-3. It was used as a baseline for comparison. Table 5 shows the results of the QSAR
performance of classification and regression tasks on average. The results demonstrate that: (a) 99.3% and
96.7% of the performances of MolBERT were achieved by KDMolBERT in classification and regression tasks,
respectively; (b) Except for CDDD on regression tasks, KDMolBERT outperforms other traditional methods
in QSAR prediction (the performance by the CDDDmethod is shown in tables 4 and 5); (c) Even though the
same time was used, the performance of KDMolBERT is much better than for MolBERT-3. These results
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Table 5. The QSAR performance (AUC-ROC and r2 for classification and regression, respectively) of models by KD (KDMolBERT) and
learning from scratch (MolBERT-3).

Method KDMolBERT Retained performancea (%) MolBERT-3 Retained performanceb (%)

Classification 0.890 99.3 0.821 91.6
Regression 0.764 96.7 0.714 90.4
a The performance ratio between the student (KDMolBERT) and teacher model (MolBERT, model with best performance

compared with others)
b the performance ratio between 3-layer model learning from scratch and MolBERT.

Table 6. Ablation study and variations to the model trained with triple loss.

Without

Variation on QSAR

Classification Regression

Llogits −3.6 −4.1
Lhidn −1.5 −1.7
Lmlm −0.5 −0.4

suggest that the general-domain chemical knowledge can be effectively transferred from a teacher to student
model in the KD process. Then, the compressed student model could be used for downstream tasks with
3.8× faster inference (shown in table 2).

4.3.2. Ablation study on distillation objectives
The loss function of the KD, also called distillation objective, includes the losses of maskedlm, hidden states
and logits (see section 2). The influence of each component in the triple loss was investigated by an ablation
study. Table 6 presents the performance of removing each learning procedure. Firstly, the performances
without logits significantly decrease by 3.6% and 4.1% units for classification and regression, respectively.
The reason for the significant decrease lies in the mechanism of the QSAR modeling, in which pooled output
from chemical transformers is used for classification or regression [22]. Both logits and pooled output is
derived from the sequence output. When considering logits loss, the distribution of sequence output from
the student model is matched with the one from teacher model. In order to receive high performance in
fine-tuning processes, the logit loss need to be taken into account. Then, the impact of hidden states loss on
performance was tested. The decreases of performance are 1.5% and 1.7% units for classification and
regression, respectively. Therefore, the effect was moderate, which is consistent with cases in NLP, and
therefore not examined further. Lastly, the effect of MaskedLM loss was examined, showing only minor
changes in QSAR performance. Previous work on MolBERT indicated that additive gain from the MaskedLM
is relatively minor, compared with the one in NLP. Our results indicate that MaskedLM has the least effect on
chemical KD as well. Hence, the result above implies that the influence of each part in the triple loss is in
agreement with the one in NLP [25].

According to the abovementioned results, it can be concluded that KD is an empirically effective way to
scale down the model size to facilitate inference and achieve competitive performance with its teacher
chemical transformer. In the next section, the two compression methods, CLPS and KD, will be integrated
with each other and the performance of the final model will be studied.

4.4. Effect of integration on QSAR performance
The discussion so far has revolved around the effect of compression by CLPS and KD independently. These
two compression methods work at separate stages in model constructions. CLPS reduces the time for
training and KD for inference. They can therefore be applied within the same model. By applying CLPS on
the original model MolBERT, we received PSMolBERT. Then by applying KD on PSMolBERT, we integrate
CLPS and KD into one single model. We call this deep light chemical transformer, DeLiCaTe, and will assess
its performance in QSAR.

The analysis of the QSAR performance of DeLiCaTe was done in an analogue’s manner as in
section 3.3.1. As a baseline, a 3-layer PSMolBERT model (named PSMolBERT-3) was pre-trained from
scratch to compare with DeLiCaTe. The pre-training time of the 3-layer PSMolBERT was the same as the
distillation time of DeLiCaTe (6 h). Their QSAR performances are shown in table 7. DeLiCaTe achieves
comparable performance to the teacher model, the 12-layer MolBERT. Specifically, it retains 97.2% and
94.7% of the performance of MolBERT for classification and regression tasks, respectively. It indicates that
the combination of CLPS and KD not only compresses the model effectively, but also retains the chemical
modeling ability. In comparison, the 3-layer PSMolBERT only achieve∼91% of the performance of
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Table 7. QSAR performance (AUC-ROC and r2 for classification and regression, respectively) of DeLiCaTe and 3-layer PSMolBERT in
comparison with MolBERT.

