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Abstract 
 
Aims: The aim of this paper is to develop the 2-tuple linguistic Bonferroni mean and the 
weighted 2-tuple linguistic Bonferroni mean. 
Study Design: Some desirable properties and special cases of the developed operators are 
discussed. The geometric Bonferroni mean (GBM) is a generalization of the Bonferroni mean 
and geometric mean. In this paper, we also investigate the GBM under 2-tuple linguistic 
environments. We develop the 2-tuple linguistic geometric Bonferroni mean and the weighted 2-
tuple linguistic geometric Bonferroni mean. We investigate some fundamental properties and 
special cases of them. 
Place and Duration of Study: The Bonferroni Mean (BM) operator is a traditional mean type 
aggregation operator, which can capture the expressed interrelationship of the individual 
arguments and which is only suitable to aggregate crisp data. 
Methodology: This paper extends the BM operator to 2-tuple linguistic environments. 
Results: Based on these operators, we develop two approaches for multiple attribute group 
decision making with 2-tuple linguistic information. 
Conclusion: Two numerical examples are provided to illustrate the effectiveness and 
practicality of the proposed approaches. 

Keywords: Multiple attribute group decision making; 2-tuple linguistic information; 2-tuple 
linguistic Bonferroni mean; 2-tuple linguistic geometric Bonferroni mean. 

 

1 Introduction 
 
In many multiple attribute group decision making (MAGDM) problems, the decision information 
about alternatives is usually uncertain or fuzzy due to the increasing complexity of the socio-
economic environment and the vagueness of inherent subjective nature of human thinking [1,2,3]; 
thus, it may be appropriate and sufficient to assess the decision information in a qualitative form 
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rather than a quantitative form. For example, when evaluating a house’s cost, linguistic terms such 
as ‘‘high’’, ‘‘medium’’, and ‘‘low’’ are usually used, and when evaluating a house’s design, 
linguistic terms like ‘‘good’’, ‘‘medium’’, and ‘‘bad’’ can be frequently used. To date, many 
methods have been developed for dealing with linguistic information [4-13]. Herrera and Martinez 
[14] introduced a 2-tuple fuzzy linguistic representation model that represents the linguistic 
information by means of 2-tuples, which are composed by a linguistic term and a number [14,15]. 
The main advantage of this representation is to allow a continuous representation of the linguistic 
information on its domain; therefore, it can represent any counting of information obtained in a 
aggregation process without any loss of information [14,15]. In the past few decades, a variety of 
2-tuple linguistic aggregation operators [15-24] have been developed for aggregating 2-tuple 
linguistic information. However, these 2-tuple linguistic aggregation operators only emphasize the 
importance of each data or ordered position and they cannot reflect the interrelationships of 
individual data. 
 
The Bonferroni mean, originally introduced by Bonferroni [25], is a mean-type aggregation 
operator and it can provide for the aggregation lying between the max and min operators and the 
logical “or” and “and” operators [26]. The desirable characteristic of the BM is its capability to 
capture the interrelationship between input arguments [26]. Recently, Yager [27] gave a detailed 
studied of the BM and proposed some generalizations of the BM. However, the BM [25] and its 
these generalizations [27] only can accommodate the situations where the input arguments take 
the form of crisp numbers. In many group decision makings, the attribute values are given in the 
form of the other types of domains which are not suitable to be aggregated by the BM, such as 
interval numbers [28], intuitionistic fuzzy numbers [29], interval-valued intuitionistic fuzzy 
numbers [30], hesitant fuzzy elements [31], uncertain linguistic variables [32], and triangular 
fuzzy linguistic variables [33]. To address this issue, some authors have suggested some new 
generalizations of the BM, including the uncertain Bonferroni mean operator [34], the weighted 
uncertain Bonferroni mean operator [34], the intuitionistic fuzzy BM (IFBM) [26], the weighted 
intuitionistic fuzzy Bonferroni mean (WIFBM) [26], the Atanassov’s intuitionistic fuzzy 
geometric Bonferroni mean [35], the weighted Atanassov’s intuitionistic fuzzy geometric 
Bonferroni mean [35], the interval-valued intuitionistic fuzzy Bonferroni mean [36], the weighted 
interval-valued intuitionistic fuzzy Bonferroni mean [36], the hesitant fuzzy geometric Bonferroni 
mean (HFGBM) [37], the hesitant fuzzy Choquet geometric Bonferroni mean (HFCGBM) [37], 
the weighted hesitant fuzzy geometric Bonferroni mean (WHFGBM) [37], the weighted hesitant 
fuzzy Choquet geometric Bonferroni mean (WHFCGBM) [37], the uncertain linguistic Bonferroni 
mean (ULBM) operator [38], the uncertain linguistic weighted Bonferroni mean (ULWBM) 
operator [38], the uncertain linguistic geometric Bonferroni mean (ULGBM) operator [38], the 
uncertain linguistic weighted geometric Bonferroni mean (ULWGBM) operator [38], the 
trapezoid fuzzy linguistic Bonferroni mean (TFLBM) operator [39], the trapezoid fuzzy linguistic 
weighted Bonferroni mean (TFLWBM) operator [39], the trapezoid fuzzy linguistic Bonferroni 
OWA (TFLBOWA) operator [39], the trapezoid fuzzy linguistic weighted Bonferroni OWA 
(TFLWBOWA) operator [39], the generalized intuitionistic fuzzy weighted Bonferroni mean 
(GIFWBM) [40], and the generalized weighted Bonferroni geometric mean (GWBGM) [40]. 
However, these Bonferroni mean operators cannot accommodate the situations where the input 
arguments take the form of 2-tuples. 
 
Based on the aforementioned analysis, we can conclude that the existing 2-tuple linguistic 
aggregation operators do not consider the interrelationship of the individual arguments, while the 
existing Bonferroni mean operators cannot accommodate the situations in which the input 
arguments take the form of 2-tuples. To overcome this drawback, it is therefore necessary to 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(11), 1567-1614, 2014 
 
 

1569 
 

develop some new aggregation operators that not only accommodate 2-tuple linguistic information 
but also consider the interrelationship of the individual arguments. To do this, we extend the BM 
operator to 2-tuple linguistic environments and then develop two 2-tuple linguistic aggregation 
operators, including the 2-tuple linguistic Bonferroni mean and the weighted 2-tuple linguistic 
Bonferroni mean. The desirable characteristic of these two operators is that they not only 
accommodate the input arguments in the form of 2-tuples but also reflect the interrelationship of 
the input arguments. Xia et al. [35] introduced a new Bonferroni mean called the geometric 
Bonferroni mean based on the BM and the geometric mean (GM). We further extend the GBM 
operator to 2-tuple linguistic environments and develop the 2-tuple linguistic geometric 
Bonferroni mean and the weighted 2-tuple linguistic geometric Bonferroni mean. Finally, we 
utilize the proposed operators to develop two approaches for multiple attribute group decision 
making with 2-tuple linguistic information and then apply both the developed approaches to two 
practical examples. 
 
The remainder of this paper is organized as follows. In Section 2, we briefly review some basic 
concepts and operations related to the 2-tuple fuzzy linguistic representation model, the BM, and 
the GBM. In Section 3, the 2-tuple linguistic Bonferroni mean and the weighted 2-tuple linguistic 
Bonferroni mean are developed, some desirable properties of these operators are studied, and 
some special cases are discussed. Section 4 develops the 2-tuple linguistic geometric Bonferroni 
mean and the weighted 2-tuple linguistic geometric Bonferroni mean. Section 5 introduces two 
approaches based on these operators for multiple attribute group decision making with 2-tuple 
linguistic information. In Section 6, we give two practical examples to illustrate the group 
decision making steps based on the proposed approaches. Section 7 ends this paper with some 
concluding remarks. 
 

2. Preliminaries 

 
In this section, we will introduce the basic notions of the 2-tuple fuzzy linguistic approach, 
Bonferroni mean, and geometric Bonferroni mean. 
 
2.1 The 2-tuple Fuzzy Linguistic Representation Model 
 
Let { }0,1,2, ,iS s i gL= =  be a finite and totally ordered discrete linguistic term set with odd 

cardinality, where is  represents a possible value for a linguistic variable, and it should satisfy the 
following characteristics [14,41,42]. 
 
(1) The set is ordered: i js s≥  if i j≥ ; 

(2) There is the negation operator: ( )i jneg s s=  such that j g i= − ; 

(3) Max operator: ( )max ,i j is s s=  if i js s≥ ; 

(4) Min operator: ( )min ,i j is s s=  if i js s≤ . 
 

For example, a set of seven terms S could be given as follows [43-47]: 
    { }0 1 2 3 4 5 6, , , , , ,S s nothing s very low s low s medium s high s very high s perfect= = = = = = = = . 
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Based on the concept of symbolic translation, Herrera and Martinez [14,41] introduced a 2-tuple 
fuzzy linguistic representation model for dealing with linguistic information. This model 

represents the linguistic assessment information by means of a 2-tuple ( ),is α , where is S∈  

represents a linguistic label from the predefined linguistic term set S and [ )0.5,0.5α ∈ −  is the 

value of symbolic translation. 
 
Definition 2.1 [14,41]. Let β  be the result of an aggregation of the indexes of a set of labels 

assessed in a linguistic term set S , i.e., the result of a symbolic aggregation operation. 

[ ]0,gβ ∈ , being 1g +  the cardinality of S. Let ( )roundi β=  and iα β= −  be two values 

such that [ ]0,i g∈  and [ )0.5,0.5α ∈ −  then α  is called a symbolic translation, where ( )round ⋅  

is the usual round operation. 
 

Definition 2.2 [14,41]. Let { }0,1,2, ,iS s i gL= =  be a linguistic term set and [ ]0,gβ ∈  a 

value representing the result of a symbolic aggregation operation. Then, the 2-tuple that expresses 
the equivalent information to β  is obtained with the following function: 
 

[ ] [ ): 0, 0.5,0.5g S∆ → × −                                                                                       (1) 

( ) ( ),isβ α∆ = ,    with 
( )

[ )
, round

, 0.5,0.5

is i

i

β
α β α
 =


= − ∈ −
                                          (2) 

 
where is  has the closest index label to β  and α  is the value of the symbolic translation. 

