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Abstract
In order to solve the difficulty of compound fault diagnosis of rolling bearings, a novel rolling
bearings fault diagnosis method based on improved tunable Q-factor wavelet transform (TQWT)
is proposed in this paper. Firstly, a new evaluation index of signal decomposition called KR is
defined by summing kurtosis and root mean square (RMS) with weight. KR is the compromise
between impulse factor and energy factor, which can better represent the fault characteristics of
sub-bands obtained by TQWT. Secondly, the KR is used to improve the TQWT. The improved
TQWT can adaptively determine the parameters Q-factor and decomposition level. Thirdly, the
bearing vibration signal is decomposed by the improved TQWT and the sub-bands are sorted
descending according to the KR. Finally, the Hilbert envelope analysis is carried out and the
fault types are determined by comparing the fault characteristic frequencies obtained from the
Hilbert envelopes to the fault characteristic frequencies calculated by formula. The proposed
fault diagnosis method is fully evaluated by simulation and experiments. The results
demonstrate that the KR takes advantage of kurtosis and RMS and can be better used to
optimize the parameter of TQWT. And the compound fault features of rolling bearings can be
accurately separated into different sub-bands by the improved TQWT, which is helpful to
improve the accuracy of compound fault diagnosis of rolling bearings.

Keywords: rolling bearings, compound fault diagnosis, improved TQWT, evaluation index,
Hilbert envelope
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1. Introduction

Rolling bearings are essential components of rotating
machinery. Due to long term running in complicated con-
ditions such as variable speeds, alternating and heavy loads,
bearings are damaged inevitably. Abundant engineering prac-
tice shows that compound faults are more frequent in rolling
bearings, such as the inner ring race and outer race of a bear-
ing are worn to different degrees at the same time, which
makes the bearing vibration signals complex, nonlinear and
nonstationary [1]. Together with that, the weak fault features
are often submerged by the strong fault features, resulting in
inaccurate fault diagnosis. So, compound fault diagnosis of
bearings becomes an urgent problem to be solved. An effective
method of compound fault diagnosis of bearing is extremely
valuable to ensure the safe and stable operation of the mech-
anical equipment [2].

Currently, many vibration signal processing methods have
been developed to extract the fault features and realize the
diagnosis of compound fault that appears on the bearings
[3–5]. Wavelet transform is the most used method [6–8]. Pur-
ushotham et al [9] used the discrete wavelet transform (DWT)
to extract the bearing compound fault features and applied hid-
den Markov models to detect single and compound fault in
bearing. Dhamande et al [10] extracted compound fault fea-
tures by conducting both continuous and DWT to the vibra-
tion signals. Chen et al [11] proposed an improved adaptive
redundant lifting multi-wavelet method to extract all the fea-
tures of compound faults. The above methods are based on the
traditional wavelet transform, whose effectiveness is affected
by the Q-factor. Q-factor denotes the central frequency of
the wavelet. Generally, the wavelet transform should have a
high Q-factor when it is used for processing the signal with
more oscillatory behavior. On the other hand, it should have
a low Q-factor when the signal has little oscillatory behavior.
Namely, the Q-factor must be chosen according to the oscillat-
ory behavior of the signal, but it is difficult and time consum-
ing for the traditional wavelet transform, because it not only
depends on the signal, but also the wavelet base function [12].
For the problem of above, the tunable Q-factor wavelet trans-
form (TQWT) was proposed by Selesnick [13]. TQWT is a
new flexible fully-DWT. It can decompose the vibration sig-
nal into sustained oscillation component (high Q-factor) and
transient impact component (low Q-factor) through variable
Q-factor [14]. The main advantage of TQWT is that there is
no need to care about the selection problems of the wavelet
base function, and the Q-factor can be ajusted flexibly accord-
ing to the signal. This make TQWT easier and more effective
for vibration signal processing and suitable for fault feature
extraction [15, 16].

Although, the Q-factor of TQWT can be flexibly adjus-
ted, this does not mean that it can be selected randomly.
In fact, the selections of Q-factors and decomposition level
of TQWT heavily affect the decomposition performance.
The main challenge becomes the optimizations of Q-factors
and decomposition level when TQWT is used for fault dia-
gnosis. Nowadays, many reasearchers have focused on the
optimization of Q-factors, of which kurtosis-based method is

the mostly used method to improve the TQWT [17]. Kurtosis
is an effective index to characterize the impulsive feature. The
kurtosis of the vibration signal will be greater when the bear-
ing occurs fault. It is the most used index to select the paramet-
ers of a decomposition method [18–20]. Parameters of TQWT
can be selected according to the kurtosis maximum principle
[21]. Li et al [22] proposed an incipient fault diagnosis method
of bearing based on maximal spectral kurtosis TQWT and
group sparsity total variation denoising. In this method the Q-
factor of TQWT is pre-selected according to spectral distribu-
tion of the impulse component and then the spectral kurtosis
of each scale transform coefficients is calculated to select the
optimal Q-factor according to the kurtosismaximumprinciple.
Wang et al [23] proposed an adaptive tunable Q-factor wave-
let transform based on time-frequency kurtosis index optimiz-
ation to realize the early fault diagnosis of bearings. They used
kurtosis to search the Q-factor and the redundancy. Ma et al
[24] proposed a early fault diagnosis of bearing based on fre-
quency band extraction and improved TQWT. Particle swarm
optimization (PSO) was used to improve the TQWT and the
kurtosis was taken as the fitness of PSO to determine the
Q-factor.

