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Abstract
A myriad of phenomena in materials science and chemistry rely on quantum-level simulations of
the electronic structure in matter. While moving to larger length and time scales has been a
pressing issue for decades, such large-scale electronic structure calculations are still challenging
despite modern software approaches and advances in high-performance computing. The silver
lining in this regard is the use of machine learning to accelerate electronic structure
calculations—this line of research has recently gained growing attention. The grand challenge
therein is finding a suitable machine-learning model during a process called hyperparameter
optimization. This, however, causes a massive computational overhead in addition to that of data
generation. We accelerate the construction of neural network models by roughly two orders of
magnitude by circumventing excessive training during the hyperparameter optimization phase.
We demonstrate our workflow for Kohn–Sham density functional theory, the most popular
computational method in materials science and chemistry.

1. Introduction

The electronic structure of matter can be viewed as nature’s glue [1] that binds atoms together into
condensed systems like molecules and solids, thereby shaping the diversity of chemical systems and materials
that surround us. A wide variety of materials characteristics including structural, elastic, and response
properties are determined by the electronic structure [2]. Pressing questions from industry and society such
as finding better materials for photovoltaics, identifying more efficient catalysts, designing future battery
technologies, and discovering materials with novel properties are linked directly to the electronic structure of
matter.

Electronic structure calculations are indispensable for complementing experimental investigations in
materials science, and the need for ever more accurate and particularly efficient calculations is unbroken.
Currently, the most widely used electronic structure method is Kohn–Sham density functional theory (DFT)
[3–5] due to its balance of accuracy and computational efficiency. Under the assumption of the
Born-Oppenheimer approximation [6], by employing the Kohn–Sham formalism, and the ever growing
variety of exchange-correlation functionals [7], DFT enables electronic structure calculations for a large
range of systems.

However, large-scale simulations at system sizes reaching millions of atoms, typically encountered in
state-of-the-art molecular dynamics simulations, remain a final frontier for DFT. While DFT methods may
possess favorable scaling properties compared to other ab-initio approaches, DFT calculations can usually
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Figure 1. Training curves for three different model architectures and optimization parameters determined by three different
hyperparameter optimization techniques. The loss in term of the physically motivated band energy on both the training (dashed)
and test set (solid line) per epoch is shown. The grey curves correspond to direct search, the baseline for our manuscript as given
in [35], the blue curves to the Optuna [37] library and the red curves to the NASWOT method [38]. Drastic differences can be
observed, with NASWOT and Optuna outperforming the direct search approach in overall accuracy. Further, the Optuna model
shows the best generalizability, as quantified by the smallest difference in test vs. training loss.

only be performed for hundreds and up to a few thousand atoms. This applies especially to dynamical
settings [8] or to systems exposed to high temperatures [9]. Larger calculations can only be accomplished in
special cases with enormous computational cost and time [10], thereby rendering large-scale investigations
infeasible. The traditional pathway to circumventing these technical restrictions relies on algorithmic
advances in software which leads to computationally more efficient calculations. Alternatively, approximate
models such as average atom models [11–13] are applied for otherwise unattainable calculations. While they
have a smaller computational overhead, they sacrifice accuracy.

However, a drastically different option is to combine the power of machine learning (ML) with DFT data.
This emergent field of research is growing fast [14–18]. While ML approaches can be used to improve the
accuracy and applicability of the DFT framework by constructing ML-based exchange-correlation
functionals [19–21], the work presented here focuses on ML surrogate models that replace conventional DFT
calculations. Two very popular ways to achieve this goal are the extraction of application-specific information
from DFT data sets [22–24] and the construction of interatomic potentials [25–27] for molecular dynamics
simulations based on Gaussian process regression [28], ridge regression [29], or neural networks (NNs) [30].

In this work, we focus on another emergent approach, namely the development of ML surrogate models
that directly access the electronic structure without the need to perform DFT calculations. Pioneering efforts
include kernel ridge-regression [31–33] and deep NN [33] models for predicting the electronic density.
Based on these efforts, NN models for predicting the local density of states (LDOS) have recently been
developed [34, 35]. These models are more general than those based solely on the electronic density. They
replace traditional DFT calculations by enabling direct access to both the electronic structure and related
observables, such as the total energy.

More specifically, we introduced such an LDOS-based framework in [35], where we show accurate NN
models for aluminium at room temperature, as well as the melting point across liquid and solid
configurations. In the course of developing such a framework, the lack of a general-purpose workflow for an
automated generation of ML surrogate models became apparent, despite existing pioneering efforts [32].
The principle challenge we tackle in this work is to overcome the massive computational overhead due to
hyperparameter optimization, which is a general problem for ML methodologies [36]. Determining suitable
hyperparameters for a NN surrogate model governs model accuracy and generalizability, as is illustrated in
figure 1 for different hyperparameter optimization techniques discussed in this manuscript. It constitutes a
challenging task, even if the underlying electronic structure of the system is well understood (e.g. metals at
room temperature, which we investigate in this work).
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Figure 2. Schematic overview over the proposed workflow. Constructing surrogate models in the traditional fashion (red) is
contrasted with our accelerated workflow (green). Here, h denotes CPU/GPU hours for serial execution or wall-time for parallel
execution. Timings are estimated with justifications given in the supplementary note 3. The pictograms show from left to right: a
contour plot of the electronic density of an aluminum cell for z= 0, with atoms close to the plane projected onto it in red; the
descriptor calculation around a grid point (green dot) incorporating information of adjacent grid-points (grey) and atoms (red)
within a certain radius (orange circles), which has to be optimized (light orange dots); different candidate networks; tuning of
network weights; comparison of actual and predicted outputs (here, density of states).