Theorem 2.1 [14,41]. Let { }0,1,2, ,iS s i gL= =  be a linguistic term set and ( ),is α  be a 2-

tuple. There is always a 1−∆  function such that from a 2-tuple it returns its equivalent numerical 

value [ ]0,g Rβ ∈ ⊂ , where 

 

[ ) [ ]1 : 0.5,0.5 0,S g−∆ × − →                                                                                     (3) 

( )1 ,is iα α β−∆ = + = .                                                                                            (4) 

It is obvious that the conversion of a linguistic term into a 2-tuple consists of adding a value zero 
as symbolic translation 
 

( ),0i is S s∈ ⇒ . 

 
Definition 2.3 [14,41]. The comparison of linguistic information represented by 2-tuples is carried 

out according to an ordinary lexicographic order. Let ( ),k ks α  and ( ),l ls α  be two 2-tuples, with 

each one representing a counting of information as follows. 
 

(1) If k l<  then ( ),k ks α  is smaller than ( ),l ls α . 

(2) If k l=  then 
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• if k lα α=  then ( ),k ks α , ( ),l ls α  represents the same information; 

• if k lα α<  then ( ),k ks α  is smaller than ( ),l ls α ; 

• if k lα α>  then ( ),k ks α  is bigger than ( ),l ls α . 

 

Theorem 2.2. Let ( ),k ks α  and ( ),l ls α  be two 2-tuples, ( )1 ,k k ksβ α−= ∆ , and 

( )1 ,l l lsβ α−= ∆ . Then, ( ) ( ), ,k k l ls sα α<  if and only if k lβ β< , and ( ) ( ), ,k k l ls sα α=  if 

and only if k lβ β= . 

 

Proof. (1) We first prove that ( ) ( ), ,k k l ls sα α<  if and only if k lβ β< . Assume that 

( ) ( ), ,k k l ls sα α< . Then, k l< , or k l=  and k lα α< . If k l< , then we have 

0.5 0.5k k l lk k l lβ α α β= + < + ≤ − ≤ + = . If k l=  and k lα α< , then we have 

k k l lk lβ α α β= + < + = . 
 

Assume that k lβ β< . Then, k l< , or k l=  and k lα α< . If k l< , then we have 

( ) ( ), ,k k l ls sα α< . If k l=  and k lα α< , then we have ( ) ( ), ,k k l ls sα α< . 

 

(2) We next prove that ( ) ( ), ,k k l ls sα α=  if and only if k lβ β= . If ( ) ( ), ,k k l ls sα α= , then 

k l=  and k lα α= , which implies that k k l lk lβ α α β= + = + = . If k lβ β= , then k l=  and 

k lα α= , which implies that ( ) ( ), ,k k l ls sα α= . 

                                                                                                                                                                                           
2.2 Bonferroni Mean and Geometric Bonferroni Mean 
 
Bonferroni [25] originally introduced a mean type aggregation operator, called Bonferroni mean, 
which can provide for aggregation lying between the max, min operators and the logical “or” and 
“and” operators. 
 
Definition 2.4 [25]. Let , 0p q ≥ , and let ( )1,2, ,ia i n= L  be a collection of non-negative real 

numbers. Then, the aggregation function: 

                 ( ) ( )

1

,
1 2

, 1

1
, , ,

1

p q
n

p q p q
n i j

i j
i j

B a a a a a
n n

+

=
≠

 
 =
 − 
 

∑L                                                             (5) 

is called a Bonferroni mean (BM). 
 
Based on the usual geometric mean (GM) and the BM, Xia et al. [35] introduced the geometric 
Bonferroni mean, which was defined as follows: 
 
Definition 2.5 [35]. Let , 0p q ≥ , and ( )1,2, ,ia i n= L   be a collection of non-negative numbers. 

If 
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             ( ) ( ) ( )
1

, 1
1 2

, 1

1
, , ,

n
p q n n

n i j
i j
i j

GB a a a pa qa
p q

−

=
≠

= +
+ ∏L                                                      (6)  

then we call ,p qGB  the geometric Bonferroni mean (GBM). 
 

3.  2-tuple Linguistic Bonferroni Mean and Weighted 2-tuple 
Linguistic Bonferroni Mean 

 
In this section, we first extend the Bonferroni mean operator (Eq. (5)) to 2-tuple linguistic 
environment, i.e., develop a 2-tuple linguistic Bonferroni mean operator and its weight form. 
 
Definition 3.1. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-tuples. If 

  ( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )
1

, 1 1
1 1 2 2

, 1

1
2TLB , , , , , , , ,

1
L

p q
n qpp q

n n i i j j
i j
i j

r r r r r
n n

α α α α α
+

− −

=
≠

 
  
  = ∆ ∆ ⋅ ∆
 −  
  
 

∑
,      (7) 

then ,2TLBp q  is called the 2-tuple linguistic Bonferroni mean (2TLBM). 
 
In what follows, we investigate some desirable properties of the 2TLBM: 
 
Theorem 3.1. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-

tuples. Then, the following properties hold. 
 

(1) Commutativity: If ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′  is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL , then 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,
1 1 2 2 1 1 2 22TLB , , , , , , 2TLB , , , , , ,p q p q

n n n nr r r r r rα α α α α α′ ′ ′ ′ ′ ′=L L .     (8) 

 

(2) Idempotency: If ( ) ( ), ,i ir rα α=  for all i , then 

 

( ) ( ) ( )( ) ( ),
1 1 2 22TLB , , , , , , ,p q

n nr r r rα α α α=L .                                                 (9) 

(3) Boundedness: 
 

( ){ } ( ) ( ) ( )( ) ( ){ },
1 1 2 2

1 1
min , 2TLB , , , , , , max ,p q

i i n n i i
i n i n

r r r r rα α α α α
≤ ≤ ≤ ≤

≤ ≤L .           (10) 
 

(4) Monotonicity: Let ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL  and ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL  be two 

collections of 2-tuples, if ( ) ( ), ,i i i ir rα α≤  , for all i  , then  

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,
1 1 2 2 1 1 2 22TLB , , , , , , 2TLB , , , , , ,p q p q

n n n nr r r r r rα α α α α α≤L L .    (11) 
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Proof. (1) Since ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′  is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α , we have 
 

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )

,
1 1 2 2

1

1 1

, 1

1

1 1

, 1

,
1 1 2 2

2TLB , , , , , ,

1
, ,

1

1
, ,

1

2TLB , , , , , ,

L

L

p q
n n

p q
n qp

i i j j
i j
i j

p q
n qp

i i j j
i j
i j

p q
n n

r r r

r r
n n

r r
n n

r r r

α α α

α α

α α

α α α

+

− −

=
≠

+

− −

=
≠

 
  
  = ∆ ∆ ⋅ ∆
 −  
  
 

 
  
  ′ ′ ′ ′= ∆ ∆ ⋅ ∆
 −  
  
 

′ ′ ′ ′ ′ ′=

∑

∑

 
 

(2) If ( ) ( ), ,i ir rα α=  for all i , then 

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )

( ) ( )( )( )

,
1 1 2 2

1

1 1

, 1

1

1 1

, 1

1

1

, 1

2TLB , , , , , ,

1
, ,

1

1
, ,

1

1
,

1

L
p q

n n

p q
n qp

i i j j
i j
i j

p q
n p q

i j
i j

p q
n p q

i j
i j

r r r

r r
n n

r r
n n

r r
n n

α α α

α α

α α

α

+

− −

=
≠

+

− −

=
≠

+
+−

=
≠

 
  
  = ∆ ∆ ⋅ ∆
 −  
  
 

 
  
  = ∆ ∆ ⋅ ∆
 −  
  
 

 
  
  = ∆ ∆ =
 −  
  
 

∑

∑

∑ ( ),α

 

 

(3) Because ( ){ } ( ) ( ){ }
1 1
min , , max ,i i i i i i

i n i n
r r rα α α

≤ ≤ ≤ ≤
≤ ≤ , we have 

  

( ){ } ( ) ( ){ }( )( ) ( ){ }( )( )

( ) ( )( ) ( )( )( )

( ) ( ){ }( )( ) ( ){ }( )( )

1

1 1

1 1 1
, 1

1

1 1

, 1

1 1

1 1

1
min , min , min ,

1

1
, ,

1

1
max , max ,

1

p q
n p q

i i i i i i
i n i n i n

i j
i j

p q
n qp

i i j j
i j
i j

p

i i i i
i n i n

r r r
n n

r r
n n

r r
n n

α α α

α α

α α

+

− −

≤ ≤ ≤ ≤ ≤ ≤=
≠

+

− −

=
≠

− −

≤ ≤ ≤ ≤

 
     = ∆ ∆ ⋅ ∆  −   
  
 

 
  
  ≤ ∆ ∆ ⋅ ∆
 −  
  
 

≤ ∆ ∆ ⋅ ∆
−

∑

∑

( ){ }

1

, 1

1
max , .

p q
n q

i j
i j

i i
i n

r α

+

=
≠

≤ ≤

 
          
  
 

=

∑

                          

(4) 
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( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )

1

, 1 1
1 1 2 2

, 1

1

1 1

, 1

,
1 1 2 2

1
2TLB , , , , , , , ,

1

1
, ,

1

2TLB , , , , , ,

L

L

p q
n qpp q

n n i i j j
i j
i j

p q
n qp

i i j j
i j
i j

p q
n n

r r r r r
n n

r r
n n

r r r

α α α α α

α α

α α α

+

− −

=
≠

+

− −

=
≠

 
  
  = ∆ ∆ ⋅ ∆
 −  
  
 

 
  
  ≤ ∆ ∆ ⋅ ∆
 −  
  
 

=

∑

∑
 

The proof of Theorem 3.1 is complete. 
 

Theorem 3.2. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-tuples. 

Then, we have 
 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,
1 1 2 2 1 1 2 22TLB , , , , , , 2TLB , , , , , ,p q q p

n n n nr r r r r rL Lα α α α α α= . (12) 

Proof. 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )

1

, 1 1
1 1 2 2

, 1

1

1 1

, 1

,
1 1 2 2

1
2TLB , , , , , , , ,

1

1
, ,

1

2TLB , , , , , ,

L

L

p q
n qpp q

n n i i j j
i j
i j

q p
n q p

j j i i
j i
j i

q p
n n

r r r r r
n n

r r
n n

r r r

α α α α α

α α

α α α

+

− −

=
≠

+

− −

=
≠

 
  
  = ∆ ∆ ⋅ ∆
 −  
  
 

 
  
  = ∆ ∆ ⋅ ∆
 −  
  
 

=

∑

∑
   (13) 

The proof of Theorem 3.2 is complete. 
 