Although kurtosis can be used to optimize theQ-factor, kur-
tosis is very sensitive to the discrete outliers in the sub-bands
obtained by the TQWT. The outliers make the kurtosis fail,
it means that some sub-band has a big kurtosis, but the sub-
band does not contain fault features. So, kurtosis cannot bet-
ter evaluate the sub-bands obtained by the TQWT. Especially
when the bearing has a compound fault. In order to solve this
problem, an improved evaluation index is extremely neces-
sary. Root mean square (RMS) reflects the energy factor of
the vibration signal [25]. It is gentler than kurtosis and insens-
itive to the discrete outliers in sub-bands. RMS increases when
a bearing works in the fault conditions. But the weak fault fea-
ture may be neglected due to the interference of noise in some
sub-bands. Taking advantages of kurtosis and RMS and over-
coming its weakness, a new evaluation index can be defined,
which can be used as the index to improve the TQWT and
optimizing the Q-factor. On the other hand, there are little
reasearches consider the optimization of the decomposition
level. A lot of sub-bands will be obtained when the vibrational
signal is decomposed by TQWT with the the max decompos-
ition level. This will result the difficult of which sub-band to
be selected for further analyzing. So, the decomposition level
should be optimized meanwhile.

In order to sovle the above problem, a new evaluation index
called KR was defined based on kurtosis and RMS in this
paper. Then, KR is used to improve the TQWT by simultan-
eously optimizing the Q-factor and the decomposition level.
Finally, a new method based on the improved TQWTwas pro-
posed to solve the difficulty of compound fault diagnosis of
rolling bearings. The effective of the proposed method is fully
evaluated by simulation and experiment.

The rest of the paper is organized as follows. In section 2,
the improved TQWT is detailed. Section 3 proposes the com-
pound fault diagnosis method of rolling bearings based on
the improved TQWT. In section 4, simulation and experiment
are performed to validate the effectiveness of the method.
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Figure 1. Decomposition and reconstruction of signal x by J-levels TQWT.

Finally, the conclusions are drawn in section 5 and some future
directions are suggested.

2. Improved TQWT

2.1. TQWT

TQWT has properties of fully discrete, perfect reconstruction,
modestly overcomplete and easy to implement. It is achieved
by iteratively applying high pass filter bank followed by high
pass scaling (HPS β) and low pass filter followed by low pass
scaling (LPS α) on its low pass channel. Decomposition and
reconstruction of the signal x(n) by J-levels TQWT is illus-
trated in figure 1.

The sub-band signals after level-1 processing of high pas-
sand low pass have sampling rates of βfs and αfs respectively,
where fs is the sampling rate of the input signal x(n). The scal-
ing parameters α and β satisfy:

0< α < 1 , 0⟨β ⩽ 1 , α+β⟩1. (1)

In order to perfect reconstruction, the frequency responses
of high pass filter H(ω) and low pass filter L(ω) are defined
respectively as follows:

H(ω) =


0, |ω|⩽ (1−β)π

θ
( απ−ω

α+β− 1

)
, (1−β)π < |ω|< απ

1, απ ⩽ |ω|⩽ π

(2)

L(ω) =


1, |ω|⩽ (1−β)π

θ
(

ω+(β−1)π
α+β−1

)
, (1−β)π < |ω|< απ

0, απ ⩽ |ω|⩽ π

(3)

where θ(ω) is the Daubechies frequency response with two
vanishing moments [26].

θ(ω) =
(1+ cosω)

√
2− cosω

2
, |ω|⩽ π. (4)

It can be proven that |H(ω)|2 + |L(ω)|2 = 1. So, the high
pass filter and the low pass filter satisfy the perfect reconstruc-
tion requirement.

Analyzing the iteration of J-levels filters and scalings, the
equivalent high pass filter and low pass filter can be expressed
as follows.
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H( j)(ω) =


H(ω/αj−1)

j−2∏
n=0

L(ω/αn), ω1 ⩽ |ω|⩽ ω2

0, for other ω ∈ [−π,π]

(5)

L( j)(ω) =


j−1∏
n=0

L(ω/αn), |ω|⩽ αjπ

0, αjπ ⩽ |ω|⩽ π

(6)

where ω1 = (1−β)αj−1π, ω2 = αj−1π. According to the
above analysis, the property of TQWT is related to three para-
meters, namely the decomposition level, the scaling paramet-
ers α and β. Q-factor is defined as the ratio of the center fre-
quency ωc to the bandwidth BW of the filter.

Q=
ωc
BW

. (7)

According to equation (7), the band width BW can be
approximated as follows:

BW=
ω2 −ω1

2
=
βαj−1π

2
. (8)

And the center frequency can be approximately taken as the
average of ω1 and ω2.

ωc =
ω1 +ω2

2
=

(2−β)αj−1π

2
. (9)

Then, the Q-factor can be calculated.