Method DeLiCaTe Retained performance (%)a PSMolBERT-3 Retained performance (%)b

Classification 0.870 97.2 0.815 91.0
Regression 0.748 94.7 0.721 91.2
a The performance ratio between DeLiCaTe (obtained by KD from PSMolBERT) and MolBERT (MolBERT, model with best

performance compared with others).
b the performance ratio between 3-layer PSMolBERT learning from scratch and MolBERT.

Table 8. AUC-ROC and standard deviation (SD) for virtual screening.

RDKit ECFP4 CDDD MolBERT PSMolBERT KDMolBERT DeLiCaTe

AUC-ROC 0.633 0.603 0.725 0.743 0.737 0.730 0.719
SD 0.027 0.056 0.057 0.062 0.059 0.066 0.064

MolBERT. It implies that a limited pre-training time and a small parameter scale (fewer number of layers)
reduces the efficiency of molecular modeling by the learning from scratch method. Besides retaining
performance, DeLiCaTe is∼4× faster on both training and inference compared to MolBERT (table 2).
Therefore, the integration of the two compression methods is an efficient strategy to counteract the time
consuming and high hardware requirement of chemical transformers.

4.5. VS performance of compressed models
To further assess the efficiency of compression methods, the VS performance was studied with the
aforementioned models. Given the compressed structure, the speed of VS was about 4× faster for DeLiCaTe
than for MolBERT. Table 8 illustrated the average result of VS performance, and the performances of
individual dataset are shown in supplementary figure 2. The results demonstrate that all the compressed
models achieve comparable performance. For instance, DeLiCaTe retain 96.8% of the performance of the
original MolBERT. Considering the mechanism of VS, the results suggest that DeLiCaTe can discriminate the
structural similarity among different molecules to facilitate the VS process. To strengthen this hypothesis, we
further calculated the average pairwise cosine similarity of the molecules in the ChEMBL dataset using
DeLiCaTe, MolBERT and ECFP4. As shown in supplementary figure 3, the results of DeLiCaTe and
MolBERT are very closed to each other and much lower than the one of ECFP4, which implies the excellent
ability of molecular similarity discrimination by DeLiCaTe. Summing up, DeLiCaTe exhibits competitive
performance with the original transformer and outperforms some of the baseline methods for VS tasks.

5. Conclusion

In this work, we demonstrate the effect of implementing the CLPS and KD methods individually, as well as
the integration of these two methods to compress chemical transformers. Both a 4× speedup for training
and inference were achieved by applying CLPS and KD, respectively. Furthermore, a deep light chemical
transformer model, DeLiCaTe, was introduced to integrate the accelerating abilities of both compression
strategies. According to the result of QSAR and VS performance, all the compressed transformers retain the
molecular modeling capability of the original model and outperform or compete with state-of-the-art
baseline methods. Consequently, time consuming and high hardware requirement are mitigated by the
compressed parameter-efficient method. These results can facilitate the application of molecular
discrimination based on chemical transformer encoders to a broader scientific community. Furthermore,
due to the similarity between transformer encoders and decoders, this strategy is anticipated to promote
the use of generative transformer models for organic drug and material design in the future.
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github.com/YiYuDL/DeLiCaTe.

Acknowledgments

We gratefully acknowledge financial support from the European Research council (ERC2017-StG-757733).
Chao Fang is acknowledged for discussion on theory.

8

https://github.com/YiYuDL/DeLiCaTe
https://github.com/YiYuDL/DeLiCaTe


Mach. Learn.: Sci. Technol. 3 (2022) 045009 Y Yu and K Börjesson

Conflict of interest

The authors declare no competing interests.