In the following, let us consider some special cases of the 2TLBM operator by taking different 
values of the parameters p  and q . 
 

Case1. If 0q → , then, by Eq. (7), we have 

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( )( ) ( ) ( ) ( )( )( )

,
1 1 2 20

1

1 1

0
, 1

1
1

1 1

, 1 1

lim 2TLB , , , , , ,

1
lim , ,

1

1 1
, 1 ,

1 1

1

p q
n nq

p q
n qp

i i j j
q

i j
i j

p
n n pp p

i i i i
i j i
i j

r r r

r r
n n

r n r
n n n n

n

α α α

α α

α α

→

+

− −

→ =
≠

− −

= =
≠

−

 
  
  = ∆ ∆ ⋅ ∆
 −  
  
 

 
        = ∆ ∆ = ∆ − ∆    − −     

    
 

= ∆ ∆

∑

∑ ∑

L

( )( ) ( ) ( ) ( )( )
1

1 ,0
1 1 2 2

1

, 2TLB , , , , , ,
n pp p

i i n n
i

r r r rα α α α
=

 
   =    
 

∑ L

             (14) 
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which we call the generalized 2-tuple linguistic mean [21]. 
 
Case 2. If 2p =  and 0q → , then Eq. (7) is transformed as: 

    

( ) ( ) ( )( ) ( ) ( )( )( )

( )( )

1
2

22,0 1
1 1 2 2

, 1

1

221

1

1
2TLB , , , , , , ,

1

1
,

n

n n i i
i j
i j

n

i i
i

r r r r
n n

r
n

α α α α

α

−

=
≠

−

=

 
  
  = ∆ ∆
 −  
  
 

 
  = ∆ ∆    
 

∑

∑

L

     (15) 

which we call the 2-tuple linguistic square mean [21]. 
 
Case 3. If 1p =  and 0q → , then Eq. (7) reduces to the 2-tuple linguistic average [21]: 

  

( ) ( ) ( )( ) ( ) ( )( )( )

( )

1

11,0 1
1 1 2 2

, 1

1

1

1
2TLB , , , , , , ,

1

1
,

n

n n i i
i j
i j

n

i i
i

r r r r
n n

r
n

α α α α

α

−

=
≠

−

=

  
  = ∆ ∆  −    

 = ∆ ∆ 
 

∑

∑

L

 (16) 

Case 4. If 1p q= = , then Eq. (7) reduces to the following:  

( ) ( ) ( )( ) ( ) ( ) ( )( )
1

2

1,1 1 1
1 1 2 2

, 1

1
2TLB , , , , , , , ,

1
L

n

n n i i j j
i j
i j

r r r r r
n n

α α α α α− −

=
≠

 
  
  = ∆ ∆ ⋅∆
 −  
  
 

∑      (17) 

which we call the 2-tuple linguistic interrelated square mean. 
 
Case 5. If p → +∞  and 0q → , then Eq. (7) reduces to the 2-tuple linguistic maximum operator: 
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( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( )( )

( ) ( )

,
1 1 2 2

0

1

1 1

0
, 1

1

1

, 1

1

lim 2TLB , , , , , ,

1
lim lim , ,

1

1
lim ,

1

1
lim 1

1

L
p q

n np
q

p q
n qp

i i j j
p q

i j
i j

p
n p

i i
p

i j
i j

p

r r r

r r
n n

r
n n

n
n n

α α α

α α

α

→+∞
→

+

− −

→+∞ → =
≠

−

→+∞ =
≠

−

→+∞

  
   
   = ∆ ∆ ⋅ ∆
  −  
   
  

 
  
  = ∆ ∆
 −  
  
 

= ∆ − ∆
−

∑

∑

( )( )( ) ( )( )

( ){ }( ) ( ) ( ) ( )( )

1 1

1

1 1

1 ,0
1 1 2 20 1

1
, lim ,

lim max , =2TLB , , , , , ,L

n np pp p

i i i i
p

i i

i i n np i n

r r
n

r r r r

α α

α α α α

−

→+∞= =

− +∞

→ ≤ ≤

         = ∆ ∆              

= ∆ ∆

∑ ∑

            (18) 

 
In the 2TLBM operator, the importance of the input arguments is not emphasized. Nevertheless, in 
many practical situations, the weights of the input arguments should be taken into account. If we 
allow the arguments to have different weights, then the weighted 2-tuple linguistic Bonferroni 
mean (W2TLBM) operator can be defined as follows: 
 
Definition 3.2. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-

tuples. ( )1 2, , ,
T

nw w w w= L  is the weight vector of ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL , where iw  

indicates the importance degree of ( ),i ir α , satisfying [ ]0,1iw ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

w
=

=∑ . If 

   

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

,

1 1 2 2

1

1 1

, 1

W2TLB , , , , , ,

1
, ,

1

p q

w n n

p q
n qp

i i i j j j
i j
i j

r r r

w r w r
n n

α α α

α α
+

− −

=
≠

 
  
  = ∆ ⋅∆ ⋅ ⋅∆
 −  
  
 

∑

L

,           (19) 

then 
,

W2TLB
p q

w  is called the weighted 2-tuple linguistic Bonferroni mean (W2TLBM). 

 
Theorem 3.3. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL  and ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL  be two collections of 2-

tuples, if ( ) ( ), ,n n n nr rα α≤  , for all i  , then 

  ( ) ( ) ( )( ) ( ) ( ) ( )( ), ,

1 1 2 2 1 1 2 2W2TLB , , , , , , W2TLB , , , , , ,
p q p q

w n n w n nr r r r r rα α α α α α≤L L .   (20) 
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Proof. 

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )

,

,

1 1 2 2

1

1 1

, 1

1

1 1

, 1

1 1 2 2

W2TLB , , , , , ,

1
, ,

1

1
, ,

1

W2TLB , , , , , ,

p q

p q

w n n

p q
n qp

i i i j j j
i j
i j

p q
n qp

i i i j j j
i j
i j

w n n

r r r

w r w r
n n

w r w r
n n

r r r

α α α

α α

α α

α α α

+

− −

=
≠

+

− −

=
≠

 
  
  = ∆ ⋅∆ ⋅ ⋅∆
 −  
  
 

 
  
  ≤ ∆ ⋅ ∆ ⋅ ⋅ ∆
 −  
  
 

=

∑

∑

L

L

 

The proof of Theorem 3.3 is complete. 
 
The W2TLBM operator is neither idempotent, bounded, nor commutative. 
 
Theorem 3.4. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-

tuples. ( )1 2, , ,
T

nw w w w= L  is the weight vector of ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL , satisfying 

[ ]0,1iw ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

w
=

=∑ . Then, we have 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,

1 1 2 2 1 1 2 2W2TLB , , , , , , W2TLB , , , , , ,
p q q p

w n n w n nr r r r r rL Lα α α α α α=
   

(21) 

Proof. 

( ) ( ) ( )( )

( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )
( ) ( ) ( )( )

,

,

1 1 2 2

1

1 1

, 1

1

1 1

, 1

1 1 2 2

W2TLB , , , , , ,

1
, ,

1

1
, ,

1

W2TLB , , , , , ,

p q

q p

w n n

p q
n qp

i i i j j j
i j
i j

q p
n q p

j j j i i i
j i
j i

w n n

r r r

w r w r
n n

w r w r
n n

r r r

L

L

α α α

α α

α α

α α α

+

− −

=
≠

+

− −

=
≠

 
  
  = ∆ ⋅∆ ⋅ ⋅∆
 −  
  
 

 
  
  = ∆ ⋅ ∆ ⋅ ⋅∆
 −  
  
 

=

∑

∑
 

The proof of Theorem 3.4 is complete. 
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4.  2-tuple Linguistic Geometric Bonferroni Mean and Weighted 
2-tuple Linguistic Geometric Bonferroni Mean 

 
In this section, we shall investigate the geometric Bonferroni mean under 2-tuple linguistic 
environments, i.e., develop a 2-tuple linguistic geometric Bonferroni mean operator and its weight 
form. 
 
Definition 4.1. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-tuples. If 

( ) ( ) ( )( ) ( ) ( )( ) ( )
1

, 1 1 1
1 1 2 2

, 1

1
2TLGB , , , , , , , ,L

n
p q n n

n n i i j j
i j
i j

r r r p r q r
p q

α α α α α− − −

=
≠

 
 = ∆ ⋅ ∆ + ⋅∆
 + 
 

∏ ,  (22) 

then ,2TLGBp q  is called the 2-tuple linguistic geometric Bonferroni mean (2TLGBM). 
 
In what follows, we investigate some desirable properties of the 2TLGBM: 
 
Theorem 4.1. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-

tuples. Then, the following properties hold. 
 