Q=
2−β

β
. (10)

Equation (10) shows thatQ-factor depends only on the HPS
β, does not depend on the level J and the LPS α.

The total over-sampling rate of the TQWT is defined as the
redundancy of the wavelet transform as follows:

r=
β

1−α
. (11)

The relationship between the high-pass scaling parameter
β, low-pass scaling parameter α, Q and r can be summarized
as follows:

β = 2/(Q+ 1) (12)

α= 1−β/r. (13)

It is obvious that the performance of TQWT is affected by
three parameters: the Q-factor (Q), the redundancy (r) and the
decomposition level (J).Q affects the oscillations behaviors of
the wavelet. The higher is the Q, the more oscillatory cycles
comprising a pulse. When r is close to 1.0, the wavelet will
not be well localized in time domain, so a value of 3.0 or
greater is recommended [27]. J is the number of filter banks.
It determines the decomposition level. The maximum number
of allowable decompositions (Jmax) can be calculated using Q
and r.

Jmax =

⌊
log

(
N

4(Q+ 1)

)/
log

(
Q+ 1

Q+ 1− r/2

)⌋
(14)

where N is the data length and symbol ⌊•⌋ represents round
down.

2.2. Evaluation index KR

According to above discussion, it is quite important to determ-
ine the parameters of TQWT for the feature separation. The
first difficulty is the determination of parameter Q. The sub-
bands would not contain enough impact characteristics if Q
is too big. If Q is too small, there will be frequency ali-
asing among the sub-bands. Fortunately, the characteristics
and quality of sub-bands can be evaluated by some perform-
ance indexes, such as kurtosis and RMS.

Kurtosis is sensitive to the impulse vibration caused by
bearing failure and widely used in fault diagnosis. The kur-
tosis of a signal x is defined as follows:

K= E{(x−µ)
4}
/
σ4 (15)

where E{•} denotes the expectation, µ and σ are the mean and
standard deviation of x, respectively. The bigger the sub-band
kurtosis is, the more obvious the fault features are. So, several
sub-bands with bigger kurtosis can be selected for further ana-
lysis to realize fault diagnosis according to the kurtosis max-
imum principle. Noted that there would be discrete outliers
in some sub-bands obtained by TQWT. The discrete outliers
will lead to the sharp increase of kurtosis, but the sub-bands do
not contain fault information. In order to solve this problem,
anther index is need to be involved.

The RMS of the signal x is defined as follows:

R=

√√√√ 1
N

N∑
i=1

x2i (16)

whereN is the length of x. TheRMS reflects the average energy
of the vibration signal. It is gentler than kurtosis and insens-
itive to the discrete outliers in sub-bands. When the failure
of bearing emerges, the impulse vibration increases the RMS.
The bigger RMS means the more fault features in most sub-
bands. However, the weak fault feature may be neglected by
the noise in some sub-bands. Namely, maybe the RMS of the
sub-band is big, but it does not contain obvious fault features
or the fault feature cannot be extracted.

To overcome the weakness and take advantage of kurtosis
and RMS, a new evaluation index can be defined. The problem
is transformed into the fusion of kurtosis and RMS. Accord-
ing to above researches, sub-bands with bigger kurtosis or
RMS can be selected for further analysis. However, experi-
ments have showed that there are some sub-bands with bigger
kurtosis or RMS, but the sub-bands do not contain clear fault
features. Due to the weakness of kurtosis and RMS, these sub-
bands usually have bigger kurtosis but smaller RMS or have
bigger RMS but smaller kurtosis. This problem can be solved
by sum the kurtosis and RMS with weights.
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The sequence of kurtosis and RMS of all sub-bands can be
expressed as [K1,K2, · · · ,KJ] and [R1,R2, · · · ,RJ] respectively.
The standard deviation of a sequence reflects the fluctuation of
the sequence. The smaller the standard deviation is, the more
reliable and stable the sequence is, the more effective inform-
ation the sub-band can provide. So, the indexes sequence with
smaller standard deviation should have a bigger weight. On
the other hand, the indexes sequence with bigger standard
deviation should have a smaller weight. Take σR and σK as
the standard deviation of the sequence of kurtosis and RMS,
respectively. The kurtosis weight wK and RMS weight wR can
be respectively calculated as follows:

wK = σR/(σK+σR) (17)

wR = σK/(σK+σR). (18)

It is obvious that the wK is bigger than wR when σK is smal-
ler than σR. The new evaluation index could be defined as KR:

KR(i) = wKKi+wRRi, i= 1,2, · · ·J. (19)

In fact, the KR is the compromise between impulse factor
and energy factor. It can ensure that the sub-band with bigger
kurtosis has bigger RMS. Only the sub-bands have both bigger
kurtosis and bigger RMS contain the clear fault features. So,
the KR can be used as the evaluation index of sub-bands. The
larger the KR is, the more obvious fault features the sub-bands
have. So, the next is to improve the TQWT by KR.

2.3. Improved TQWT based on KR

As discussed above, the property of TQWT decomposition
is affected by three parameters: the redundancy (r), the Q-
factor (Q) and the decomposition level (J). The improvement
of TQWT is mainly focus on these parameters.