A large amount of compute time must be dedicated to relatively long and inaccessible training and
optimization processes, in which high-fidelity data sets have to be constructed, suitable hyperparameters
have to be identified, and models have to be constructed. The major bottleneck in this process is not due to
the computational overhead of data generation, as efficient DFT codes and automation frameworks [39–41]
exist. While DFT calculations may require large amounts of computational power, they can be completed in a
reasonable amount of wall-time by means of efficient parallelization and independent individual
calculations. Instead, the principal time constraint for the creation of surrogate ML models lies in the
hyperparameter optimization, which requires the repeated training of potentially suitable NNs, as illustrated
in figure 2. The computational cost of NN training quickly becomes excessive, especially when considering a
wide range of hyperparameters. While the training costs may be amortized by subsequent accelerated
dynamical simulations, they render ML surrogate models prohibitive for many applications.

In this paper, we tackle this problem by providing a highly efficient and automated hyperparameter
optimization workflow for generating ML surrogate models of electronic structures. It speeds up this process
by two orders of magnitude (see figure 2) and comprises two central components—a training-free score and a
descriptor surrogate metric. We adapt the recently developed technique on neural architecture search without
training (NASWOT) [38] as a training-free score for electronic structures which does not require any NN
training up until an optimal set of hyperparameters has been identified. It correlates well with the accuracy
of a NN, as we demonstrate in a comprehensive comparison with state-of-the-art hyperparameter
optimization techniques (see figure 3). Furthermore, we also introduce the average cosine similarity distance
(ACSD) as a highly efficient descriptor surrogate metric for finding optimal descriptors for particle-mesh data
(see figures 7 and 8).

We hence provide the basis for automated ML [42] workflows for modeling electronic structures. The
resulting software framework, MALA [43], enables researchers to construct DFT surrogate models without
extensive knowledge in ML or access to leadership-class computational infrastructure. We thus pave the way
toward accessible and large-scale electronic structure calculations driven by ML.

2. Methods

2.1. Density functional theory
DFT, which we exclusively use in the Born-Oppenheimer approximation [6], is based upon the
Hohenberg–Kohn theorems [3] and the Kohn–Sham formalism [4]. In the context of this work, we work
within finite-temperature DFT [5], i.e. τ > 0K. Within DFT, a system consisting of Ne electrons and N i ions
is treated. The ionic positions R. For ease of notation, we drop the parametric dependence on R and
energetic contributions due to ion–ion interactions in the following. Also note that here and below we adopt
Hartree atomic units, i.e. ℏ= e=me = a0 = 1.

The central quantity in DFT is the electronic density n, which is defined via the Kohn–Sham orbitals ϕj as

n(r) =
∑
j

f τ (ϵτj ) |ϕj(r)|2 , (1)
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with f τ being the Fermi–Dirac distribution function and j running over all Kohn–Sham orbitals included in
a particular DFT calculation. Their number has to be adjusted according to τ , as large temperatures lead to
thermal excitations. The Kohn–Sham orbitals constitute a non-interacting auxiliary system restricted to
reproduce the interacting electronic density and are governed by one-particle Schrödinger-like equations,
often referred to as Kohn–Sham equations[

−1

2
∇2 + vτS (r)

]
ϕj(r) = ϵτj ϕj(r). (2)

Here, vτS (r) refers to the Kohn–Sham potential, which is determined self-consistently and incorporates a
mean-field description of electron–electron interaction, exchange-correlation effects, and the electron-ion
interaction, while ϵτj are the energy eigenvalues of ϕj(r). DFT calculations are performed in an iterative
fashion, seeking to identify an electronic density which minimizes the total (free) energy

ABO
total[n] = TS[ϕj]− kBτSS[ϕj] + EH[n] + E τ

XC[n] + E ei[n] , (3)

with the kinetic energy TS and entropy SS of the non-interacting system, the electrostatic interaction terms of
the electronic density with itself EH and with the ions Eei. All energetic contributions not included in these
terms are absorbed into the exchange-correlation functional EτXC, thus keeping the framework formally exact.
Practical calculations are enabled by appropriate approximations for EτXC, such as the LDA-PW91 [44] or the
PBE functional [45] for τ = 0K; the development of functionals for τ > 0K is an area of active research
[46–48].