(1) Commutativity: If ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′  is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL , then 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,
1 1 2 2 1 1 2 22TLGB , , , , , , 2TLGB , , , , , ,p q p q

n n n nr r r r r rα α α α α α′ ′ ′ ′ ′ ′=L L .     (23) 

 

(2) Idempotency: If ( ) ( ), ,i ir rα α=  for all i , then 

 

( ) ( ) ( )( ) ( ),
1 1 2 22TLGB , , , , , , ,p q

n nr r r rα α α α=L .                                            (24) 

 
(3) Boundedness: 
 

( ){ } ( ) ( ) ( )( ) ( ){ },
1 1 2 2

1 1
min , 2TLGB , , , , , , max ,p q

i i n n i i
i n i n

r r r r rα α α α α
≤ ≤ ≤ ≤

≤ ≤L .        (25) 

 

(4) Monotonicity: Let ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL  and ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL  be two 

collections of 2-tuples, if ( ) ( ), ,i i i ir rα α≤  , for all i  , then 

 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,
1 1 2 2 1 1 2 22TLGB , , , , , , 2TLGB , , , , , ,p q p q

n n n nr r r r r rα α α α α α≤L L .  (26) 
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Proof. (1) Since ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α′ ′ ′ ′ ′ ′  is any permutation of 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α , then we have 

 

( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )( )

,
1 1 2 2

1
1 1 1

, 1

1
1 1 1

, 1

,
1 1 2 2

2TLGB , , , , , ,

1
, ,

1
, ,

2TLGB , , , , , ,

p q
n n

n
n n

i i j j
i j
i j

n
n n

i i j j
i j
i j

p q
n n

r r r

p r q r
p q

p r q r
p q

r r r

α α α

α α

α α

α α α

− − −

=
≠

− − −

=
≠

 
 = ∆ ⋅∆ + ⋅∆
 + 
 

 
 ′ ′ ′ ′= ∆ ⋅∆ + ⋅∆
 + 
 

′ ′ ′ ′ ′ ′=

∏

∏

L

L

 

 

(2) If ( ) ( ), ,i ir rα α=  for all i , then 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( )

1
, 1 1 1

1 1 2 2
, 1

1
1 1 1

, 1

1
2TLGB , , , , , , , ,

1
, ,

,

L

n
p q n n

n n i i j j
i j
i j

n
n n

i j
i j

r r r p r q r
p q

p r q r
p q

r

α α α α α

α α

α

− − −

=
≠

− − −

=
≠

 
 = ∆ ⋅∆ + ⋅∆
 + 
 

 
 = ∆ ⋅∆ + ⋅∆
 + 
 

=

∏

∏

 
 

(3) Because ( ){ } ( ) ( ) ( )( ) ( ){ }1 1 2 2
1 1
min , 2TLPG , , , , , , max ,i i n n i i

i n i n
r r r r rLα α α α α

≤ ≤ ≤ ≤
≤ ≤ , we have 

 

( ){ } ( ){ }( ) ( ){ }( )( ) ( )

( ) ( )( ) ( )

( ){ }( ) ( ){ }( )( ) ( )

1

11 1

1 1 1
, 1

1
1 1 1

, 1

1

11 1

1 1
, 1

1
min , min , min ,

1
, ,

1
max , max ,

n
n n

i i i i i i
i n i n i n

i j
i j

n
n n

i i j j
i j
i j

n
n n

i i i i
i n i n

i j
i j

r p r q r
p q

p r q r
p q

p r q r
p q

α α α

α α

α α

−− −

≤ ≤ ≤ ≤ ≤ ≤
=

≠

− − −

=
≠

−− −

≤ ≤ ≤ ≤=
≠

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

 
 ≤ ∆ ⋅ ∆ + ⋅ ∆
 + 
 

 
 ≤ ∆ ⋅ ∆ + ⋅ ∆
 +
 

∏

∏

∏

( ){ }
1
max , .i i

i n
r α

≤ ≤



=
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(4)     

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )( )

1
, 1 1 1

1 1 2 2
, 1

1
1 1 1

, 1

,
1 1 2 2

1
2TLGB , , , , , , , ,

1
, ,

2TLGB , , , , , ,

L

L

n
p q n n

n n i i j j
i j
i j

n
n n

i i j j
i j
i j

p q
n n

r r r p r q r
p q

p r q r
p q

r r r

α α α α α

α α

α α α

− − −

=
≠

− − −

=
≠

 
 = ∆ ⋅∆ + ⋅∆
 + 
 

 
 ≤ ∆ ⋅ ∆ + ⋅ ∆
 + 
 

=

∏

∏
 

The proof of Theorem 4.1 is complete. 
 
Theorem 4.2. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-tuples. 

Then, we have 
 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,
1 1 2 2 1 1 2 22TLGB , , , , , , 2TLGB , , , , , ,p q q p

n n n nr r r r r rL Lα α α α α α= . (27) 

Proof. 

( ) ( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( ) ( )( )

1
, 1 1 1

1 1 2 2
, 1

1
1 1 1

, 1

,
1 1 2 2

1
2TLGB , , , , , , , ,

1
, ,

2TLGB , , , , , ,

L

L

n
p q n n

n n i i j j
i j
i j

n
n n

j j i i
j i
j i

q p
n n

r r r p r q r
p q

q r p r
q p

r r r

α α α α α

α α

α α α

− − −

=
≠

− − −

=
≠

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

=

∏

∏  

The proof of Theorem 4.2 is complete. 
 
In the following, let us consider some special cases of the 2TLGBM operator by taking different 
values of the parameters p  and q . 
 

Case1. If 0q → , then, by Eq. (22), we have 
 

                          
( ) ( ) ( )( )

( ) ( )( ) ( )

( )( ) ( ) ( )( )

( ) ( ) ( )( )

,
1 1 2 20

1
1 1 1

0
, 1

1 1
1 11

, 1 1

,0
1 1 2 2

lim 2TLGB , , , , , ,

1
lim , ,

1 1
, ,

2TLGB , , , , , ,

L

L

p q
n n

q

n
n n

i i j j
q

i j
i j

n n
n n n

i i i i
i j i
i j

p
n n

r r r

p r q r
p q

p r p r
p p

r r r

α α α

α α

α α

α α α

→

− − −
→

=
≠

− −−

= =
≠

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

 
  = ∆ ⋅ ∆ = ∆ ⋅ ∆     

 

=

∏

∏ ∏

                                  (28) 

which we call the generalized 2-tuple linguistic geometric mean [21]. 
 
Case 2. If 2p =  and 0q → , then Eq. (22) is transformed as: 
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( ) ( ) ( )( ) ( )( ) ( )

( )( )

1
2,0 1 1

1 1 2 2
, 1

1
1

1

1
2TLGB , , , , , , 2 ,

2

1
2 ,

2

n
n n

n n i i
i j
i j

n
n

i i
i

r r r r

r

α α α α

α

− −

=
≠

−

=

 
 = ∆ ⋅ ∆
  
 

 
= ∆ ⋅∆ 

 

∏

∏

L

   (29)  

which we call the 2-tuple linguistic square geometric mean [21]. 
 
Case 3. If 1p =  and 0q → , then Eq. (22) reduces to the 2-tuple linguistic geometric average 

[25]: 
 

 
( ) ( ) ( )( ) ( )( ) ( )

( )( )

1
1,0 1 1

1 1 2 2
, 1

1
1

1

2TLGB , , , , , , ,

,

n
n n

n n i i
i j
i j

n
n

i i
i

r r r r

r

α α α α

α

− −

=
≠

−

=

 
 = ∆ ∆
  
 

 
= ∆ ∆ 

 

∏

∏

L

      (30) 

Case 4. If 1p q= = , then Eq. (22) reduces to the following: 
                 

( ) ( ) ( )( ) ( ) ( )( ) ( )
1

1,1 1 1 1
1 1 2 2

, 1

1
2TLGB , , , , , , , ,

2

n
n n

n n i i j j
i j
i j

r r r r rα α α α α− − −

=
≠

 
 = ∆ ∆ + ∆
  
 

∏L    (31) 

which we call the 2-tuple linguistic interrelated square geometric mean. 
 
It should be noted that the 2TLGBM operator does not consider the importance of the aggregated 
arguments, but in many practical problem, especially in some group decision makings, the 
aggregated arguments have different weights, to overcome this drawback, we introduce the 
following definition: 
 
Definition 4.2. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-

tuples. ( )1 2, , ,
T

nw w w w= L  is the weight vector of ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL , where iw  

indicates the importance degree of ( ),i ir α , satisfying [ ]0,1iw ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

w
=

=∑ . If 

   

( ) ( ) ( )( )

( )( ) ( )( )( ) ( )

,
1 1 2 2

1

11 1

, 1

W2TLGB , , , , , ,

1
, ,

ji

p q
w n n

n ww n n

i i j j
i j
i j

r r r

p r q r
p q

α α α

α α −− −

=
≠

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

∏

L

,                (32) 

then ,W2TLGBp q
w  is called the weighted 2-tuple linguistic geometric Bonferroni mean 

(W2TLGBM). 
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Theorem 4.3. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL  and ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL  be two collections of 2-

tuples, if ( ) ( ), ,n n n nr rα α≤  , for all i  , then  

 

  ( ) ( ) ( )( ) ( ) ( ) ( )( ), ,

1 1 2 2 1 1 2 2W2TLGB , , , , , , W2TLGB , , , , , ,
p q p q

w n n w n nr r r r r rα α α α α α≤L L .     (33) 

Proof. 

( ) ( ) ( )( )

( )( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )

( ) ( ) ( )( )

,

,

1 1 2 2

1

11 1

, 1

1
11 1

, 1

1 1 2 2

W2TLGB , , , , , ,

1
, ,

1
, ,

W2TLGB , , , , , ,

p q

ji

ji

p q

w n n

n ww n n

i i j j
i j
i j

n ww n n

i i j j
i j
i j

w n n

r r r

p r q r
p q

p r q r
p q

r r r

α α α

α α

α α

α α α

−− −

=
≠

−− −

=
≠

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

 
 ≤ ∆ ⋅ ∆ + ⋅ ∆
 + 
 

=

∏

∏

L

L

 

The proof of Theorem 4.3 is complete. 
 
The W2TLGBM operator is neither idempotent, bounded, nor commutative. 
 
Theorem 4.4. Let 0p ≥ , 0q ≥ , and ,p q  do not take the value 0  simultaneously. Let 

( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rLα α α  [ )( ), 0.5,0.5 , 1,2, ,i ir S i nLα∈ ∈ − =  be a collection of 2-

tuples. ( )1 2, , ,
T

nw w w w= L  is the weight vector of ( ) ( ) ( ){ }1 1 2 2, , , , , ,n nr r rα α αL , satisfying 

[ ]0,1iw ∈  ( 1,2, ,i n= L ) and 
1

1
n

i
i

w
=

=∑ . Then, we have 

( ) ( ) ( )( ) ( ) ( ) ( )( ), ,

1 1 2 2 1 1 2 2W2TLGB , , , , , , W2TLGB , , , , , ,L L
p q q p

w n n w n nr r r r r rα α α α α α= .        (34) 

 
Proof. 

( ) ( ) ( )( )

( )( ) ( )( )( ) ( )

( )( ) ( )( )( ) ( )

( ) ( ) ( )( )

,

,

1 1 2 2

1
11 1

, 1

1

11 1

, 1

1 1 2 2

W2TLGB , , , , , ,

1
, ,

1
, ,

W2TLGB , , , , , ,

p q

ji

j i

q p

w n n

n ww n n

i i j j
i j
i j

n w w n n

j j i i
j i
j i

w n n

r r r

p r q r
p q

q r p r
q p

r r r

L

L

α α α

α α

α α

α α α

−− −

=
≠

−− −

=
≠

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

=

∏

∏
 

 

The proof of Theorem 4.4 is complete. 
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5. Approaches for Multiple Attribute Group Decision making 
with 2-tuple Linguistic Information 

 
In this section, we utilize the proposed aggregation operators to develop some approaches for 
multiple attribute group decision making with 2-tuple linguistic information. 
 