The parameter r is the redundancy of TQWT when it is
computed using infinitely many levels. It can be interpreted
as a measure of how much spectral overlap exists between
adjacent band-pass filters. In practical application, it is sugges-
ted to set r⩾ 3 [28]. The influence of different parameters on
the decomposition performance can be qualitatively observed
by normalized frequency response of TQWT. The frequency
responses for different rwith a fixedQ and J (Q= 3 and J= 8
for example) is shown in figure 2.

It shows that the parameter r localizes the wavelet in the
time domain without changing its shape. For a fixed Q and
J, the overlap of the adjacent frequency responses increases
with increased value of the parameter r. It results in the failure
of covering the entire frequency region when r is too big. To
cover the entire frequency region, J should be increased cor-
respondingly, which will increase computational complexity.
Considering the computation efficiency, we set r= 3 in this
paper.

According to the equation (14), for a given signal x(t)
with length N, the max decomposition level Jmax only relies
on the Q when the parameter r is determined. However, if

Figure 2. Frequency responses of TQWT for different r with Q = 3
and J = 8.

the decomposition level is set to Jmax, there will be Jmax + 1
sub-bands. It means that many sub-bands will be obtained, but
not all sub-bands contain fault features, which leads to another
selection problem of sub-bands. Take N= 8192, Q= 3 and
r= 3 for example, 13 sub-bands will be obtained. It can be
proved that not all sub-bands contain fault features and only a
few sub-bands contain the fault features. It means that there are
lots of invalid redundant sub-bands. It is advisable to take some
sub-bands for further analysis to realize fault diagnosis, not
take all sub-bands for analysis. But the selection of sub-bands
for further analysis will not only increase the computational
complexity, but also reduce the accuracy of fault diagnosis. In
order to decrease the computational complexity and increase
the accuracy of fault diagnosis, the decomposition level J
should be reduced appropriately.

In this paper, J is set according to the frequency response
bandwidth limitation criteria. Suppose the sample rate of a sig-
nal is f s, then the frequency response bandwidth of the jth sub-
band can be determined as follows:

Bj =
1
2
βαj−1fs. (20)

It is obvious that the bigger the level is, the smaller
the bandwidth is. It is stipulated that the bandwidth of the
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Table 1. Calculation method of fault characteristic frequency of
bearings.

Fault type Calculation formula

Inner race fault BPFI= n×BPI
Outer race fault BPFO= n×BPO
Rolling elements fault BSF= n×BS
Cage fault FTF= n× FT

sub-band with the maximum level should not be less than
three times the maximum fault characteristic frequency fmax,
namely:

1
2
βαj−1fs ⩾ 3fmax. (21)

The decomposition level J is determined by substituting the
equations (20) and (21) into the equation (14) as follows:

J= ⌊1+ log(a)/ log(b)⌋ (22)

where a= 6(Q+ 1)fmax/fs and b= 1− 2/(Q+ 1)r. The
decomposition level J is decreased and related to the Q. It
should mention that the number of sub-bands is small, there is
no need to select which sub-band should be taken for further
analysis. In fact, all sub-bands should be analyzed.

So, the next is to determine the Q, and the decomposi-
tion level J can be determined simultaneously according to
the equation (22). As a result, the basic idea of the improved
TQWT is automatically determine the optimal parameters Q
and J according to the KR of all sub-bands.

To find out the optimal Q, the exhaustive searching method
is utilized. The searching ranges is set (1, Qmax) and the step
is set to 0.2 by experience. Take the bearing vibration signal x
for example. The algorithm of improved TQWT based on KR
can be illustrated as follows.

Step 1: Get the length N of x and the maximum fault
characteristic frequency fmax.

Step 2: Initialize the parameters, r= 3, Q= Qtemp = 1,
KRmax = 0.

Step 3: Calculate J according to equation (22) and decom-
pose x into J+ 1 sub-bands.

Step 4: Calculate KR of all sub-bands to find the max one
as KRtemp.

Step 5: Get the max KR and the corresponding Q, if
KRtemp > KRmax, let KRmax = KRtemp and Q= Qtemp.

Step 6: Update the Qtemp, Qtemp = Qtemp + 0.2.
Step 7: Repeat from step 3 to step 7 until Qtemp = Qmax.

3. Improved TQWT based compound fault
diagnosis of rolling bearings

When bearings work in a fault conditions, there will be fault
characteristic frequency correspond to the fault type. The
fault characteristic frequency of bearings can be calculated
according to table 1.

Where n is the bearing speed, the unit is r/s. BPI is the fre-
quency of ball pass inner race. BPO is the frequency of ball
pass outer race. BS is the spin frequency of the ball. FT is the

cage train frequency. Both BPI, BPO, BS and FT are usually
provided by bearing manufacturers.

Hilbert envelope is a classical method, which has been
widely used in fault feature extraction [29]. The fault charac-
teristic frequency can be obtained from Hilbert envelopes of
the sub-bands with fault features. So, a compound fault dia-
gnosis method was proposed based on the improved TQWT
and Hilbert envelope in this section. The procedure of the
method is shown in figure 3. It includes three main steps,
which are detailed as follows.