In the DFT surrogate models we construct, the central role of the density is replaced by the LDOS d(ϵ,r)
(LDOS), defined via

d(ϵ,r) =
∑
j

|ϕj(r)|2 δ(ϵ− ϵτj ). (4)

For practical calculations, δ(ϵ− ϵτj ) has to be approximated numerically, and the way this approximation is
performed is one of the hyperparameters of the DFT surrogate workflow. The advantage of using the LDOS
is that it gives direct access to the total free energy of a system, as both the electronic density, as well as the
electronic density of states can be given in terms of the LDOS as

D(ϵ) =
∑
j

δ(ϵ− ϵτj ) =

ˆ
dr d(ϵ,r), (5)

n(r) =
∑
j

f τj |ϕj(r)|2 =
ˆ

dϵ f τ (ϵ)d(ϵ,r), (6)

and equation (3) can be expressed in terms of n and D. More precisely, D can be used to calculate the
electronic entropy and band energy Eb and with these the total free energy is determined

ABO
total[d] = Eb[D[d]]− kBτSS[D[d]]− EH[n[d]]

+ EτXC[n[d]]−
ˆ

drvτXC(r)n[d](r). (7)

2.2. NN based surrogate models
Drawing on equation (7), one can construct surrogate models for DFT simulations by finding a suitable way
to approximate the LDOS, which at each point in (simulated) space r is a vector in the ε dimension. For this
task, we employ a NN.

NNs, which we will refer to asM, are powerful regression models consisting of layers of so called neurons
or perceptrons [49]. Each neuron performs a linear operation using weightsW and biases b on provided
inputs x and thereafter applies a non-linear activation function σ, yielding intermediate outputs y as

y= σ(Wx+ b) , (8)

which serve as input for subsequent neurons. In connecting multiple layers containing an arbitrary number
of neurons, in principle any function can be approximated, as long as the NN is tuned on an appropriate
amount of data in a process called training [50, 51]. Such a training process is usually performed using
gradient methods in an iterative fashion, based on back-propagation [52]. For the training of a NN, the
available data is divided into a training data set (to calculate the gradients), a validation data set (to monitor
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NN accuracy during training), and a test data set (unseen during training and used to verify performance
after training is completed). Each pass of the entire training data set through the network is labelled an epoch.
NN performance is highly dependent on the correct choice of hyperparameters λ that characterize both
architecture and training policy for a NN, such as the number and width of individual layers. We use
feed-forward NNs, in which each neuron of a layer is connected to all neurons of subsequent layers. NNs
were constructed using the PyTorch library [53] and trained on a single GPU.

We use NNs to build a per-grid-point model, and map a vector at each point in space to a corresponding
LDOS vector. To this end we employ spectral neighborhood analysis potential (SNAP) [54–57] descriptors
B(r, j) that are calculated as functionals of R and encode local information around a grid-point. At each point
r, a feed-forward NNM[λ] then performs a mapping of the type

d̃(ϵ,r) =M(B( j,r))[λ], (9)

that depends on a set of hyperparameters λ. Thereafter the LDOS is post-processed to compute the desired
output quantities, like energies, forces, etc analytically.

Within this work, all NNs have been trained with an algorithm consistent with [35]. For all networks,
early-stopping was employed, i.e. training was halted once improvement of validation accuracy starts to
stagnate. How long such stagnation has to be present for the algorithm to stop is one of the hyperparameters
we tune with the algorithm outlined below. More information on technical details of network training can be
found in supplementary note 1.

2.3. Hyperparameter optimization
Hyperparameter optimization aims to find a set of hyperparameters λ, such as the number or width of layers
in an NN, that minimizes a loss term L. Generally, this is an optimization problem where we need to
minimize the loss

L= L
(
Y, Ỹ(X) [λ]

)
, (10)

where Y is the function we seek to model and Ỹ is its prediction based on input data X. Solving this complex
optimization problem is a formidable task and forms a computational bottleneck in all ML applications [36].
For applications in the realm of electronic structures, we choose

L= L
(
d(ϵ,r), d̃(ϵ,r),N

)
, (11)

where d denotes the LDOS, N the total number of atomic snapshots, and d̃ is calculated via equation (9).
Multiple loss metrics are conceivable in equation (11). Since we are not interested in the LDOS itself, L is

chosen to be the mean absolute error (MAE) of some quantity calculated via the LDOS. This quantity is
chosen to be the total free energy A, and the loss metric becomes

L=
1

N

N∑
i=1

∣∣∣A[di]−A
[
M(Bi)[λ]

]∣∣∣, (12)

where di is the reference LDOS obtained from DFT for an atomic configuration labeled by the index i, while
the NN aims to reproduce di using the SNAP descriptors Bi. During hyperparameter optimization, A is
usually replaced by the band energy Eb due to better computational accessibility, and equation (12) is
evaluated only at the very end.