The multiple attribute group decision making (MAGDM) with 2-tuple linguistic information can 

be formulated as follows: Let { }1 2, , , mX x x xL=  be a set of m  alternatives, and let 

{ }1 2, , , nC c c cK=  be a collection of n attributes, whose weight vector is ( )1 2, , ,
T

nw w w w= L , 

with [ ]0,1jw ∈ , 1,2, ,j n= L , and 
1

1
n

j
j

w
=

=∑ , where jw  denotes the importance degree of the 

attribute jc , and let { }1 2, , , lD d d dL=  be a set of l  decision makers, whose weight vector is 

( )1 2, , ,
T

lLω ω ω ω=  with [ ]0,1kω ∈ , 1,2, ,k lL= , and 
1

1
l

k
k

ω
=

=∑ , where kω  denotes the 

importance degree of the decision maker kd . Each decision maker provides his/her own linguistic 

decision matrix ( ) ( )( )k k
ij

m n
A a

×
=  ( )1,2, ,k l= L , where ( )k

ija S∈  is a performance value, which 

takes the form of linguistic variable, given by the decision maker kd D∈ , for the alternative 

ix X∈  with respect to the attribute jc C∈ . 

 

If all the attributes jc
 ( 1,2, ,j n= L ) are of the same type, then the performance values do not 

need normalization. Whereas there are, generally, benefit attributes (the bigger the performance 
values the better) and cost attributes (the smaller the performance values the better) in multiple 
attribute group decision making, in such cases, we may transform the performance values of the 

cost type into the performance values of the benefit type. Then, we can transform 
( ) ( )( )k k

ij
m n

A a
×

=
 

into the matrix 
( ) ( )( )k k

ij
m n

R r
×

=
, where 

 

( )
( )

( )( )
, for benefit attribute

, for cost attribute

k
ij jk

ij k
ij j

a c
r

neg a c


= 
 , 1,2, ,i m= L , 1,2, ,j n= L , 1,2, ,k l= L      (35) 

 

where 
( )( )k
ijneg a

 is the complement of 
( )k
ija

. 
In the following, we utilize the W2TLBM (or W2TLGBM) operator to develop an approach for 
multiple attribute group decision making under 2-tuple linguistic environments. The algorithm 
involves the following steps. 
 
Approach I 

Step 1. Transform the linguistic decision matrix 
( ) ( )( )k k

ij
m n

A a
×

=
 into a normalized linguistic 
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decision matrix 
( ) ( )( )k k

ij
m n

R r
×

=
 using Eq. (35). 

 

Step 2. Transform the linguistic decision matrix 
( ) ( )( )k k

ij
m n

R r
×

=
 ( )1,2, ,k lL=

 into 2-tuple 

linguistic decision matrix 

( ) ( )( )( ),0k k
ij

m n
R r

×
=

 ( )1,2, ,k lL=
. 

 
Step 3. Utilize the W2TLBM operator (Eq. (19)), 
 

( ) ( )( ) ( )( ) ( )( )( )

( )
( )( )( ) ( )( )( )

, 1 2

1

1 1

, 1

, W2TLB ,0 , ,0 , , ,0

1
,0 ,0

1

p q l
ij ij ij ij ij ij

p q
l p q

s t
s ij t ij

s t
s t

r r r r r

r r
l l

ωα

ω ω
+

− −

=
≠

= =

 
  

   = ∆ ⋅ ∆ ⋅ ⋅ ∆  −    
  
 

∑

K

               (36) 
or the W2TLGBM operator (Eq. (32)), 
 

                        

( ) ( )( ) ( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )

1 2,

1

11 1

, 1

, W2TLGB ,0 , ,0 , , ,0

1
,0 ,0

s t

lp q
ij ij ij ij ij ij

l l ls t
ij ij

s t
s t

r r r r r

p r q r
p q

ω

ω ω

α

−− −

=
≠

= =

 
  = ∆ ⋅ ∆ + ⋅ ∆  +   

 

∏

K

                (37) 

to aggregate all of the individual 2-tuple linguistic decision matrices 

( ) ( )( )( ),0k k
ij

m n
R r

×
=

 

( 1,2, ,k lL= ) into the collective 2-tuple linguistic decision matrix 
( ) ( )( ),ij ij ijm n m n

R r r α
× ×

= =
. 

Step 4. Utilize the W2TLBM operator (Eq. (19)), 

    

( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( )( )( )

,

1 1 2 2

1

1 1

, 1

, W2TLB , , , , , ,

1
, ,

1

p q

i i i w i i i i in in

p q
n qp

x ix ix y iy iy
x y
x y

r r r r r

w r w r
n n

Kα α α α

α α
+

− −

=
≠

= =

 
  

   = ∆ ⋅ ∆ ⋅ ⋅ ∆  −    
  
 

∑

      (38) 
 
or the W2TLGBM operator (Eq. (32)), 
 

      

( ) ( ) ( ) ( )( )

( )( ) ( )( )( ) ( )

,
1 1 2 2

1

11 1

, 1

, W2TLGB , , , , , ,

1
, ,

yx

p q
i i i w i i i i in in

n ww n n

ix ix iy iy
x y
x y

r r r r r

p r q r
p q

Kα α α α

α α −− −

=
≠

= =

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

∏
           (39) 
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to aggregate all of the preference values ijr
 ( 1,2, ,j nL= ) in the i th line of R , and then derive 

the collective overall preference value ( )= ,i i ir r α
 ( )1,2, ,i mL=

 of alternative ix  

( )1,2, ,i mL=
. 

 

Step 5. Rank the ( )= ,i i ir r α
 ( )1,2, ,i mL=

 in descending order using Definition 2.3. 
 

Step 6. Rank all of the alternatives ix  ( )1,2, ,i mL=
, and then select the best one(s) in 

accordance with the collective overall preference values ( )= ,i i ir r α
 ( )1,2, ,i mL=

. 
 
Step 7. End. 
If the information regarding the weights of the decision makers and attributes is unknown, then we 
utilize the 2TLBM (or 2TLGBM) operator to develop an alternative approach for the MAGDM 
problem with 2-tuple linguistic information, which is described below. 
 
Approach II 

Step 1. Transform the linguistic decision matrix 
( ) ( )( )k k

ij
m n

A a
×

=
 into a normalized linguistic 

decision matrix 
( ) ( )( )k k

ij
m n

R r
×

=
 using Eq. (35). 

 

Step 2. Transform the linguistic decision matrix 
( ) ( )( )k k

ij
m n

R r
×

=
 ( )1,2, ,k lL=

 into 2-tuple 

linguistic decision matrix 

( ) ( )( )( ),0k k
ij

m n
R r

×
=

 ( )1,2, ,k lL=
. 

 
Step 3. Utilize the 2TLBM operator (Eq. (7)), 

                                 

( ) ( )( ) ( )( ) ( )( )( )

( )
( )( )( ) ( )( )( )

, 1 2

1

1 1

, 1

, 2TLB ,0 , ,0 , , ,0

1
,0 ,0

1

p q l
ij ij ij ij ij ij

p q
l p q

s t
ij ij

s t
s t

r r r r r

r r
l l

ωα

+

− −

=
≠

= =

 
  

   = ∆ ∆ ⋅ ∆  −    
  
 

∑

K

                 (40) 
or the 2TLGBM operator (Eq. (22)), 

                            

( ) ( )( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ( )

1 2,

1

11 1

, 1

, 2TLGB ,0 , ,0 , , ,0

1
,0 ,0

lp q
ij ij ij ij ij ij

l
s t l l

ij ij
s t
s t

r r r r r

p r q r
p q

ωα

−− −

=
≠

= =

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

∏

K

                        (41) 
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to aggregate all of the individual 2-tuple linguistic decision matrices 

( ) ( )( )( ),0k k
ij

m n
R r

×
=

 

( 1,2, ,k lL= ) into the collective 2-tuple linguistic decision matrix 
( ) ( )( ),ij ij ijm n m n

R r r α
× ×

= =
. 

 
Step 4. Utilize the 2TLBM operator (Eq. (7)), 
 

         

( ) ( ) ( ) ( )( )

( ) ( )( )( ) ( )( )( )

,

1 1 2 2

1

1 1

, 1

, 2TLB , , , , , ,

1
, ,

1

p q

i i i w i i i i in in

p q
n qp

ix ix iy iy
x y
x y

r r r r r

r r
n n

Kα α α α

α α
+

− −

=
≠

= =

 
  

   = ∆ ∆ ⋅ ∆  −    
  
 

∑

           (42) 
or the 2TLGBM operator (Eq. (22)), 

                             

( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

,
1 1 2 2

1
1 1 1

, 1

, 2TLGB , , , , , ,

1
, ,

p q
i i i w i i i i in in

n
n n

ix ix iy iy
x y
x y

r r r r r

p r q r
p q

Kα α α α

α α− − −

=
≠

= =

 
 = ∆ ⋅ ∆ + ⋅ ∆
 + 
 

∏
                       (43) 

to aggregate all of the preference values ijr
 ( 1,2, ,j nL= ) in the ith line of R , and then derive 

the collective overall preference value ( )= ,i i ir r α
 ( )1,2, ,i mL=

 of alternative ix  

( )1,2, ,i mL=
. 

Step 5. Rank the ( )= ,i i ir r α
 ( )1,2, ,i mL=

 in descending order using Definition 2.3. 

Step 6. Rank all of the alternatives ix  ( )1,2, ,i mL=
, and then select the best one(s) in 

accordance with the collective overall preference values ( )= ,i i ir r α
 ( )1,2, ,i mL=

. 
 
Step 7. End. 
 
Remark 5.1. Approach I is designed for situations where the weights of the decision makers and 
attributes can be predefined and it utilizes the W2TLBM (or W2TLGBM) operator to aggregate 
all of the individual 2-tuple linguistic decision matrices into the collective 2-tuple linguistic 
decision matrix. Approach II is designed for situations where the information regarding the 
weights of the decision makers and attributes is unknown and it utilizes the 2TLBM (or 2TLGBM) 
operator to aggregate all of the individual 2-tuple linguistic decision matrices into the collective 2-
tuple linguistic decision matrix. 
 

