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Abstract

Neutron and x-ray reflectometry are powerful techniques facilitating the study of the structure of
interfacial materials. The analysis of these techniques is ill-posed in nature requiring the
application of model-dependent methods. This can lead to the over- and under- analysis of
experimental data when too many or too few parameters are allowed to vary in the model. In this
work, we outline a robust and generic framework for the determination of the set of free
parameters that are capable of maximising the information density of the model. This framework
involves the determination of the Bayesian evidence for each permutation of free parameters; and
is applied to a simple phospholipid monolayer. We believe this framework should become an
important component in reflectometry data analysis and hope others more regularly consider the
relative evidence for their analytical models.

1. Introduction

Neutron and x-ray reflectometry methods offer an important insight into the structure of interfacial
materials; such as surfactant systems [1], biological membranes [2] and polymeric photovoltaics [3].
However, the analysis of reflectometry data is a non-trivial task, due in part to the phase problem. This is
where a direct inversion of the reflectometry profile, to recover the scattering length density profile, p(z) is
not possible since the phase of the reflected radiation is lost [4]. While there has been much work to retrieve
the phase information from a reflectometry profile [5]; from using reference layers [4, 6—8], polarized
neutrons [9], a dwell-time approach [10] and from the investigation of multiple contrasts [7, 11-13], these
methods are non-trivial and often require a specific experimental setup.

Where it is not possible to retrieve the phases, a model-dependent analysis method can be used to
determine the structure of the experimental system [14—20]. This is where a model, typically a series of
contiguous layers, is created and the model reflectometry is determined using the Abelés matrix formalism
for stratified media [21] or Parratt recursive method [22]. However, the use of model-dependent methods is
ill-posed in nature, where the solution may not necessarily be unique [23, 24]. This necessitates the
integration of a priori information about the underlying physics and chemistry of the experimental system,
such as assumptions about molecular volume [1, 25, 26]. This is typically achieved through the
re-parameterisation of the model, to describe the system in terms of physiochemical descriptors from which
a set of layers can be determined [27-29]. The inclusion of this prior information acts to reduce the
dimensionality of the optimisation space and therefore reduces the number of possible structures that would
offer satisfactory agreement with the data.

The inclusion of prior information is often achieved by taking literature values from other techniques
and applying them inflexibly to constrain values in the re-parameterised model, such as molecular volumes

© 2020 The Author(s). Published by IOP Publishing Ltd
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from computational simulation or solution scattering [30, 31]. However, as was shown in the work of
Campbell et al [26] and McCluskey et al [1], these values are not always strictly representative when the
physical or chemical environment is varied. This has lead to the use of Markov-chain Monte Carlo (MCMC)
methods for the analysis of reflectometry data, resulting in the inclusion of these methods in many common
reflectometry analysis packages [20, 32, 33]. The inclusion of these methods enables the prior probabilities
for a series of variables to be outlined, which are considered in a Bayesian fashion during the sampling of the
parameter space [1, 34]. This allows for more rational inclusion of the prior information about the
experimental system in the analysis, in addition to, the ability to obtain information about the sampled
posterior probabilities that are allowed from the experimental data.

The ability to include ranges of values, in the form of uninformative uniform prior probabilities, or
normally distributed priors centred on a literature value in the analysis of an experimental dataset is an
important development. However, ‘with great power, there must also come—great responsibility!” [35] and
the ability to sample or fit all of the parameters in an experimental analysis can lead to a high risk of
over-fitting [36]. As a result, it is necessary to investigate methods to quantify the information that is
available from a given experimental dataset and to enable the comparison of different analytical models;
including the number of free parameters that may be considered. A specific approach to this problem is
outlined in early works from Sivia and co-workers [37-39], where a two-parameter model was compared
with a three-parameter model; with the additional parameter being related to the scaling of the model
reflectometry. Sivia and co-workers assumed that the likelihood function for both of these model would have
‘only one significant maximum), allowing numerical simplifications to be performed and therefore the
problem to be solved analytically. This may not be possible for all models investigated by reflectometry, due
again to the ill-posed nature of the analysis problem. Furthermore, the work of Hughes and co-workers [40]
more recently applied the use of Bayesian model comparison to determine the mixing of lipids in a model
bacterial membrane.