Hyperparameter optimization is usually performed by choosing a candidatemodel sampled from the
entirety of potential hyperparameters and then optimizing this model, which constitutes a trial. Various
hyperparameter optimization techniques differ in the way they propose candidate models and refine
potential hyperparameter guesses based on the information provided. Within this work, we investigate
several state-of-the-art methods, namely

(a) Direct search approach [58, 59], as performed in [35],
(b) Tree-structured Parzen Estimator (TPE) [60] as implemented in the software library Optuna [37],
(c) Optuna coupled to a NASWOT-based pruner,
(d) Orthogonal Array Tuning OAT [61] and
(e) NASWOT [38], both with fixed and optimized training schemes.
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The direct search approach serves as a baseline that we have used in prior work. Therein, one optimizes
one hyperparameter at a time while holding the others fixed and training multiple candidate networks per
hyperparameter, thus progressively generating more suitable models. In a similar fashion, the TPE algorithm
implemented in Optuna improves model performance progressively by constructing a model to determine
the relationship between the hyperparameter values and the performance observed in trials. To increase
robustness, we perform each trial multiple times and report an averaged result to Optuna, so as not to trap
the algorithm in local minima due to unfavorable network initializations. Optuna can be coupled to a pruner,
i.e. a metric that discards unpromising trials. As we demonstrate below, NASWOT can be employed in such a
fashion.

NASWOT and OAT are in principle exhaustive and sample the entire search space presented. In the case
of OAT this is done via constructing orthogonal arrays, a concept often employed in experimental design.
The orthogonal arrays yield a compact list of potential hyperparameter combinations, that in principle
covers the search space at drastically reduced computational cost. After measuring the performance of all
trials in such a list, a range analysis is performed to extract the optimal set of hyperparameters from it. One
important limitation of this approach is that orthogonal arrays do not exist for any arbitrary number of
(hyper) parameters [62], thus one has to either restrict or artificially inflate the search space.

NASWOT achieves a full sampling of the search space by measuring the performance of individual
candidate NNs without training the NN at all, thus allowing for a large number of trials to be performed.
One can simply test all possible combinations of hyperparameters. The NASWOT method measures the
ability of an NN to assign distinct predictions to distinct input data points upon initialization. It operates on
the underlying assumption that a network that is able to distinguish well between different data points at
initialization should be able to perform well after training. The performance before training is quantified via
the Jacobian J, which is defined as the derivative of the predicted LDOS w.r.t. the SNAP descriptors. One then
assigns a score to a given NN upon initialization defined as

SNASWOT =

Nbatch∑
i

[
log(σJ,i + k)+ (σJ,i + k)−1

]
. (13)

The goal of this equation is to assign a score to each candidate network that is indicative of the
performance of said network after training, i.e. without having to train the network at all. To this end, the
correlation matrix of the Jacobian is calculated, and σJ,i are the eigenvalues of this correlation matrix. Low
correlation within the Jacobian leads to higher scores in equation (13). The correlation matrix is calculated in
equation (13) for Nbatch samples passed through the NN via equation (9) and by drawing on k as a small
parameter which ensures numerical stability. This methodology is introduced and discussed in detail in [38].
We adapt the calculation of these scores by calculating the NASWOT mean score across five network
initializations in terms of equation (13) as

S ′
NASWOT = S

T
NASWOT +σ

(
STNASWOT

)
, (14)

where S
T
NASWOT denotes the mean and σ

(
STNASWOT

)
the standard deviation across the T individual scores.

This is done to increase the robustness of STNASWOT w.r.t. network initialization. Assuming S ′
NASWOT is

sufficiently correlated with the prediction accuracy of a NN after training, equation (14) provides a
computationally inexpensive means for performing hyperparameter optimization. It replaces the usual loss
metric, such as in equation (12), which is computationally heavy, because it needs to be computed after
training. It is to note that while the loss in our framework needs to be minimized, the NASWOT score needs
to be maximized.

However, NASWOT can only optimize the architecture of a NN. All hyperparameters related to model
optimization cannot be treated by NASWOT, as no model is optimized. We therefore test NASWOT in two
settings—one we deemed fixed (i.e. optimization parameters are set to fixed values) and one called
optimized, where after having determined the optimal network architecture via NASWOT, optimization
related hyperparameters are identified via a reduced Optuna study. Table 1 gives an overview over the
hyperparameter optimization techniques discussed here. Computational details such as employed energy
cutoffs, k-grids and exchange-correlation functionals for the DFT simulations can be obtained via these
references. Code used to conduct hyperparameter optimization as well as the relevant models can be found
in [64].
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Table 1. Overview over different hyperparameter techniques employed throughout this work, the hyperparameters they are capable of
optimizing, stopping criteria, and parallelization capabilities.

Method Optimized hyperparameters Parallelization

Direct search Architecture and Optimization. Upper limit for parallelization is
number of potential values per
hyperparameter.

Optuna (Tree-Structured
Parzen Estimator (TPE)

Architecture and Optimization. Parallelization in principle unlimited,
in practice too many parallel instances
lead to more uninformed trials and
slow convergence.