6. Illustrative examples 
 
In this subsection, let us consider a numerical example adapted from Herrera et al. [48] and 
Herrera and Martínez [41]. 
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Example 6.1 [41,48]. Suppose that an investment company wants to invest a sum of money in the 

best option. There is a panel with four possible alternatives in which to invest the money: (1) 1x  is 

a car industry; (2) 2x  is a food company; (3) 3x  is a computer company; and (4) 4x  is an arms 
industry. The investment company must make a decision according to the following four attributes: 

(1) 1c  is the risk analysis; (2) 2c  is the growth analysis; (3) 3c  is the social-political impact 

analysis; and (4) 4c  is the environmental impact analysis. Among the considered attributes, 2c  is 

the benefit attribute, and j
c

 ( )1,3,4j =
 are the cost attributes. The weight vector of attributes jc

 

( )1,2,3,4j =
 is ( )0.3,0.25,0.25,0.2

T
w =

. The four possible alternatives ix  ( )1,2,3,4i =
 are 

to be evaluated using the linguistic term set 
 

          

0 1 2 3 4

5 6 7 8

extremely poor, very poor, poor, slightly poor, fair,

slightly good, good, very good, extremely good

s s s s s
S

s s s s

= = = = = 
=  = = = =   

 

by three decision makers ( )1,2,3kd k =
 (suppose that the weight vector of three decision makers 

is ( )0.2,0.5,0.3
Tω =

) under the above four attributes, and construct, respectively, the linguistic 

decision matrices 
( ) ( )( )

4 4

k k
ijA a

×
=

 ( )1,2,3k =
 as shown in Tables 1-3. 

 

Table 1. Linguistic decision matrix 
( )1A  provided by 1d . 

 
1 

1c  2c  3c  4c  

1x  4s  3s  7s  3s  

2x  5s  6s  2s  0s  

3x  5s  2s  1s  3s  

4x  0s  1s  5s  2s  
 

Table 2. Linguistic decision matrix 
( )2A  provided by 2d . 

 

2 1c  2c  3c  4c  
1x  3s  2s  1s  5s  
2x  1s  4s  0s  2s  
3x  1s  8s  3s  2s  
4x  0s  6s  3s  5s  

 

 
 
 
 
 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(11), 1567-1614, 2014 
 
 

1588 
 

Table 3. Linguistic decision matrix 
( )3A  provided by 3d . 

 
3 1c  2c  3c  4c  

1x  3s  1s  6s  0s  
2x  1s  8s  2s  3s  
3x  3s  6s  5s  4s  
4x  2s  8s  3s  1s  

 
Assume that the weights of the decision makers and attributes are known. We use Approach I to 
find the decision result. 

Step 1. Using Eq. (35), we transform the linguistic decision matrix 
( ) ( )( )

4 4

k k
ijA a

×
=

 into a 

normalized linguistic matrix 
( ) ( )( )

4 4

k k
ijR r

×
=

 (see Table 4, 5, and 6). 
 
 

Table 4. Linguistic decision matrix 
( )1R  provided by 1d . 

 

4 1c  2c  3c  4c  
1x  4s  3s  1s  5s  
2x  3s  6s  5s  8s  
3x  3s  2s  7s  5s  
4x  8s  1s  3s  6s  

 

Table 5. Linguistic decision matrix 
( )2R  provided by 2d . 

 

5 1c  2c  3c  4c  
1x  5s  2s  7s  3s  
2x  7s  4s  8s  6s  
3x  7s  8s  5s  6s  
4x  8s  6s  5s  3s  

Table 6. Linguistic decision matrix 
( )3R  provided by 3d . 

 
6 1c  2c  3c  4c  

1x  5s  1s  2s  8s  
2x  7s  8s  6s  5s  
3x  5s  6s  3s  4s  
4x  6s  8s  5s  7s  

Step 2. Transform the linguistic decision matrices 
( ) ( )( )

4 4

k k
ijR r

×
=

 ( )1,2,3k =
 given in Tables 4-
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6 into 2-tuple linguistic decision matrices 

( ) ( )( )( )
4 4

,0k k
ijR r

×
=

 ( )1,2,3k =
 which are given in 

Tables 7-9. 
 

Table 7. 2-tuple linguistic decision matrix 
( )1R  

 
7 1c  2c  3c  4c  

1x  ( )4,0s
 ( )3,0s

 ( )1,0s
 ( )5,0s

 

2x  ( )3,0s  ( )6,0s  ( )5,0s  ( )8,0s  

3x  ( )3,0s
 ( )2 ,0s

 ( )7 ,0s
 ( )5,0s

 

4x  ( )8,0s
 ( )1,0s

 ( )3,0s
 ( )6 ,0s

 
 

Table 8. 2-tuple linguistic decision matrix 
( )2R . 

 
8 1c  2c  3c  4c  

1x  ( )5,0s
 ( )2 ,0s

 ( )7 ,0s
 ( )3,0s

 

2x  ( )7 ,0s  ( )4 ,0s  ( )8,0s  ( )6 ,0s  

3x  ( )7 ,0s
 ( )8 ,0s

 ( )5,0s
 ( )6 ,0s

 

4x  ( )8 ,0s
 ( )6 ,0s

 ( )5,0s
 ( )3,0s

 
 

Table 9. 2-tuple linguistic decision matrix 
( )3R . 

 
9 1c  2c  3c  4c  

1x  ( )5,0s  ( )1,0s  ( )2 ,0s  ( )8 ,0s  

2x  ( )7 ,0s
 ( )8 ,0s

 ( )6 ,0s
 ( )5,0s

 

3x  ( )5,0s
 ( )6 ,0s

 ( )3,0s
 ( )4 ,0s

 

4x  ( )6 ,0s  ( )8 ,0s  ( )5,0s  ( )7 ,0s  
 

Step 3. Use the W2TLBM operator (Eq. (36)) (here, we take 1p q= = ) to aggregate all of the 

individual 2-tuple linguistic decision matrices 

( ) ( )( )( )
4 4

,0k k
ijR r

×
=

 ( 1,2,3k = ) into the collective 

2-tuple linguistic decision matrix 
( ) ( )( )

4 4 4 4
,ij ij ijR r r α

× ×
= =

 (see Table 10). 
 
 
 
 
 
 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(11), 1567-1614, 2014 
 
 

1590 
 

Table 10. The collective 2-tuple linguistic decision matrix R  
 
10 1c  2c  3c  4c  

1x  ( )2 , 0.4779s −
 ( )1, 0.4000s −

 ( )1, 0.0134s −
 ( )2 , 0.4189s −

 

2x  ( )2 , 0.1106s −  ( )2 , 0.1670s −  ( )2 ,0.0817s  ( )2 , 0.0252s −  

3x  ( )2 , 0.3417s −
 ( )2 , 0.2186s −

 ( )2 , 0.4714s −
 ( )2 , 0.3875s −

 

4x  ( )2 ,0.3438s
 ( )2 , 0.3387s −

 ( )1,0.4318s
 ( )2 , 0.4220s −

 
 

Step 4. Use the W2TLBM operator (Eq. (38)) to aggregate all of the preference values 
( ),ij ijr α

 

( 1,2,3,4j = ) in the ith line of R  and then derive the collective overall preference value 

( )= ,i i ir r α
 ( )1,2,3,4i =

 of the alternative ix  ( )1,2,3,4i =
. 

 
 

 ( )1 0,0.2852r s=
,  ( )2 0,0.4837r s=

,  ( )3 0,0.4101r s=
,  ( )4 0,0.4394r s=

. 
 

Using Definition 2.3, we then rank the ir  ( )1,2,3,4i =
 in descending order: 

 

2 4 3 1r r r r> > > . 
 

 Step 5. Rank all of the alternatives ix  ( )1,2,3,4i =
 as follows: 

 

2 4 3 1x x x xf f f . 
 

The best alternative is 2x . 
 
 

We can find that as the values of the parameters p  and q  change according to the decision 
makers’ subjective preferences, we may obtain different rankings of the alternatives, which can 

reflect the decision makers’ risk preferences. As the values of the parameters p  and q  change, 

the collective overall preference value ( )= ,i i ir r α
 ( )1,2,3,4i =

 and the ranking of alternatives 
can be obtained and shown in Table 11. 
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Table 11. The collective overall preference values obtained with the W2TLBM operator and 
rankings of the alternatives. 

 
11 0, 20p q= =  0.5, 15p q= =  5p q= =  15, 0.1p q= =  20,

0.05

p

q

=
=  

1x  ( )1, 0.2255s −
 ( )1, 0.3110s −

 ( )0,0.3779s
 ( )1, 0.2668s −

 ( )1, 0.2308s −
 

2x  ( )1, 0.0577s −
 ( )1, 0.1233s −

 ( )1, 0.4132s −
 ( )1, 0.0948s −

 ( )1, 0.0610s −
 

3x  ( )1, 0.0577s −
 ( )1, 0.1302s −

 ( )1, 0.4712s −
 ( )1, 0.0963s −

 ( )1, 0.0615s −
 

4x  ( )1,0.0598s
 ( )1, 0.0280s −

 ( )1, 0.4210s −
 ( )1,0.0074s

 ( )1,0.0560s
 

Ranking 4 2 3 1f f fx x x x  4 2 3 1f f fx x x x  2 4 3 1f f fx x x x  4 2 3 1f f fx x x x  4 2 3 1f f fx x x x  
 
Furthermore, it is possible to analyze how the different attitudinal characters p  and q  play a role 

in the aggregation results. As the values of the parameters p  and q  change between 0  and 20 , 

different results of a symbolic aggregation operation ( )1
i irβ −= ∆  ( )1,2,3,4i =  of the collective 

overall preference values ir  ( )1,2,3,4i =  of the four alternatives ix  ( )1,2,3,4i =  can be 

obtained. Figs. 1-4 illustrate the values ( )1
i irβ −= ∆  ( )1,2,3,4i =  of the four alternatives ix  

( )1,2,3,4i =  obtained by the W2TLBM operator in detail. 