In this work, we outline a general Bayesian framework for the comparison of different analytical models
for the rationalisation of reflectometry data. This method can allow the maximum information to be
obtained from the analysis of a given dataset, without risking over-fitting. In the supplementary information
for this paper, we provide detailed code showing how this framework may be applied to a problem leveraging
exclusively open-source software packages.

2. Methods

2.1. Bayesian model selection framework

Bayesian model selection involves the comparison of the posterior probabilities p(H|D) °, for two models, H,
and H,, given some dataset, D. The posterior probability for a given model, H,, can be determined from
Bayes theorem [34],

p(D|Hy)p(Hs)
p(D)
where p(D|H,) is the evidence for the model given the data, p(H,) is the prior probability for the model and

p(D) is the probability associated with the measured data, which is equal to the sum of the evidences for
every potential model (which is potentially large if not infinite),

p(D) =Y p(D|H,). (2)

p(Hy|D) = (1)

Therefore, in order to describe the evidence as a truely conditional probability, it is necessary to evaluate very
possible model that maybe applied to the experimental data. This is not feasible, therefore in this work we
will use the notation p(D|H,) for the evidence of a given model, however this is not a strict conditional
probability. When comparing the models, concerning the same data, the following relationship can be
applied [41],

pULID) _ (D) plit) o)
p(H,D)  p(D|H,)  p(H,)’

where the probabilities associated with the data only cancel out and the relative posterior probabilities
depend only on the evidence and prior probabilities for each model. Throughout this work, we have used the

6In this work, a reduced notation has been used, where the background information parameter, I is implied.
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Table 1. Interpretation of the Bayes factor, By, between models x and y.

2InB,y, Evidence against H,

[0,2) Not worth more than a bare mention
[2,6) Positive

[6,10) Strong

[10,00) Very strong

uninformative assumption that the prior probability for all models is 1. Therefore, it is only the evidence for
each model, for the given data, that influences the posterior probability.

Nested sampling is a method for Bayesian evidence determination that was developed by Skilling [42]
and is implemented in the Python package dynesty [43]. This sampling method allows for the evidence
determination through the estimation of the, possibly multi-dimensional, integral under the likelihood,
L(X|H) and parameter specific prior p(X|H) [44],

p(DIH) = // C(XIH)p(X|H) d"IX, @)

where X is a vector of length M of the varying parameters in the model, R is a 2 x M matrix that describes
the range over which the integral should be evaluated and p(X|H) is the parameter specific prior. Nested
sampling involves ‘intelligently’ sampling this integral until some stopping criterion is achieved. This
stopping criterion is when the following is less than a given value,

Aln{p(D|H);} = In{p(D|H); — Ap(D|H);} — Inp(D|H);, (5)

where p(D|H); is the current estimated evidence and Ap(D|H); can be estimated from the prior volume of
the previous point in the sampling. In this work, a stopping criteria of Aln{p(D|H)} = 0.5 was used.

The likelihood is the difference between the data and model and is defined in this work as it is
implemented in the refnx reflectometry package [20, 45],

N (R k)| ©

where, N is the number of measured g-vectors, g; is the ith g-vector, R(g;) is the experimental reflected
intensity at the ith g-vector, dR(g;) is the uncertainty in the experimental reflected intensity at the ith
g-vector and R(g;), is the model reflected intensity at the ith g-vector determined from the implementation
of the Abeles matrix formalism for stratified media [21, 22] in refnx.