Step 1: Data acquisition. Bearing vibration signals are
obtained through the acceleration sensor and signal acquisi-
tion card. And a piece of the vibration signal with length N is
taken for analyzing.

Step 2: Decomposition of vibration signal by the improved
TQWT. The optimal parameters Q and J of the TQWT are
selected firstly. Then, the vibration signal is decomposed into
several sub-bands by the improved TQWT. Finally, all sub-
bands are sorted descending according to the KR.

Step 3: Fault feature extraction and separation via Hil-
bert envelope. Hilbert envelope analysis is conducted on the
sub-bands and the fault characteristic frequencies are obtained
from the Hilbert envelope. Compare them to the fault charac-
teristic frequencies calculated by formula and the fault types
can be determined and compound fault diagnosis of bearings
is achieved.

Because the KR can better optimize the parameters of
TQWT, the vibration signals will be effectively decomposed
in to a serial of sub-bands. All sub-bands sub-bands contain
fault features and each sub-band is a single fault signals. Sub–
bands with different fault features will be isolated and ordered
descending according to KR.

4. Simulation and experiment analysis

4.1. Simulation analysis

The simulation signal of rolling bearings with inner race fault
and outer race fault can be expressed as follows [4, 30–33]:

xi+o(t) = xi(t)+ xo(t)+ xn(t)

xi(t) =
M∑
j=1

Ai(t) • g(t− n/fi−λ/fi)

Ai(t) = ρ(mgcos(2πfrt+ψmi)+meω2 cos(ψti))

xo(t) =
M∑
j=1

Ao(t) • g(t− n/fo−λ/fo)

Ao(t) = ρ(mgcos(ψmo)+meω2 cos(2πfrt+ψto))

g(t) = e−Bt cos(2πfnt)

(23)

where xi(t) and xo(t) are the simulation signal of rolling
bearings with inner race fault and outer race fault, respectively.
xn(t) is the noise obeying gauss distribution. fi and fo are the
inner race fault characteristic frequency and outer race fault
characteristic frequency. λ/fi and λ/fo are the minor slippage
around the average period of 1/fi and 1/fo. M is the number
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Figure 3. Flow chart of compound fault diagnosis.

of the impulses. Ai(t) and Ao(t) are the amplitude modulator.
ρ is the factor between amplitude and load. m, g and e are
the rotor mass, gravity acceleration and eccentricity, respect-
ively. fr is the rotational frequency of bearing. ω is the bearing
angular velocity. ψmi is the angle between gravity direction
and inner race defect position. ψti is the angle between mass
eccentric position and inner race defect position. ψmo is the
angle between gravity direction and outer race defect position.
ψto is the angle between mass eccentric position and outer race
defect position. B is the decaying coefficient. fn is the system
natural frequency.

In order to prove the applicability of the method, SKF6312
rolling bearing with inner race fault and outer race fault
was selected to generate the simulation signal. Assume m=
50 kg, g= 9.8 m s−2, e= 0.05 mm, ρ= 0.001, ψmi = 0,

ψti = 0, ψmo = 0, ψto = 0, fr = 50 Hz, B= 400, fn = 2000 Hz,
λ= 0.03. The fi and fo can be calculated as fi = 246.26 Hz and
fo = 153.74Hz. Themean and variance of xn(t) are set to 0 and
5 respectively. The sampling frequency is 10.24 kHz and the
number of sample point is 8192. The waveform and spectrum
of the simulation signal are shown in figure 4.

The proposed method is applied to analyze the simulation
signal to determine the fault type. The first step is to select
the parameters of TQWT. In order to reduce computation and
ensure decomposition performance, the Qmax is set to 4 and
the r is set to 3. After 16 iterations, the optimal parameters are
obtained as Q= 1.2 and J= 4. Figure 5 shows theKRs of all
sub-bands obtained by TQWT with different Q and J. Only
five significant digits are reserved for convenience of present-
ation. The left axis is Q in the range of 1–4 in 0.2 steps. The
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Figure 4. Waveform and spectrum of the simulation signal.

Figure 5. KR of all sub-bands obtained by TQWT with different Q
and J.

right axis is J, whose value is 4 or 3. The lower axis is sub-band
level. Each rectangle represents a sub-band. The number is the
KR of the sub-band. It shows that the biggest KR is obtained
as 6.4247 when Q= 1.2 and J= 4. Then, five sub-bands can
be obtained, and the KR of each sub-band from level 1 to level
5 is 4.1002, 4.2283, 3.7654, 3.3490 and 6.4247 respectively,
which is marked red. In the process of iteration,Q and J are set
to other parameters, and only the biggest KR is shown in the
figure, they are little than 6.4247 (Q= 1.2 and J= 4). So, the
optimal parameter combination is r= 3, Q= 1.2 and J= 4.
Figure 6 shows the wavelets and frequency response of TQWT
with the optimal parameters. It shows the 4 wavelets and its
frequency response. We can see that the frequency response
covers all the frequency of the simulation signal. It can be well
used to decompose the simulation signal.

The simulation signal is decomposed by the improved
TQWT and five sub-bands are obtained. Table 2 shows the five
sub-bands with different indexes. The first column shows the
sub-bands in descending order according to different indexes.