 

 
 

Fig. 1. The values β  for alternative 1x  obtained by the W2TLBM operator ( ( ]0,20p∈ , ( ]0,20q∈ ). 
 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(11), 1567-1614, 2014 
 
 

1592 
 

 
 

Fig. 2. The values β  for alternative 2x  obtained by the W2TLBM operator ( ( ]0,20p∈ , ( ]0,20q∈ ). 

 
 

Fig. 3. The values β  for alternative 3x  obtained by the W2TLBM operator ( ( ]0,20p∈ , ( ]0,20q∈ ). 
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Fig. 4. The values β  for alternative 4x  obtained by the W2TLBM operator ( ( ]0,20p∈ , ( ]0,20q∈ ). 

If we let the parameter p  fixed, different values iβ  and rankings of the alternatives can be 

obtained as the parameter q  changed which was shown in Fig. 5. 
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Fig. 5. Variation of β  obtained with the W2TLBM operator ( 1p = , ( ]0,20q∈ ). 
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From Fig. 5, we can find that, 
1) when ( ]0, 4.6560q∈ , the ranking of the four alternatives is 2 4 3 1x x x xf f f  and the best 

choice is 2x . 
 
2) when ( ]4.6560,20q∈ , the ranking of the four alternatives is 4 2 3 1x x x xf f f  and the best 

choice is 4x . 
 
From Fig. 5, we also find that the collective overall preference values obtained by the W2TLBM 
aggregation operators become bigger as parameter p  and q  increase for the same aggregation 
arguments. Therefore, it plays a crucial part in decision making. For example, in the real group 
decision making problems, the decision makers who takes a gloomy view of the prospects could 
choose the smaller values of the parameters p  and q  while the decision makers who are 

optimistic could choose the bigger values of the parameters p  and q . 

 
If the W2TLGBM operator is used in place of the W2TLBM operator to aggregate the values of 
the alternatives in steps 3 and 4, then the collective overall preference values and the rankings of 
the alternatives are listed in Table 12. 
 

Table 12. The collective overall preference values obtained with the W2TLGBM operator 
and rankings of the alternatives 

 
12 0, 20p q= =  0.5, 15p q= =  5p q= =  15, 0.1p q= =  20, 0.05p q= =  

1x  ( )1,0.1057s  ( )1,0.1066s  ( )1,0.1130s  ( )1,0.1059s  ( )1,0.1057s  

2x  ( )1,0.1604s  ( )1,0.1614s  ( )1,0.1677s  ( )1,0.1606s  ( )1,0.1605s  

3x  ( )1,0.1464s  ( )1,0.1476s  ( )1,0.1558s  ( )1,0.1466s  ( )1,0.1465s  

4x  ( )1,0.1477s  ( )1,0.1488s  ( )1,0.1560s  ( )1,0.1479s  ( )1,0.1478s  

Ranking 2 4 3 1f f fx x x x  
2 4 3 1f f fx x x x  

2 4 3 1f f fx x x x  
4 2 3 1f f fx x x x  

4 2 3 1f f fx x x x  

 
Furthermore, it is possible to analyze how the different attitudinal characters p  and q  play a role 

in the aggregation results. As the values of the parameters p  and q  change between 0  and 20 , 

different results of a symbolic aggregation operation ( )1
i irβ −= ∆  ( )1,2,3,4i =  of the collective 

overall preference values ir  ( )1,2,3,4i =  of the four alternatives ix  ( )1,2,3,4i =  can be 

obtained. Figs. 6-9 illustrate the values ( )1
i irβ −= ∆  ( )1,2,3,4i =  of the four alternatives ix  

( )1,2,3,4i =  obtained by the W2TLGBM operator in detail. 
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Fig. 6. The values β  for alternative 1x  obtained by the W2TLGBM operator ( ( ]0,20p∈ , ( ]0,20q∈ ). 
 

 
 

Fig. 7. The values β  for alternative 2x  obtained by the W2TLGBM operator ( ( ]0,20p∈ , ( ]0,20q∈ ). 
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Fig. 8. The values 
β

 for alternative 3x  obtained by the W2TLGBM operator (
( ]0,20p∈

, 
( ]0,20q∈

). 
 

 

Fig. 9. The values β  for alternative 4x  obtained by the W2TLGBM operator ( ( ]0,20p∈
, ( ]0,20q∈

). 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(11), 1567-1614, 2014 
 
 

1597 
 

If we let the parameter p  fixed, different values iβ  and rankings of the alternatives can be 

obtained as the parameter q  changed which was shown in Fig. 10. 
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Fig. 10. Variation of β  obtained with the W2TLGBM operator ( 1p = , ( ]0,20q∈ ). 
 

 

From Fig. 10, we can find that when ( ]0,20q∈
, the ranking of the four alternatives is 

2 4 3 1x x x xf f f  and the best choice is 2x . 
 

From Fig. 10, we find that the collective overall preference values obtained by the W2TLGBM 

aggregation operators become smaller as parameter p  and q  increase for the same aggregation 
arguments. Therefore, it plays a crucial part in decision making. For example, in the real group 
decision making problems, the decision makers who take a gloomy view  of the prospects could 

choose the bigger values of the parameters p  and q  while the decision makers who are 

optimistic could choose the smaller values of the parameters p  and q . 
 
It should be noted that the belta obtained by the W2TLBM operator are smaller than the belta 
obtained by the W2TLGBM operator, which indicates that the W2TLBM operator can obtain 
more unfavorable (or pessimistic) expectations, while the W2TLGBM operator has more 
favorable (or optimistic) expectations. Therefore, we can conclude that the W2TLBM operator 
can be considered as the optimistic operator, while the W2TLGBM operator can be considered as 
the pessimistic operator and the values of the parameters can be considered as the optimistic or 
pessimistic levels. By Figs. 1-10, we can conclude that the decision makers who take a gloomy 
view of the prospects could use the W2TLBM operator and choose the smaller values of the 

parameters p  and q , while the decision makers who are optimistic could use the W2TLGBM 

operator and choose the smaller values of the parameters p  and q . 
 
In order to obtain the more neutral results, we can use the arithmetic averages of the optimistic 
and pessimistic results, which can be found in Figs. 11-14. 
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Fig. 11. The values 
β

 for alternative 1x  obtained by the W2TLBM and W2TLGBM operators ( ( ]0,20p∈ , 
( ]0,20q∈ ). 

 

 

Fig. 12. The values 
β

 for alternative 2x
 obtained by the W2TLBM and W2TLGBM operators ( ( ]0,20p∈ , 

( ]0,20q∈ ). 
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Fig. 13. The values 
β

 for alternative 3x
 obtained by the W2TLBM and W2TLGBM operators 

 ( ( ]0,20p∈
, ( ]0,20q∈

). 
 

 

Fig. 14. The values 
β

 for alternative 4x  obtained by the W2TLBM and W2TLGBM operators  

( ( ]0,20p∈ , ( ]0,20q∈ ). 
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In the following, we compare our operators and approaches with the existing 2-tuple linguistic 
aggregation operators and approaches so as to demonstrate the advantages of the operators and 
approaches proposed here. In Example 5.1, we utilize the 2-tuple linguistic weighted average 
(2TLWA) operator [14,41]: 

              

( ) ( ) ( )( ) ( )1
1 1 2 2

1

2TLWA , , , , , , ,
n

n n i i i
i

r r r w rLα α α α−

=

 = ∆ ⋅∆ 
 
∑

                  (44) 

to replace the W2TLBM operator; then the collective overall preference value ( )= ,i i ir r α
 

( )1,2,3,4i =
 of alternative ix  ( )1,2,3,4i =

 are shown as follows: 

( )1 4, 0.0300r s= −
,  ( )2 6,0.1800r s=

,  ( )3 5,0.4700r s=
,  ( )4 6, 0.2700r s= −

. 

Using Definition 2.3, we then rank the ir  ( )1,2,3,4i =
 in descending order: 

          2 4 3 1r r r r> > > . 

According to the ranking of the ir  ( )1,2,3,4i =
, rank all of the alternatives ix  ( )1,2,3,4i =

 as 
follows: 

2 4 3 1x x x xf f f . 

Thus, the best alternative is 2x . 
Based on the aforementioned analysis, we can see that the 2TLWA operator is simpler than the 
W2TLBM and W2TLGBM operators from the computational point of view, but the W2TLBM 
and W2TLGBM operators can capture the interrelationship of the aggregated arguments [35] and 
can provide the decision makers more choices by changing the values of the parameters 
determined by the preferences of the decision makers [35]. 

Example 6.2. Let us reconsider Example 6.1. Assume that 
( ) ( )( )

4 4

k k
ijA a

×
=

 ( )1, 2,3k =
 are three 

linguistic decision matrices shown in Tables 1-3. 
( ) ( )( )

4 4

k k
ijR r

×
=

 ( )1, 2,3k =
 are three normalized 

linguistic decision matrices given in Tables 4-6. 
( ) ( )( )( )

4 4
,0k k

ijR r
×

=
 ( )1,2,3k =

 are three 
corresponding 2-tuple linguistic decision matrices given in Tables 7-9. Suppose that the weights 
of the decision makers and the attributes are unknown; then, we use Approach II to determine the 

decision. The collective 2-tuple linguistic decision matrix 
( ) ( )( )

4 4 4 4
,ij ij ijR r r α

× ×
′ ′ ′ ′= =

 is given in 

Table 13. The best alternative is 2x . 
 

Table 13. The collective 2-tuple linguistic decision matrix R′  
 

13 1c  2c  3c  4c  

1x  ( )5, 0.3453s −
 ( )2 , 0.0851s −

 ( )3 , 0.2311s −
 ( )5 ,0.1316s

 

2x  ( )6 , 0.4924s −
 ( )6 , 0.1122s −

 ( )6 ,0.2716s
 ( )6 ,0.2716s

 

3x  ( )5, 0.1352s −
 ( )5 ,0.0332s

 ( )5, 0.1352s −
 ( )5, 0.0334s −

 

4x  ( )7 ,0.3030s
 ( )5 , 0.4539s −

 ( )4 ,0.2817s
 ( )5 ,0.1962s
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We can find that as the values of the parameters p  and q  change according to the decision 
makers’ subjective preferences, we may obtain different rankings of the alternatives, which can 

reflect the decision makers’ risk preferences. As the values of the parameters p  and q  change, 

the collective overall preference value ( )= ,i i ir r α′ ′ ′  ( )1,2,3,4i =  and the ranking of alternatives can be 
obtained and shown in Table 14. 
 