Optuna coupled to a
NASWOT-based pruner

As above. As above.

Orthogonal array tuning (OAT) Architecture and Optimization. Upper limit for the parallelization is
the number of rows in the orthogonal
array.

NASWOT (fixed) Architecture. Upper limit for the parallelization is
the number of trials.

NASWOT (optimized) Architecture and Optimization. Architecture: as NASWOT (fixed);
Optimization: as Optuna.

3. Results

Based on equation (11), we have carried out large-scale hyperparameter optimizations in order to identify
the most suitable techniques for automated DFT surrogate model generation. Our results below are divided
into two categories—(1) those for optimizing hyperparameters determining the NN architecture and (2)
methods for choosing the most suitable descriptors. The former technique can be applied to any ML
workflow which deals with a mapping of vector quantities, while the latter highlights how physical insight
can be used to accelerate modeling specifically in the materials science domain.

3.1. Training-free hyperparameter optimization score
We compare the NASWOT mean score with state-of-the-art hyperparameter optimization methods and
highlight its utility as a superior alternative to conventional hyperparameter optimization schemes that are
based training. These optimizations share the common goal of identifying a NN architecture and training
routine with a minimal prediction error in the shortest amount of time. Ideally, the accuracy of a NN should
be independent of the NN initialization, while the inference time should be minimal.

In our assessment of hyperparameter optimization techniques, we consider a simulation cell containing
256 aluminum atoms at room temperature (298 K) and ambient mass density (2.699 g cc−1) [65]. This
system represents the complexity of learning electronic structure data while still being computationally
tractable for extended studies [35].

To better quantify the accuracy of each hyperparameter optimization method, we train the model
identified as optimal five times, each time using a different network initialization. Then, for each
initialization, inference was performed across 10 atomic configurations that had previously been used in
[35]. Using these prediction results, the MAE was calculated according to equation (12). In doing so, we get
five MAEs, one for each network initialization per hyperparameter optimization method. We use this
information to assess both accuracy and robustness of the listed hyperparameter optimization techniques.
Details on the hyperparameter ranges used in these experiments are provided in table 1 of supplementary
note 1.

Our central result is illustrated in figure 3. It shows the MAE vs. total compute time for a NN identified
by the considered hyperparameter optimization techniques, while also quantifying the robustness of the NN
by showing the spread for the MAE across different network initializations as antennas for the data points. It
demonstrates that our training-free score implemented as the NASWOT mean score (red) provides a
speed-up of two orders of magnitude while maintaining high accuracy comparable to the other methods.
The average accuracy of the NASWOT NN is better then obtained from the direct search (black) and OAT
(orange). Only the Optuna-based methods outperform it slightly, but at the price of a massive computational
cost. Generally, it is quite evident that for the most part, increasing computational time yields more accurate
NNs, and, as quantified by the standard deviation over the inference accuracy, more robust training routines.
However, the pure Optuna approach (blue) identifies an NN with excellent inference and training
performance at a cost almost two orders of magnitude higher then a direct search. The NASWOT mean score

7
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Figure 3. The training-free score, which we implemented as the NASWOT mean score (red), provides a speed up by two orders
of magnitude compared to state-of-the-art hyperparameter optimization methods. We report the MAE across 10 atomic
configurations vs. the computational demand. Markers indicate the average MAE and antennas the standard deviation over these
MAE. The reported optimal NN architectures are obtained by completing five training cycles within each hyperparameter
optimization method. The same methodology is employed in the subsequent figures.

Figure 4. The training-free score (red) also provides a speed-up by two orders of magnitude when the time to solution is
considered. Reported MAE (across 10 atomic configurations) vs. computational demand for different hyperparameter
optimization techniques discussed above, with maximum expected speed-ups; actual speed-ups may differ slightly. Note that
there are upper limits for parallelization. If too many GPUs are used for the Optuna parallelization, trials will be too independent,
leading to slower convergence. The upper limit for OAT is the number of trials, since these are completely independent of each
other. However, only a serial version of OAT was implemented for now. For the direct search, one GPU can be assigned per choice.
For NASWOT there is no principal upper limit, but the same number of eight GPUs as in the Optuna study was chosen.

yields a NN with relatively large variances with respect to NN initializations. These are explained by the fact
that NASWOT itself has no means to adjust parameters such as the learning rate. Therefore a fixed choice is
required. Performing a small Optuna study afterwards (brown) drastically reduces this variance, while at the
same time introducing an additional computational overhead. The length of such an Optuna study varies
depending on demands for accuracy and availability of computational resources. Chiefly, a huge reduction in
compute is enabled by our training-free score if a larger variance between network initializations can be
tolerated. Even more accurate NNs become attainable with subsequent and slightly larger Optuna studies.