The evidence allows for the comparison of two models, where the data are the same. It is only possible to
compare a given pair of models for the same data, as in equation (3) the data-only dependent probabilities
were cancelled out as they were equal. The Bayes factor, By,, is the name given to the ratio between the
evidence for two models,

p(D|Hs)

InB,, =1n
i’ p(D|H,)

= In[p(D|H,)] — In[p(D|H,)]. (7)

The interpretation of the Bayes factor was outlined by Kass and Raftery [46], which is given in table 1. This
method is easily generalised to any model-dependent experiment and has been applied in areas such as
systems biology, astronomy, computational chemistry and indeed, in a less general fashion than the current
work, to neutron reflectometry [39, 41, 47, 48].

The Bayesian approach allows for the comparison of models where there are different numbers of free
parameters, without the risk of overfitting and ‘fitting an elephant’ [36]. This is due to the Bayesian evidence
being derived from an integral in parameter space and therefore scaling with the number of parameters. This
means that the addition of an additional free parameter to the model must offer a significant improvement to
the likelihood determined. However, it is important also to note that the accuracy of the determined evidence
depends on the prior probabilities chosen for each of the free parameters and therefore care should be taken
to ensure that these are meaningful.



10P Publishing

Mach. Learn.: Sci. Technol. 1 (2020) 035002 Andrew R McCluskey et al

Table 2. The shorthands used for the different combinations of phospholipid monolayer and water investigated.

Shorthand Phospholipid contrast Water contrast
h-D,0O h-DSPC D,0O
di3-D,0O di3-DSPC D,O
di3-ACMW d3-DSPC ACMW
d7()—D20 d70—DSPC D,0
d70-ACMW d70-DSPC ACMW
ds3-D,O ds3-DSPC D,0O
ds3-ACMW ds3-DSPC ACMW

Table 3. The scattering lengths, b;, for each of the DSPC phospholipid components in this work; where the subscript indicates either the
head, h, or tail, t.

Phospholipid contrast by/fm b/fm
h-DSPC 6.01 -3.58
di3-DSPC 19.54 -3.58
d7o-DSPC 11.21 69.32
dg3-DSPC 24.75 69.32

2.2. Neutron reflectometry measurements

The neutron reflectometry measurements investigated in this work were previously published by
Hollinshead et al [49] and subsequently re-analysed by McCluskey et al [50]. The measurements concern the
study of a monolayer of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) at the air/water interface and
were conducted on seven different isotopic contrasts of the phospholipid and water. These contrasts were
made up from four phospholipid types; fully-hydrogenated (h-DSPC), head-deuterated (d;3-DSPC),
tail-deuterated (d7-DSPC) and fully deuterated (dg;-DSPC). These were paired with two water contrasts;
D, 0 and air-contrast matched water (ACMW, where D,0 and H,O are mixed such that the resulting
scattering length density is zero). The pairing of the fully-hydrogenated phospholipid with ACMW was not
investigated, most likely due to the lack of the scattering available from such a system. Table 2 gives the
shorthands that are used in this work to refer to the different contrast pairings investigated. The data
analysed in this work was taken at a surface pressure of 30 mNm™!. Additional details of the data collection
may be found in the original publication [49].

2.3. Analytical model
In the model-dependent analysis of neutron reflectometry data, it is necessary to have a description of the
experimental system to which the Abelés matrix formalism may be applied. Campbell et al investigated
different models for the study of phospholipid monolayers and found a two-layer description that
differentiates between the phospholipid heads, h, and tails, ¢, to be the best at reproducing the reflected
intensity [26]. The head layer is adjacent to the solvent, while the tail layer is adjacent to the air. The thickness
of the tail layer is defined as d; and the head layer is dj,. At each of the three interfaces, there is some
interfacial roughness, o, which is modelled with an error function [51]. In this work, the roughness was
taken to be conformal, which is to say that it does not vary between interfaces, in agreement with the work of
Campbell et al [26]. This final assumption is reasonable given the fact that this system consists of a
monolayer of a single lipid type, however, this may not be reasonable in more complex systems.