ORCID iDs

Yi Yu https://orcid.org/0000-0001-8360-005X
Karl Börjesson https://orcid.org/0000-0001-8533-201X

References

[1] Muratov E N et al 2021 A critical overview of computational approaches employed for COVID-19 drug discovery Chem. Soc. Rev.
50 9121–51

[2] Singh N, Chaput L and Villoutreix B O 2020 Virtual screening web servers: designing chemical probes and drug candidates in the
cyberspace Brief. Bioinform. 22 1790–818

[3] Vamathevan J et al 2019 Applications of machine learning in drug discovery and development Nat. Rev. Drug Discovery 18 463–77
[4] Pandey M, Fernandez M, Gentile F, Isayev O, Tropsha A, Stern A C and Cherkasov A 2022 The transformational role of GPU

computing and deep learning in drug discovery Nat. Mach. Intell. 4 211–21
[5] Sanchez-Lengeling B and Aspuru-Guzik A 2018 Inverse molecular design using machine learning: generative models for matter

engineering Science 361 360–5
[6] Schneider P et al 2020 Rethinking drug design in the artificial intelligence era Nat. Rev. Drug Discovery 19 353–64
[7] Krenn M, Häse F, Nigam A, Friederich P and Aspuru-Guzik A 2020 Self-referencing embedded strings (SELFIES): a 100% robust

molecular string representationMach. Learn.: Sci. Technol. 1 045024
[8] Weininger D 1988 SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules

J. Chem. Inf. Comput. Sci. 28 31–36
[9] James C A 2010 OpenSMILES specification (available at: http://opensmiles.org/opensmiles.html)
[10] Kearnes S, McCloskey K, Berndl M, Pande V and Riley P 2016 Molecular graph convolutions: moving beyond fingerprints

J. Comput. Aided Mol. Des. 30 595–608
[11] Sandfort F, Strieth-Kalthoff F, Kühnemund M, Beecks C and Glorius F 2020 A structure-based platform for predicting chemical

reactivity Chem 6 1379–90
[12] Brown N, Fiscato M, Segler M H S and Vaucher A C 2019 GuacaMol: benchmarking models for de novo molecular design J. Chem.

Inf. Model. 59 1096–108
[13] Segler M H S, Kogej T, Tyrchan C and Waller M P 2018 Generating focused molecule libraries for drug discovery with recurrent

neural networks ACS Cent. Sci. 4 120–31
[14] Wang M, Sun H, Wang J, Pang J, Chai X, Xu L, Li H, Cao D and Hou T 2021 Comprehensive assessment of deep generative

architectures for de novo drug design Brief. Bioinform. 23 bbab544
[15] Vaswani A, Shazeer N and Parmar N 2017 Attention is all you need (arXiv:1706.03762)
[16] Irwin R, Dimitriadis S, He J and Bjerrum E J 2022 Chemformer: a pre-trained transformer for computational chemistryMach.

Learn.: Sci. Technol. 3 015022
[17] Zhang X-C, Wu C-K, Yang Z-J, Wu Z-X, Yi J-C, Hsieh C-Y, Hou T-J and Cao D-S 2021 MG-BERT: leveraging unsupervised atomic

representation learning for molecular property prediction Brief. Bioinform. 22 bbab152
[18] Wang S, Guo Y, Wang Y, Sun H and Huang J 2019 SMILES-BERT: large scale unsupervised pre-training for molecular property

prediction Proc. 10th ACM Int. Conf. on Bioinformatics, Computational Biology and Health Informatics pp 429–36
[19] Ross J, Belgodere B, Chenthamarakshan V, Padhi I, Mroueh Y and Das P 2021 Do large scale molecular language representations

capture important structural information? (arXiv:2106.09553)
[20] Maziarka Ł, Pocha A, Kaczmarczyk J, Rataj K, Danel T and Warchoł M 2020Molecule attention transformer (arXiv:2002.08264)
[21] Chithrananda S, Grand G and Ramsundar B 2020 Chemberta: large-scale self-supervised pretraining for molecular property

prediction (arXiv:2010.09885)
[22] Fabian B, Edlich T, Gaspar H, Segler M, Meyers J, Fiscato M and Ahmed M 2020 Molecular representation learning with language