Figure 6. Wavelets and frequency response of TQWT.

Table 2. Five sub-bands with different indexes.

Decomposition level: indexes

Sub-bands descend KR Kurtosis RMS

1 5: 6.4413 4: 6.0421 5: 8.2606
2 2: 4.2662 3: 5.9726 1: 3.8738
3 1: 4.1498 2: 4.9991 2: 3.7111
4 3: 3.7944 1: 4.5144 3: 2.1450
5 4: 3.3837 5: 4.0390 4: 1.3706

Weight 0.4309 0.5691

The other columns are the decomposition level with different
indexes. We can see that the sub-bands and the decomposi-
tion level are disrupted. The last row contains the weight of
kurtosis and RMS. They are 0.4309 and 0.5691 respectively.
Take the first sub-band for example, the decomposition level 5
has the biggest KR 6.4413 and the RMS 8.2606, but the kur-
tosis is the 4.0390, which is the smallest kurtosis, The KR can
be calculated according to the equation (19).

KR= 0.4309× 4.0390+ 0.5691× 8.2606≈ 6.4415. (24)

In fact the KR is 6.4413, this error is caused by the
reservation of only five significant digits.

The waveform of sub-bands sorted descending according to
KR is shown in figure 7. It can be seen that all sub-bands have
impact vibration, namely all sub-bands have fault features.

Hilbert envelope analysis is carried out on the five sub-
bands as shown in figure 8. We can see that there are frequen-
cies of 152.5 Hz and its multiple frequencies in the first two
sub-bands. It is close to the fault characteristic frequencies of
outer race 153.74 Hz. So, it can be determined that the bearing
had a fault in the outer race. Furthermore, there are frequen-
cies of 243.75 Hz and its multiple frequencies in the last three
sub-bands. It is close to the fault characteristic frequencies of
inner race 246.26 Hz. It means that the bearing had a fault in
the inner race else. So, the conclusion is that the bearing had
a compound fault of inner and outer race. It is coincident with
the fact. We also can see that the outer race fault features are
only in the first two sub-bands and inner race fault features
are only in the last three sub-bands, namely the fault features
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Figure 7. Waveform of all sub-bands obtained by TQWT optimized
by KR.
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Figure 8. Hilbert envelopes of the five sub-bands.

are isolated. That makes compound fault diagnosis of rolling
bearings more convenient and accurate.

In order to prove the advantages of the proposed method,
diagnosis analysis based on the TQWT optimized by kurtosis
is conducted as a comparison. The kurtosis is taken as the per-
formance indexes of the TQWT. The r is set to 3. In order to
reduce computation and ensure decomposition performance,
the Qmax is set to 4. And the decomposition level is calculated
according to equation (14), which is not optimized. After 16
iterations, the parameters are obtained as Q= 1 and J= 17.

There are 18 sub-bands after the simulation signal decom-
posed by the TQWT with the parameter r= 3, Q= 1 and
J= 17. Figure 9 shows the waveform of all sub-bands sorted
descending according to kurtosis. It is obvious that not all
sub-bands contain the fault features. It is generally considered
that a sub-band contains fault characteristics when its kurtosis
greater than 3. So, the first nine sub-bands should by analyzed
by Hilbert envelope. In order to better observe the decompos-
ition results, Hilbert envelope analysis is carried out on the
first ten sub-bands as shown in figure 10. We can see that the
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Figure 9. The waveform of all sub-bands sorted descending
according to kurtosis.

Figure 10. Hilbert envelopes of the first ten sub-bands.

fault characteristic frequencies mainly exist in the first six sub-
bands. And the fault characteristic frequencies of inner race
and outer race are not separated.

Comparison result shows that the index KR can take
advantages of kurtosis and RMS and KR can be better used for
improving the TQWT. The improved TQWT can adaptively
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Figure 11. Rotating machinery fault simulation platform.

Figure 12. Faulty bearing.

determine the optimal parametersQ and J of TQWT. The bear-
ing vibrational signal can be well decomposed into a serial of
sub-bands by the improved TQWT, the number of sub-bands is
small and each sub-band has the fault features. So, the Hilbert
envelope analysis can be carried out on all the sub-bands and
the compound faults can be separated and determined.

4.2. Experiment analysis

4.2.1. Data source. In order to prove the validity of the pro-
posed method, a compound fault diagnosis experiment was
carried out. The experimental data are obtained from the rotat-
ingmachinery fault simulation platform, as shown in figure 11.
It is consisted of an electric motor, a coupling, a normal bear-
ing, three rotors, a controller and a faulty bearing with the type
6307, which is adopted to collect the vibrational signal. The
faulty bearing is shown in figure 12, it shows that the bear-
ing has a compound fault of inner race and outer race. The
motor speed is 1496 rpm, which means the rotation frequency
is 24.93 Hz. The fault characteristic frequency of outer race is
76.31 Hz, and the fault characteristic frequency of inner race
is 123.13 Hz. The accelerometer is mounted vertically on the
bearing seat. The sampling frequency is 15.36 kHz and the
number of sample point is 8192.