The scattering length density, p;, for a layer i, from which the model reflectometry profile is obtained, is
calculated from the volume fraction of the chemical component, ¢;, the scattering length of the component,
b; (found in table 3) and its molecular volume, V;,

b;
pi = Vi(bi + prmo(1— ¢i). (8)

where pp,0 is the scattering length density of water, which is 0A~2 for ACMW and 6.35x10°A~" for D,0.
To preserve the chemical bonding between the heads and tails of the phospholipid, the following constraint is
included in the model,

o dch¢t
on = Vi, )

This ensures that the number of head groups is equal to the number of pairs of tail groups.
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Table 4. The constrained and uniform prior probability range for each of the free parameters in the analytical model.

Parameter Constrained Value Prior Range
dp/A 10.07 [8.0,16.0)
v, /A’ 339.5° (300.0, 380.0)
di/A 21.0° [10.0, 26.0)
O 1.0 [0.5,1.0)"
v,/ A’ 850.4"2 [800.0, 1 000.0)
a/A 29" [2.9,5.0)"
x10*
0-
~ 21
g
g -

10° 10! 10? 10° 10*
Samples

Figure 1. The estimation of evidence as a function of number of samples; for the model where all parameters were unconstrained.

The model outlined above has up to six possible free parameters; the two-layer thicknesses, d; and dj, the
two molecular volumes, V; and V, the volume fraction of the tail layer, ¢; and the conformal interfacial
roughness, o. In this work, the evidence as a function of these parameters is of interest as it is possible to use
this evidence and Bayes factor to determine the best set of free parameters for a given set of data. Therefore,
in table 4 the uniform prior probability range and value when constrained is given for each of the
parameters. These six parameters can give rise to 63 permutations where there is at least one free parameter.
These permutations constitute every possible combination of the six parameters, either held constant or
being allowed to vary within the prior probability. This allows for a complete understanding of which
combinations of constrained and free parameters give rise to the highest evidence and therefore represents
the maximum information density that may be obtained from the given data. We note again, that both the
chosen prior and the constrained values are not infallible and will influence the result.

All seven isotopic neutron contrasts were analysed with a single structural model. In doing so we make
the common assumption that there is no effect on the structure as a result of the contrast variation method
[16]. Additionally, the reflected intensity from the model was scaled and a uniform background was added
based on values obtained in the previous analysis of this dataset [50]. We accept that these parameters may
influence the resulting evidence, as was shown in the work of Sivia and Webster [39].

3. Results & discussion

3.1. All parameters

Figure 1 shows the variation of the estimated evidence as a function of iterations, for the model where all six
parameters were unconstrained. This plot shows clearly the ability for the nested sampling method to
determine a good estimate of the evidence, with the plot plateauing at 6 859.9 + 0.3 after more than 10 000
samples. This was the slowest model to converge, as it was sampling the high-dimensionality parameter
space, on a workstation computer this nested sampling process took around 20 min to converge leading to
the results provided here.

In addition to the ability for the nested sampling method to determine the evidence for a given model, it
also allows for the posterior probabilities of the analysis to be evaluated. Figure 2 gives the posterior
probabilities and cross-correlations between each of the six parameters. It is clear that the volume fraction of
the tail layer, ¢, and the interfacial roughness, o, both are not completely represented by the defined prior
probabilities. Hence, there lacks a full Gaussian distribution and an extremely skewed probability
distribution is visible. However, maximum for ¢; and minimum for o both come from physical limitations
on the system; the former being that the volume fraction cannot be greater than 1 and the latter being that a
surfactant monolayer will increase the surface roughness compared to water [57], which is ~ 2.9 A& [55, 56].
The skew-ness of p(¢,) is to be expected given the hydrophobic interaction between the phospholipid tails
which create the situation where it is highly unlikely for water to be intercalated into the tail structure. The

5
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Figure 2. The posterior probabilities and correlation plots for each of the six variables in the model.