models and domain-relevant auxiliary tasks (arXiv:2011.13230)
[23] He J, You H, Sandström E, Nittinger E, Bjerrum E J, Tyrchan C, Czechtizky W and Engkvist O 2021 Molecular optimization by

capturing chemist’s intuition using deep neural networks J. Cheminformatics 13 26
[24] Xue D et al 2022 X-MOL: large-scale pre-training for molecular understanding and diverse molecular analysis Sci. Bull. 67 899–902
[25] Sanh V, Debut L, Chaumond J and Wolf T 2019 DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter

(arXiv:1910.01108)
[26] Jiao X, Yin Y, Shang L, Jiang X, Chen X, Li L, Wang F and Liu Q 2019 Tinybert: distilling bert for natural language understanding

(arXiv:1909.10351)
[27] Dehghani M, Gouws S, Vinyals O, Uszkoreit J and Kaiser Ł 2018 Universal transformers (arXiv:1807.03819)
[28] Lan Z, Chen M, Goodman S, Gimpel K, Sharma P and Soricut R 2019 Albert: a lite bert for self-supervised learning of language

representations (arXiv:1909.11942)
[29] Jia D, Han K, Wang Y, Tang Y, Guo J, Zhang C and Tao D 2021 Efficient vision transformers via fine-grained manifold distillation

(arXiv:2107.01378)
[30] Goel A, Tung C, Lu Y H and Thiruvathukal G K 2020 A survey of methods for low-power deep learning and computer vision

(arXiv:2003.11066)
[31] Tang R, Lu Y, Liu L, Mou L, Vechtomova O and Lin J 2019 Distilling task-specific knowledge from bert into simple neural networks

(arXiv:1903.12136)
[32] Sun S, Cheng Y, Gan Z and Liu J 2019 Patient knowledge distillation for bert model compression (arXiv:1908.09355)
[33] Wang W, Wei F, Dong L, Bao H, Yang N and Zhou M 2020 Minilm: deep self-attention distillation for task-agnostic compression of

pre-trained transformers (arXiv:2002.10957)
[34] Sun Z, Yu H, Song X, Liu R, Yang Y and Zhou D 2020 Mobilebert: a compact task-agnostic bert for resource-limited devices

(arXiv:2004.02984)

9

https://orcid.org/0000-0001-8360-005X
https://orcid.org/0000-0001-8360-005X
https://orcid.org/0000-0001-8533-201X
https://orcid.org/0000-0001-8533-201X
https://doi.org/10.1039/D0CS01065K
https://doi.org/10.1039/D0CS01065K
https://doi.org/10.1093/bib/bbaa034
https://doi.org/10.1093/bib/bbaa034
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s41573-019-0024-5
https://doi.org/10.1038/s42256-022-00463-x
https://doi.org/10.1038/s42256-022-00463-x
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1038/s41573-019-0050-3
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
http://opensmiles.org/opensmiles.html
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1016/j.chempr.2020.02.017
https://doi.org/10.1016/j.chempr.2020.02.017
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acs.jcim.8b00839
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1021/acscentsci.7b00512
https://doi.org/10.1093/bib/bbab544
https://doi.org/10.1093/bib/bbab544
https://arxiv.org/abs/1706.03762
https://doi.org/10.1088/2632-2153/ac3ffb
https://doi.org/10.1088/2632-2153/ac3ffb
https://doi.org/10.1093/bib/bbab152
https://doi.org/10.1093/bib/bbab152
https://doi.org/10.1145/3307339.3342186
https://arxiv.org/abs/2106.09553
https://arxiv.org/abs/2002.08264
https://arxiv.org/abs/2010.09885
https://arxiv.org/abs/2011.13230
https://doi.org/10.1186/s13321-021-00497-0
https://doi.org/10.1186/s13321-021-00497-0
https://doi.org/10.1016/j.scib.2022.01.029
https://doi.org/10.1016/j.scib.2022.01.029
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1909.10351
https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/2107.01378
https://arxiv.org/abs/2003.11066
https://arxiv.org/abs/1903.12136
https://arxiv.org/abs/1908.09355
https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2004.02984