The waveform and spectrum of the vibration signals of nor-
mal bearing and fault bearing with a compound fault of inner
race and outer race are shown in figure 13. It shows that the
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Figure 13. Waveform and spectrum of the vibration signal of
normal bearing and fault bearing.

amplitude increases sharply and high frequency impact vibra-
tion occurs when the bearing works in compound fault condi-
tion. We can see the bearing is damaged from the waveform
and spectrum, but cannot determine the fault type.

4.2.2. Proposed method. In order to determine the fault
type, the proposed method is used to analyze the vibration sig-
nal of the bearing with a compound fault of inner race and
outer race. The first step is the selection of the parameters of
TQWT. The r is set to 3. In order to reduce computation and
ensure decomposition performance, the Qmax is set to 4. After
16 iterations, the optimal parameters are obtained asQ= 3 and
J= 8. Figure 14 shows the KRs of all sub-bands obtained by
TQWT with different Q and J. Only five significant digits are
reserved for convenience of presentation. The left axis is Q
in the range of 1–4 in 0.2 steps. The right axis is J, whose
value is 6, 7, 8 or 9. The lower axis is sub-band level. Each
rectangle represents a sub-band. The number is the KR of the
sub-band. It shows that the biggest KR is obtained as 6.7183
when Q= 3 and J= 8. Then, nine sub-bands can be obtained,
and the KR of all sub-band from level 1 to level 9 are 3.7209,
5.0538, 6.7183, 5.5262, 4.3748, 4.8407, 5.3433, 4.0487 and
3.3814 respectively, which are marked red. In the process of
iteration, Q and J are set to other parameters, and only the
biggest KR is shown in the figure, they are little than 6.7183
(Q= 3 and J= 8). So, the optimal parameter combination is
r= 3, Q= 3 and J= 8.

Figure 15 shows the wavelets and frequency response of
TQWT with the optimal parameter. It shows the eight wave-
lets and its frequency response. We can see that the frequency
response covers the main frequency of the vibrational signal.
It can be well used to decompose the vibrational signal.

The vibration signal is decomposed by the improved
TQWT and nine sub-bands are obtained. Table 3 shows the
nine sub-bands with different indexes. The first column is the
sub-bands in descending order according to different indexes.
The other columns are the decomposition levels with different
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Figure 14. KR of all sub-bands obtained by TQWT with different
Q and J.

Figure 15. Wavelets and frequency response of TQWT optimized
by KR.

indexes. We can see that the sub-bands and the decomposi-
tion level are disrupted. The last row contains the weight of
kurtosis and RMS. They are 0.4094 and 0.5906 respectively.
Take the first sub-band for example, the decomposition level 3
has the biggest KR 6.7183 and the RMS 5.9065, but the kur-
tosis is 7.8892, which is not the biggest kurtosis, The KR can
be calculated according to the equation (19):

KR= 0.4094× 7.8892+ 0.5906× 5.9065≈ 6.7182. (25)

In fact the KR is 6.7183, this error is caused by the reser-
vation of only five significant digits.

The waveform of sub-bands sorted descending according
to KR is shown in figure 16. From figure 16 we can see that all
sub-bands have impact vibration, namely all sub-bands have
fault features.

Table 3. Nine sub-bands with different indexes.

Decomposition level: indexes

Sub-bands descend KR Kurtosis RMS

1 3: 6.7183 4: 8.5437 3: 5.9065
2 4: 5.5262 3: 7.8892 7: 5.2932
3 7: 5.3433 1: 6.1465 6: 4.6871
4 2: 5.0538 2: 5.8046 2: 4.5333
5 6: 4.8407 5: 5.6626 8: 4.0213
6 5: 4.3748 7: 5.4154 5: 3.4819
7 8: 4.0487 6: 5.0622 4: 3.4341
8 1: 3.7209 8: 4.0883 9: 3.0170
9 9: 3.3814 9: 3.9069 1: 2.0391

Weight 0.4094 0.5906

Figure 16. Waveform of all sub-bands obtained by TQWT
optimized by KR.

Hilbert envelope analysis is carried out on the nine sub-
bands as shown in figure 17. It can be seen that there are fre-
quencies of 121.875 Hz in the first four sub-bands. It is close
to the fault characteristic frequencies of inner race 123.13 Hz.
The doubling frequencies are also found. So, it can be determ-
ined that the bearing had a fault in the inner race. Furthermore,
there are frequencies of 76.875 Hz and its multiple frequen-
cies in the last five sub-bands. It is close to the fault character-
istic frequencies of outer race 76.31 Hz. Which means that the
bearing had a fault in the outer race else. So, the conclusion is
that the bearing had a compound fault of inner and outer race.
It is coincident with the fact. We also can see that the inner
race fault features are only in the first four sub-bands and outer
race fault features are only in the last five sub-bands, namely
the fault features are isolated. That makes compound fault dia-
gnosis of rolling bearings more convenient and accurate.

4.2.3. Compared method. In order to further demonstrate
the effectiveness of thismethod, the kurtosis andRMS are used
to optimize the parameters of TQWT as comparisons.