x10%

5 -]

In{p(D|H)}
B

Vi
d
&
Vi

dy,

Free Parameters

Figure 3. A comparison of the evidence for each of the 63 permutations of free parameters available to the analytical model. The
dashed line indicated the maximum evidence observed.

nature of p(o) is similar in that the expected value of 2.9A is the minimum value available to the distribution.
However, it may be the case that by fitting all possible parameters, the data is being overfitted. Luckily, the
Bayesian model comparison method allows for the evidence comparison to fit the model which offers the
maximum information to be obtained, without over-fitting to the data.

3.2. Greatest evidence

The evidence for all of the 63 possible permutations of the free parameters was determined. This allows for
the comparison of these to determine which model (set of varying parameters) offers the most information
from the dataset, without the over-fitting to the data that may be occurring when all six parameters are
varied. This comparison plotted in figure 3. The dashed black line indicates the set of free parameters that
offer the greatest evidence for the co-refinement of the seven contrasts of neutron reflectometry data, which
in this case is dj,/ V},/d;/ V3, which has an evidence of 6 872.1 & 0.2. The set of parameters with the next
greatest evidence is dj, /d;/ V;, however, the evidence for this set of parameters is 6 866.8 £ 0.2. The
interpretation of the Bayes factor between these two sets of parameters gives 2InB,, =10.7 & 0.7 where,
dn/Vy/d:/V;is x and dy,/d;/ V; is y. This indicates that there strong or very strong evidence for the more
complex model and that the maximum information density that can be obtained from the analysis at hand,
without over-fitting, is the fitting of dj,/ V},/d,/ V.

6



10P Publishing

Mach. Learn.: Sci. Technol. 1 (2020) 035002 Andrew R McCluskey et al

EX
o
.

J’:ﬁ;)

.
= o
= 5 o
o
o -
4 - 3
k)
RS
QR - 1
< @
)
T b - 3
RSN
&
o - j
o
4 -
&
\/.<3 b h b
&P
N ] ]
R
=L | |
¥
S - j ]
)
© . 0 . . . . 0 . L 0 . . 0 v v
Q.2 0 0 Q O % ¥ OHh N HD RN H DN N} Nal
NN N o o {13\‘1, A 45? {f.‘ PP D
dn/A Vii/A? di/A VA

Figure 4. The posterior probabilities and correlation plots when dj, / V}, /d;/ Viwere the variable parameters.

Table 5. The median values and 95% confidence intervals for each of the free parameters in the model with the greatest evidence.

Free Parameter Value

dy/A 129553
v,/R 347.013¢
di/A 17.675:)
v,/ A 828.0143

Figure 4 shows the posterior probability distributions that were obtained from the d,/V},/d,/V, set of
parameters. The median values for each of the probability distributions and their 95% confidence intervals
are given in table 5. The value found here for the phosphatidylcholine is slightly larger than the 10A used by
Campbell et al [26] and the 10.5A quoted by Li et al [58]. The thickness of the tail layer that is observed is less
than that suggested previously [26]. However, it agrees well with the results from the original analysis of this
data [49], which itself was consistent with previous x-ray reflectometry measurements [59-61]. The tail
molecular volume agrees well with the compression of ~12%, when compared to the values from other
experimental techniques [30, 31], suggested by Campbell ez al.

The reflectometry profiles for the median values are compared with the experimental data in figure 5.
There is clear agreement between the experiment and the model across all of the contrasts. This indicates that
it is likely that there is little variation due to the isotopic contrast variation that was used and the assumption
that is discussed in 2.3 is valid.