Mach. Learn.: Sci. Technol. 3 (2022) 045009 Y Yu and K Börjesson

[35] Hinton G, Vinyals O and Dean J 2015 Distilling the knowledge in a neural network (arXiv:1503.02531)
[36] Gaulton A et al 2016 The ChEMBL database in 2017 Nucleic Acids Res. 45 D945–D954
[37] Landrum G A 2020 RDKit: Open-Source Cheminformatics Software (available at: www.rdkit.org)
[38] Winter R, Montanari F, Noé F and Clevert D-A 2019 Learning continuous and data-driven molecular descriptors by translating

equivalent chemical representations Chem. Sci. 10 1692–701
[39] Wu Z, Ramsundar B, Feinberg E, Gomes J, Geniesse C, Pappu A S, Leswing K and Pande V 2018 MoleculeNet: a benchmark for

molecular machine learning Chem. Sci. 9 513–30
[40] Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T, Heinrich N and Müller K-R 2009 Benchmark Data Set for

in Silico Prediction of Ames Mutagenicity J. Chem. Inf. Model. 49 2077–81
[41] Rybacka A, Rudén C, Tetko I V and Andersson P L 2015 Identifying potential endocrine disruptors among industrial chemicals and

their metabolites—development and evaluation of in silico tools Chemosphere 139 372–8
[42] Bento A P et al 2013 The ChEMBL bioactivity database: an update Nucleic Acids Res. 42 D1083–90
[43] Li Y, Xu Y and Yu Y 2021 CRNNTL: convolutional recurrent neural network and transfer learning for QSAR modeling in organic

drug and material discoveryMolecules 26 7257
[44] Riniker S, Fechner N and Landrum G A 2013 Heterogeneous classifier fusion for ligand-based virtual screening: or, how decision

making by committee can be a good thing J. Chem. Inf. Model. 53 2829–36
[45] Paszke A et al 2019 Pytorch: an imperative style, high-performance deep learning library (arXiv:1912.01703)
[46] Wolf T et al 2019 Huggingface’s transformers: state-of-the-art natural language processing (arXiv:1910.03771)
[47] Yang Z, Cui Y, Chen Z, Che W, Liu T, Wang S and Hu G 2020 Textbrewer: an open-source knowledge distillation toolkit for natural

language processing (arXiv:2002.12620)
[48] Karpov P, Godin G and Tetko I V 2020 Transformer-CNN: swiss knife for QSAR modeling and interpretation J. Cheminformatics

12 17

10

https://arxiv.org/abs/1503.02531
https://doi.org/10.1093/nar/gkw1074
https://doi.org/10.1093/nar/gkw1074
http://www.rdkit.org
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1039/C8SC04175J
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1021/ci900161g
https://doi.org/10.1021/ci900161g
https://doi.org/10.1016/j.chemosphere.2015.07.036
https://doi.org/10.1016/j.chemosphere.2015.07.036
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.3390/molecules26237257
https://doi.org/10.3390/molecules26237257
https://doi.org/10.1021/ci400466r
https://doi.org/10.1021/ci400466r
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2002.12620
https://doi.org/10.1186/s13321-020-00423-w
https://doi.org/10.1186/s13321-020-00423-w

	Chemical transformer compression for accelerating both training and inference of molecular modeling
	1. Introduction
	2. Methods
	2.1. Dataset for model compression
	2.2. CLPS
	2.3. Knowledge distillation

	3. The DeLiCaTe model
	3.1. Experiments, baseline and evaluation
	3.2. Implementation and hardware

	4. Results and discussion
	4.1. Configurations and speeds of models
	4.2. Effect of CLPS on model performance
	4.2.1. Retained QSAR performance with CLPS
	4.2.2. The effect of number of pre-training epochs on QSAR performance

	4.3. Effect of KD on model performance
	4.3.1. Retained QSAR performance by KD
	4.3.2. Ablation study on distillation objectives

	4.4. Effect of integration on QSAR performance
	4.5. VS performance of compressed models

	5. Conclusion
	References