Table 14. The collective overall preference values obtained with the 2TLBM operator and 
rankings of the alternatives. 

 

14 0, 20p q= =  0.5, 15p q= =  5p q= =  15, 0.1p q= =  20, 0.05p q= =  
1x  ( )7 ,0.0891s  ( )7 , 0.4043s −  ( )4 ,0.4483s  ( )7 , 0.2153s −  ( )7 ,0.0684s  
2x  ( )7 ,0.4823s  ( )7 ,0.2594s  ( )6,0.3807s  ( )7 ,0.3246s  ( )7 ,0.4752s  
3x  ( )7 ,0.1133s  ( )7 , 0.2625s −  ( )6, 0.4656s −  ( )7 , 0.1379s −  ( )7 ,0.0981s  
4x  ( )7 ,0.4740s  ( )7 ,0.2032s  ( )6,0.2012s  ( )7 ,0.2934s  ( )7 ,0.4625s  

Ranking 2 4 3 1f f fx x x x  2 4 3 1f f fx x x x  2 4 3 1f f fx x x x  2 4 3 1f f fx x x x  2 4 3 1f f fx x x x  
 

As the values of the parameters p  and q  change between 0  and 20 , different results of a 

symbolic aggregation operation ( )1
i irβ − ′= ∆  ( )1,2,3,4i =

 of the collective overall preference 

values ir  ( )1,2,3,4i =
 of the four alternatives ix  ( )1,2,3,4i =

 can be obtained. Figs. 15-18 

illustrate the values 
( )1

i irβ − ′= ∆
 ( )1,2,3,4i =  of the four alternatives ix  ( )1,2,3,4i =

 obtained 
by the 2TLBM operator in detail. 
 

 

Fig. 15. The values 
β

 for alternative 1x  obtained by the 2TLBM operator ( ( ]0,20p∈ , ( ]0,20q∈ ). 
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Fig. 16. The values 
β

 for alternative 2x  obtained by the 2TLBM operator (
( ]0,20p∈

, 
( ]0,20q∈

). 
 

 

Fig. 17. The values β  for alternative 3x  obtained by the 2TLBM operator ( ( ]0,20p∈
, ( ]0,20q∈

). 
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Fig. 18. The values β  for alternative 4x  obtained by the 2TLBM operator ( ( ]0,20p∈ , 

( ]0,20q∈ ). 

If we let the parameter p  fixed, different values iβ  and rankings of the alternatives can be 

obtained as the parameter q  changed which was shown in Fig. 19. 
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Fig. 19. Variation of β  obtained with the 2TLBM operator ( 1p = , ( ]0,20q∈ ). 
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From Fig. 19, we can find that when ( ]0,20q∈
, the ranking of the four alternatives is 

2 4 3 1x x x xf f f  and the best choice is 2x . 
 
 
From Fig. 19, we find that the collective overall preference values obtained by the 2TLBM 

aggregation operators become bigger as parameter p  and q  increase for the same aggregation 
arguments. Therefore, it plays a crucial part in decision making. For example, in the real group 
decision making problems, the decision makers who take a gloomy view  of the prospects could 

choose the smaller values of the parameters p  and q  while the decision makers who are 

optimistic could choose the bigger values of the parameters p  and q . 
 
 
If the 2TLGBM operator is used in place of the 2TLBM operator to aggregate the values of the 
alternatives in steps 1 and 2, then the collective overall preference values and the rankings of the 
alternatives are listed in Table 15. 
 
 
Table 15. The collective overall preference values obtained with the 2TLGBM operator and 

rankings of the alternatives. 
 
 

15 0, 20p q= =  
0.5, 15p q= =  5p q= =  15, 0.1p q= =  

20, 0.05p q= =  
1x  ( )3,0.1644s

 ( )3,0.2330s
 ( )4, 0.3675s −

 ( )3,0.1792s
 ( )3,0.1700s

 
2x  ( )6 , 0.1442s −

 ( )6, 0.1208s −
 ( )6,0.0328s

 ( )6 , 0.1392s −
 ( )6 , 0.1423s −

 
3x  ( )5, 0.2650s −

 ( )5, 0.2273s −
 ( )5,0.0098s

 ( )5, 0.2570s −
 ( )5, 0.2620s −

 
4x  ( )5, 0.1387s −

 ( )5, 0.0524s −
 ( )5,0.3822s

 ( )5, 0.1196s −
 ( )5, 0.1314s −

 
Ranking 2 4 3 1f f fx x x x  2 4 3 1f f fx x x x  2 4 3 1f f fx x x x  2 4 3 1f f fx x x x  2 4 3 1f f fx x x x  

 
 

As the values of the parameters p  and q  change between 0  and 20 , different results of a 

symbolic aggregation operation ( )1
i irβ −= ∆

 ( )1,2,3,4i =
 of the collective overall preference 

values ir  ( )1,2,3,4i =
 of the four alternatives ix  ( )1,2,3,4i =

 can be obtained. Figs. 20-23 

illustrate the values ( )1
i irβ −= ∆

 ( )1,2,3,4i =
 of the four alternatives ix  ( )1,2,3,4i =

 
obtained by the 2TLGBM operator in detail. 
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Fig. 20. The values 
β

 for alternative 1x  obtained by the 2TLGBM operator (
( ]0,20p∈

, 
( ]0,20q∈

). 
 

 

Fig. 21. The values 
β

 for alternative 2x
 obtained by the 2TLGBM operator (

( ]0,20p∈
, 

( ]0,20q∈
). 
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Fig. 22. The values 
β

 for alternative 3x  obtained by the 2TLGBM operator (
( ]0,20p∈

, 
( ]0,20q∈

). 
 

 

Fig. 23. The values 
β

 for alternative 4x
 obtained by the 2TLGBM operator (

( ]0,20p∈
, 

( ]0,20q∈
). 

 

If we let the parameter p  fixed, then different values iβ  and rankings of the alternatives can be 
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obtained as the parameter q  changed, which was shown in Fig. 24. 
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Fig. 24. Variation of β  obtained with the 2TLGBM operator ( 1p = , ( ]0,20q∈ ). 
 

From Fig. 24, we can find that when ( ]0,20q∈
, the ranking of the four alternatives is 

2 4 3 1x x x xf f f  and the best choice is 2x . 
 
From Fig. 24, we find that the collective overall preference values obtained by the 2TLGBM 

aggregation operators become smaller as parameter p  and q  increase for the same aggregation 
arguments. Therefore, it plays a crucial part in decision making. For example, in the real group 
decision making problems, the decision makers who take a gloomy view  of the prospects could 

choose the bigger values of the parameters p  and q  while the decision makers who are 

optimistic could choose the smaller values of the parameters p  and q . 
 
It is worth noting that most of the belta obtained by the 2TLBM operator are bigger than most of 
the belta obtained by the 2TLGBM operator, which indicates that the 2TLBM operator can obtain 
more favorable (or optimistic) expectations, while the 2TLGBM operator has more unfavorable 
(or pessimistic) expectations. Therefore, we can conclude that the 2TLBM operator can be 
considered as the optimistic operator, while the 2TLGBM operator can be considered as the 
pessimistic operator and the values of the parameters can be considered as the optimistic or 
pessimistic levels. By Figs. 15-24, we can conclude that the decision makers who take a gloomy 
view of the prospects could use the 2TLGBM operator and choose the bigger values of the 

parameters p  and q , while the decision makers who are optimistic could use the 2TLBM 

operator and choose the bigger values of the parameters p  and q . 
 
In order to obtain the more neutral results, we can use the arithmetic averages of the optimistic 
and pessimistic results, which can be found in Figs. 25-28. 
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Fig. 25. The values 
β

 for alternative 1x  obtained by the 2TLBM and 2TLGBM operators ( ( ]0,20p∈ , 

( ]0,20q∈
). 

 

 

Fig. 26. The values 
β

 for alternative 2x
 obtained by the 2TLBM and 2TLGBM operators ( ( ]0,20p∈ , 

( ]0,20q∈ ). 
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Fig. 27. The values 
β

 for alternative 3x
 obtained by the 2TLBM and 2TLGBM operators ( ( ]0,20p∈ , ( ]0,20q∈ ). 

 

 
 

Fig. 28. The values 
β

 for alternative 4x
 obtained by the 2TLBM and 2TLGBM operators ( ( ]0,20p∈

, 
( ]0,20q∈ ). 
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By examples 1 and 2, we can see that the decision results obtained with Approach I may be 
different from the decision results obtained with Approach II. Approach I utilizes the W2TLBM 
(or W2TLGBM) operator to aggregate all of the individual 2-tuple linguistic decision matrices 
into a collective 2-tuple linguistic decision matrix and then utilize the W2TLBM (or W2TLGBM) 
operator to derive the collective overall preference values of each alternative. Approach II utilizes 
the 2TLBM (or 2TLGBM) operator to aggregate all of the individual 2-tuple linguistic decision 
matrices into a collective 2-tuple linguistic decision matrix and then utilize the 2TLBM (or 
2TLGBM) operator to derive the collective overall preference values of each alternative. The 
2TLBM and 2TLGBM operators only involve the input data and their interrelationships, but the 
importance of each datum is not emphasized. The W2TLBM and W2TLGBM operators not only 
involve the input data and their interrelationships but also take the importance of each datum into 
account. 
 

7. Conclusions 
 
In this paper, we have developed several new 2-tuple linguistic aggregation operators, including 
the 2TLBM, W2TLBM, 2TLGBM, and W2TLGBM operators. We have studied some 
fundamental properties of the developed operators, such as commutativity, idempotency, 
boundedness, and monotonicity. We also discuss some special cases of the proposed operators. 
Compared with the existing 2-tuple linguistic aggregation operators, the primary advantage of 
these operators is that they capture the interrelationship of the input arguments and thus consider 
the decision information as much as possible. Furthermore, we have used the proposed operators 
to develop two approaches for multiple attribute group decision making with 2-tuple linguistic 
information. Finally, two numerical examples are provided to illustrate the developed approaches 
and to compare the developed approaches with the existing ones. In the future, we will study the 
Bonferroni mean and the geometric Bonferroni mean under interval-valued 2-tuple linguistic 
environments [49,50]. 
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