3.3. Comparison with previous analysis
As mentioned above, this particular experimental dataset was previously analysed by McCluskey et al [50].
The analytical model used in this previous work was similar to that used herein, however, the tail volume of
the phospholipid was constrained based on the assumption that the measured area per molecule was accurate
and the volume fraction of the tail layer is 1. That model had three free parameters, namely dj, d; and o.
This previous analysis made no effort to evaluate different models of analysis or numbers of free
parameters. Therefore, it is not clear if the three parameters chosen offered the maximum information
density available. While not completely comparable, as the constrained values in this work were different to
those used previously, the suggestion from this work that having d,/ V},/d,/ V; as the free parameters do not
match with those probed previously. In future, we hope that by outlining this general methodology, others
will consider the evidence of their particular model and the free parameter being used during their analysis.

7



10P Publishing

Mach. Learn.: Sci. Technol. 1 (2020) 035002 Andrew R McCluskey et al

103 -

R(q)q*
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Figure 5. The experimental (coloured lines) reflectometry and the median values for the model with greatest evidence (black

lines). The different contrasts are offset be an order of magnitude in reflected intensity; di3-ACMW (blue), di3-D,O (orange),
h-D,0 (green), d7o-ACMW (red), d79-D,0O (purple), dg3-ACMW (brown) and ds3-D,O (pink).
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Figure 6. A comparison of the evidence for the set of parameters with the greatest evidence, per number of parameters. The
evidence for a single parameter has been cut off for clarity, however, it had a value of 6 414.9 &+ 0.1

3.4. Best per number of parameters

Finally, we will briefly present the best set of parameters for each number of parameters. These are shown in
figure 6, which has the characteristic shape found in the previous work by Sivia and others [37, 39, 44, 62].
This plot can be seen to peak when there are four free parameters, before dropping off slowly. This drop off
indicates that when more parameters are included there is an indication that over-fitting is occurring. This
plot shows clearly where the maximum information is available in the analysis for this particular
reflectometry data.

4. Conclusions
This work outlines a general application of a Bayesian framework to the problem of model selection in

neutron reflectometry. Building on the work of Sivia and co-workers in the 1990s [39], we have utilised a
nested sampling method to generalise the methodology beyond the assumption of only one significant

8



10P Publishing

Mach. Learn.: Sci. Technol. 1 (2020) 035002 Andrew R McCluskey et al

maximum [37]. This offers the ability to go beyond the three-parameter space previously investigated to
consider every possible parameter in an analysis problem. In doing so, it is possible to compare the evidence
of different models, where different numbers of parameters are allowed to vary, to determine that which
offers the maximum information, without over-fitting.

To show this in action, we have investigated the analysis of seven isotopic contrasts of neutron
reflectometry data from a phospholipid monolayer at the air/water interface. This particular analysis had a
maximum of six variable parameters and in this work, the evidence of all 63 possible permutations of these
parameters was determined. This allowed for the permutation that offered the maximum evidence to be
found, which under the circumstances of the chosen priors was when d,/V},/d,/ V; were varied. This
particular combination of parameters had an evidence of 6 872.1 + 0.2, while the next best, which had more
free parameters had a value of 6 866.8 & 0.2. This was interpreted in terms of the Bayes factor and it was
shown that there was strong evidence for the dj,/V},/d,/V; model. Finally, we have compared these free
parameters with those used previously to analyse the same dataset [50]. This comparison indicates that this
previous analysis did not necessarily maximise the information density available to the data.

We accept that the relative simplicity of this model system allows for the use of nested sampling on a
relatively short timescale, with all of the computation capable of being performed in a single day on a
workstation machine. However, the methods discussed herein are relevant to any model-dependent
reflectometry analysis, but we note that as the number of free parameters increases so does the
dimensionality of the parameter space being sampled, leading to longer computational timescales. Therefore,
we propose that for analyses with a large number of parameters the analyst starts by reducing the number of
free parameters as much as is possible to ensure that the nested sampling will converge in a reasonable
timescale and gradually increasing the complexity. We hope that by developing and sharing of this
methodology, in future those analysing reflectometry data will consider which of the free parameters in their
models may be varied and will try to determine the evidence for their particular model for other options
before completing their analysis.
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