Naturally, one is often not directly interested in the total core hours, which measure both time and
resources, but rather in the total time-to-result. To this end, figure 4 assesses speed-ups due to parallelization
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Figure 5. Training-free score (NASWOT mean score) vs. band energy prediction on the validation set of the Optuna study. The
optimial NN architecture identified by NASWOT and Optuna are marked in red and orange, respectively.

of the hyperparameter studies. While this improves the performance across all hyperparameter optimization
techniques, no drastic changes in their order can be observed. OAT has a more favorable scaling behavior
then the direct search algorithm leading to a smaller runtime. Using Optuna to optimize training
hyperparameters of the NASWOT NN yields the most accurate network in runtime of two days. Yet the
principal result remains the same as in figure 3: NASWOT outperforms the other hyperparameter techniques
again by two orders of magnitude. The central result displayed both in figures 3 and 4 is the first step toward
automated ML surrogate model generation for electronic structures.

The NASWOT method relies on the correlation between the training-free score calculated upon
initialization of an NN and the performance of said NN after training. Thus, the performance of NASWOT
as shown in figures 3 and 4 itself is not sufficient to assess whether it is a reliable tool for automated surrogate
model generation. Care has to be taken to ensure that such results are actually representative of a useful
underlying correlation and not caused by, e.g. an imprecise problem statement. To this end, the correlation
between the NASWOT mean score and the NN performance is analyzed in figure 5. The data basis for this
figure is the Optuna study itself. Therefore training related hyperparameters can vary between different trial
NNs. In doing so, it is ensured that the performance score assigned through this analysis is actually
representative of suitable NN candidates. In order to save computation time, only the band energy rather
than the total free energy was calculated for each candidate NN. The resulting comparison still provides the
necessary insight, as it was shown in [35] that errors in the total free energy are dominated by errors in the
band energy. It can be seen both visually and from the calculated Kendall τ coefficient [66] of−0.318 that
the quantities shown in figure 5 are negatively correlated, meaning that large NASWOT scores relate to small
NN errors, as is the expectation. While NASWOT and Optuna do not agree in their choice for the optimal
NN architecture, the overall difference is not drastic; the optimal Optuna NN is still within the 20 best NNs
according to the NASWOT score, while the NASWOT result yields a reasonable accuracy in the band energy.
Based on these results, the NASWOT mean score is a suitable metric for identifying a NN capable of learning
the LDOS to the desired accuracy.

Furthermore, the two clusters of points in figure 5 suggest that NASWOT can be used to optimize
hyperparameter studies which are based on Optuna. A pruner can be constructed, that discards all candidate
NNs below a certain threshold score. When treating new materials, such a threshold will be unknown
beforehand and has to be estimated during runtime from preceding trials. Yet for first tests this simple
implementation suffices. As shown in figure 4, the resulting hyperparameter optimization technique labeled
as Optuna with NASWOT pruner (green) provides high accuracy and little uncertainty while coming at a
significantly lower computational cost than the direct use of Optuna. However, one has to keep in mind that
for unknown systems, additional computation time has to be included to accommodate for the incremental
construction of the pruning threshold. Thus, such an approach is only a viable alternative to the NASWOT
algorithm if computation time is not scarce, but yet not as abundant as necessary for a full Optuna study.
Naturally, other pruning algorithms could be used to perform a similar task. OAT has been found to give an
intermediate performance compared to the aforementioned methods. OAT is in principal highly parallel,
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Figure 6. NN architectures identified as optimal by different hyperparameter optimizations.

giving it the best performance after NASWOT (provided enough GPUs are available), while at the same time
outperforming a traditional direct search in terms of accuracy.

A final, important aspect of hyperparameter optimization is the identification of an efficient NN
architecture. For initial studies, the size of a NN might not be crucial. But if surrogate models are to replace
DFT calculations in dynamical simulations, then a minimal NN architecture resulting in minimal inference
times would be desirable. To this end, figure 6 shows how the NNs identified by the different hyperparameter
optimization methods differ greatly. The direct search favors a large NN, while the NASWOT mean score
favors a small, single layer NNs. Optuna provides a middle ground, with a shallow NN, as does OAT. We
deduce from figure 3 that the Optuna NN is close to the globally optimal NN architecture. The NASWOT
mean score captures this optimum to a sufficient degree, while providing a massive reduction in computation
time which is further illustrated in supplementary note 1. Overall, all of the NNs identified by the considered
methods are smaller than those predicted by the direct search algorithm, resulting in drastically decreased
inference times. As can be seen in figure 3, these smaller networks also yield higher accuracy. One explanation
for this is a more favorable optimization landscape, or problems with over-fitting for large models.

3.2. Descriptor surrogate metric
While the aforementioned hyperparameter optimization is important to any conceivable ML problem that
aims to map a vector quantity to another vector, there are, however, hyperparameters that are inherent to
identifying suitable descriptors. In our grid-based approach to learning the electronic structure, we rely on
descriptors that encode the local atomic environment around a point in the simulation cell. Since there is no
clear physical relation between the NN prediction accuracy and the hyperparameters characterizing the way
such a local environment is captured, data preprocessing itself requires a hyperparameter optimization. This
requires the repeated training of a NN using a wide range of descriptors. The NASWOT mean score cannot
be employed here, as it is not the network architecture we seek to optimize. We therefore introduce a
descriptor surrogate metric called ACSD which is based on similarity measures. It facilitates identifying the
optimal choice of descriptors for particle-mesh data. Similar to NASWOT, it is highly efficient and achieves a
speed-up of two orders of magnitude compared to conventional NN training, because it enables a
training-free optimization.