TQWT optimized by kurtosis was took as the first
comparison. The r is set to 3 and the Qmax is set to 4, which is
the same as proposed method. The kurtosis of all sub-bands
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Figure 17. Hilbert envelopes of the nine sub-bands.
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Figure 18. Kurtosis of all sub-bands obtained by TQWT with
different Q and J.

obtained by TQWT with different Q and J are shown in
figure 18. Only five significant digits are reserved for conveni-
ence of presentation. The left axis is Q in the range of 1–4 in
0.2 steps. The right axis is J, whose value is 6, 7, 8 or 9. The
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Figure 19. Waveform of sub-bands sorted descending according to
kurtosis.

lower axis is sub-band level. Each rectangle represents a sub-
band. The number is the kurtosis of the sub-band. It shows that
the biggest kurtosis is obtained as 8.6845 when Q= 3.8 and
J= 9. Then, ten sub-bands are obtained, and the kurtosis of all
sub-band from level 1 to level 10 are 5.4951, 5.6921, 5.9762,
7.8931, 8.6845, 5.5813, 4.3468, 5.4526, 4.4742 and 3.9632
respectively, which are marked red. In the process of itera-
tion, Q and J are set to other parameters, and only the biggest
KR is shown in the figure, they are little than 8.6845 (Q= 3.8
and J= 9). So, the optimal parameter combination is r= 3,
Q= 3.8 and J= 9.

The vibration signal is decomposed into ten sub-bands
by TQWT with the parameters. The waveform of sub-bands
sorted descending according to kurtosis are shown in the
figure 19. It shows that the 6th sub-band does not have obvious
features. The Hilbert envelopes analysis of the ten sub-bands
are shown in figure 20. We can see that there are frequencies
of 121.875 Hz and the doubling frequencies in the first two
sub-bands. It is close to the fault characteristic frequencies of
outer race 123.13 Hz. And there are frequencies of 76.875 Hz
and its multiple frequencies in the 4th, 7th, and 8th sub-bands.
It is close to the fault characteristic frequencies of inner race
76.31 Hz. But for the 3rd and 9th sub-bands there are both fre-
quencies of 121.875 Hz and 76.875 Hz. Which means that the
fault features are not separated. For the 5th sub-band, there is
only frequencies of 121.875Hz, in addition, there are not obvi-
ous features in the 6th sub-band. It is obvious that the features
of sub-bands obtained by the TQWT optimized by kurtosis are
not separated. So, the proposed improved TQWT has a better
decomposition performance.

Next, let us take TQWT optimized by RMS as the second
comparison. The parameters of r and Qmax is same as the
proposed method. The RMS of all sub-bands obtained by
TQWT with different Q and J are shown in figure 21. After
16 iterations, the optimal parameters Q= 3.6 and J= 9 are
obtained. The vibration signal is decomposed into ten sub-
bands by TQWT with the parameters. The waveform of sub-
bands sorted descending according to RMS are shown in
the figure 22. It is obvious that the 10th sub-band does not
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Figure 20. Hilbert envelopes of the ten sub-bands.
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Figure 21. RMS of all sub-bands obtained by TQWT with different
Q and J.

has obvious fault features. The Hilbert envelopes of the ten
sub-bands are shown in figure 23. We can see that there are
frequencies of 76.31 Hz and the doubling frequencies in the
1st, 4th and 9th sub-bands. It is close to the fault characteristic
frequencies of outer race 76.875 Hz. There are frequencies of
121.875 Hz and its multiple frequencies in the 2nd and 3rd
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Figure 22. Waveform of sub-bands sorted descending according to
RMS.
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Figure 23. Hilbert envelopes of the ten sub-bands.

sub-bands. It is close to the fault characteristic frequencies of
outer race 123.13 Hz. But for the 5th, 7th and 8th sub-bands
there are not the multiple frequencies. And the 6th and 10th
sub-bands does not have obvious features. Even though, the
features are separated, but they are not sorted by the rms.
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5. Conclusions

In this paper, a novel method of compound fault diagnosis of
rolling bearings based on improved TQWT is proposed. In this
method, the TQWT is improved by a new evaluation indexKR,
the Q-factor and decomposition level can be determined at the
same time. The performance of the proposed method is veri-
fied by the analysis of both simulation and experiment. The
result shows that KR takes advantages of kurtosis and RMS,
making it better to be used for improving the TQWT. In the
improved TQWT, the key parameters Q-factor and decom-
position level can be simultaneously and adaptively determ-
ined according to the vibration signal. The vibration signal
can be effectively decomposed into a serial of sub-bands by
the improved TQWT. All sub-bands contain fault features and
the different fault features are separated into the different sub-
bands, the fault type can be easily and accurately identified. In
the future research, the improved kurtosis will be used for the
optimization of other decomposition method such as empirical
mode decomposition, local mean decomposition, variational
mode decomposition, et al. And the improved TQWT will
be used for feature extraction with other feature extraction
method such as entropy to improve the accuracy of fault classi-
fication model such as support vector machine, extreme learn-
ing machine, neural networks, et al. In real application, the
operating conditions of bearings such as load and speed are
constantly changing and the fault diagnosis of bearings under
variable conditions is still not be solved. So, the future work
will focus on the compound fault diagnosis of bearings under
variable conditions.
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