In our workflow, we employ the SNAP descriptors [54–57] to capture local atomic environments.
However, local descriptors may be based on other established fingerprinting schemes for atomic
configurations, such as SOAP [67], the Coulomb matrix [68], BoB [69], FCHL [70], or ACE [71, 72].
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Assuming that we investigate cells consisting only of one chemical species, SNAP descriptors are calculated
via the local atomic density around a grid-point

ρ(r) = δ(0)+
∑

rk<Rcut

fc(rk;Rcut)δ(rk), (15)

after placing said grid-point at the origin. In equation (15), rk with rk = |rk| is the position of atom k and Rcut

is the cutoff radius which determines the length scale of the atomic environment considered by the SNAP
descriptor. This local atomic density is represented in terms of four-dimensional hyperspherical coordinates.
The number of terms in this expansion is denoted by j with a dimensionality governed by Jmax; the higher
Jmax, the more components per grid-point are taken into account.

Our proposed surrogate metric is based on analyzing a similarity measure between the output and input
vectors of the NN, namely the SNAP vectors which are the input and the LDOS vectors which are the output.
Given two points on the real space grid of a simulation cell r1 and r2, we compute the cosine similarity SC for
either two LDOS vectors d(ϵ,r) and two SNAP vectors B( j,r) as

SC(X1,X2) =
X1 ·X2

∥X1∥∥X2∥
(16)

with X1 = d(ϵ,r1),X2 = d(ϵ,r2) or X1 = B( j,r1),X2 = B( j,r2). We then compute a 2D point cloud{
SiC(B),S

i
C(d)

}
with SiC(B) = SC {B( j,rt),B( j,rs)}, SiC(d) = SC {d(ϵ,rt),d(ϵ,rs)} for Nsim points {t, s}

sampled from the simulation cell. We consider Nsim = 200× 200= 40000 points, i.e. for each grid point in a
set of 200 grid points, these distances are determined w.r.t. 200 randomly drawn points.

The optimal choice of descriptors is determined by the hyperparameters Rcut and Jmax. We need to
consider two limiting cases: (i) when SiC(B)≪ SiC(d), even drastically dissimilar descriptors might yield the
same LDOS, and modeling becomes trivial from a ML perspective. This case applies when Rcut is small.
However, this in turn means physically less informed descriptors and therefore lower prediction accuracy,
because the length scale of the atomic environment is small. If we instead choose Rcut to be large, the
descriptors will be physically well informed. But we risk approaching (ii) SiC(B)≫ SiC(d), which makes our
problem difficult to model in terms of ML. For a fixed choice of Rcut, the number of expansion coefficients
governed by Jmax determines which of these limiting cases is approached. As we aim for optimal performance
w.r.t. both accuracy and data footprint, we argue that finding a combination of maximum Rcut and
minimum Jmax for which SiC(B)≈ SiC(d) is the optimal choice.

To judge whether such a combination has been found, we introduce the ACSD. It is defined as the average
difference

ACSD=
1

Nsim

Nsim∑
i

|SiC(d)− SiC(B)| (17)

between all points within the 2D point cloud
{
SiC(B),S

i
C(d)

}
and

{
SiC(B),S

i
C(B)

}
, where Nsim denotes the

number of sample points. The ACSD thus measures the average over the distribution of similarities that
deviate from the SiC(B) = SiC(d) line. Equation (17) can be evaluated rapidly in contrast to lengthy NN
training required for a traditional hyperparameter search. To investigate the accuracy of the ACSD, we
consider 20 snapshots of 128 beryllium atoms at room temperature (298 K) and ambient mass density
(1.896 g cc−1) [63].

To assess the utility of the ACSD as a rapid and reliable descriptor surrogate metric, we compare the
predicted ACSD with actual MAE of the total energy inferred from the NN. To that end we consider the
hyperparameters Rcut = 4.676 Å and Jmax = 5 which were identified as accurate in [35]. We then vary both
hyperparameters, one at a time with the other held fixed. The reference result was calculated for all these
hyperparameter combinations. This involved generating SNAP descriptors, training the NNs, and predicting
the total free energy based on these NNs. The central results of this assessment are shown in figure 7 for a
fixed number of components Jmax and varying cutoff radius Rcut, and vice versa in figure 8.

It is evident in figure 7 that the NN prediction (green) becomes more accurate with increasing Rcut, up
until a minimum at 4.676 Å (achieving the desired accuracy of below 3 meV atom−1), after which a slight
decrease in both average accuracy and spread is observed. This behavior is reproduced, almost exactly, by the
ACSD surrogate metric (red). These results follow the intuitive expectation: a small Rcut means that
individual SNAP descriptors carry less information about the atomic environment, making it harder for a
NN to actually predict the electronic structure from the data provided. On the other hand, very large values
of Rcut lead to SNAP descriptors that incorporate information from almost the entire simulation cell. These
tend to be similar to one another, even though the actual electronic structure at a particular grid point
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Figure 7. NN errors when using SNAP descriptors with differing Rcut. Jmax was kept at 5. The dark dashed line indicates an error
of 10 meV atom−1, the upper threshold a model should achieve to be comparable to other competitive models, while the lighter
dashed line indicates an error of 3 meV atom−1, which is the accuracy reported in [35].

Figure 8. NN errors when using SNAP descriptors with differing Jmax. Rcut was kept at 4.676 Å. The dark dashed line indicates an
error of 10 meV atom−1, the upper threshold a model should achieve to be comparable to other competitive models, while the
lighter dashed line indicates an error of 3 meV atom−1, which is the accuracy reported in [35].

differs, complicating training. Consequently, we expect the optimal Rcut in between these extremes, which is
correctly identified by the ACSD. Furthermore, figure 7 confirms the prior assertion that ML modeling
becomes increasingly more challenging as Rcut increases, as is evident from the increasing spread in the
network prediction errors.

The computational speed-up of this method is drastic. The conventional method of finding optimal
descriptors is a computationally heavy task, because it requires multiple NN model optimizations.
Contrarily, the evaluation of the ACSD surrogate metric can be done in a matter of minutes on a single CPU.
This results in a speed-up of around two orders of magnitude, while qualitatively yielding the same results.

The assessment for a fixed cutoff radius Rcut and varying Jmax yields a similar trend which is illustrated in
figure 8. As long as Jmax is chosen sufficiently large, there is little effect on the accuracy of the NN (green),
and above Jmax = 2 all networks achieve the desired accuracy. This trend is not fully reflected by the ACSD
surrogate metric (red). However, this can be explained due to the nature of this numerical experiment. An
increase in components leads to additional components being added that are generally small in value. These
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in turn cause slightly larger deviations for almost identical SNAP vectors, but do not carry meaningful
information for the NN. This leads to almost unnoticeable differences in NN accuracies. However, minimal
Jmax values leading to reasonable accuracy is indeed reflected by the ACSD surrogate metric. Based only on
the surrogate metric, one would choose the first data point for which the ACSD encounters a minimum, in
this case Jmax = 3. The NN accuracy of this data set is comparable to that for higher Jmax at reduced
computational cost, thus demonstrating the utility of our ACSD surrogate metric.

4. Discussion and outlook

We tackle the complex optimization problem inherent to any NN surrogate model construction in the
context of electronic structures. This constitutes a major computational bottleneck in addition to data
generation. We provide a highly efficient and automated hyperparameter optimization workflow for
generating ML surrogate models of electronic structures. It speeds up this process by two orders of magnitude
(see figure 2), as we demonstrate in terms of a comprehensive comparison with state-of-the-art techniques.
Our workflow consists of two advances—a training-free score for rapid hyperparameter optimization of NNs
and a descriptor surrogate metric enabling an efficient search for suitable descriptors of particle-mesh data.

We have first assessed the accuracy and efficiency of our workflow against multiple hyperparameter
optimization techniques such as the direct search, OAT, and the standard Optuna library. We achieve large
gains in computational efficiency in hyperparameter optimization by adapting the NASWOT method [38] as
a NASWOT mean score into our workflow. This method does not require any NN training up until an
optimal set of hyperparameters has been identified. With our NASWOT mean score we are able to calculate a
surrogate model in a few hours, whereas the state-of-the-art methods take days. In addition, if higher
accuracy is needed, we showed that combining Optuna with the NASWOT mean score outperforms
traditional search approaches. We also found that our hyperparameter optimization workflow impacts
model performance. NN architectures identified as optimal by the NASWOT mean score algorithm are
equally robust as the direct search, but yield smaller NNs with optimal inference performance.

Furthermore, we have developed the ACSD descriptor surrogate metric to find hyperparameters for the
calculation of suitable particle-mesh descriptors without having to train any NN models. Likewise, our
algorithm speeds up the state of the art by two orders of magnitude. First research into applying our models
at larger temperatures suggest that the ACSD successfully recovers the expected physicys, i.e. favoring smaller
cutoff radii (reflecting the larger disorder in the system).

By incorporating these two developments, we have devised a highly efficient ML surrogate modeling
workflow shown in figure 2. All steps in this workflow can easily be automated with the algorithms
considered here. These tools will enable a breadth of future applications in which large parts of the data
processing for DFT surrogate models can be automated or executed with minimal user input. Our final
workflow reduces the time required to construct surrogate models by two orders of magnitude. It thus
provides a pathway to employing DFT surrogate models in large-scale investigations of materials under a
variety of conditions.
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