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Abstract

Aims: The aim of this paper is to develop the 2-tuple linguiBtmferroni mean and the

weighted 2-tuple linguistic Bonferroni mean.

Study Design: Some desirable properties and special cases of the develppeators are

discussed. The geometric Bonferroni mean (GBM) is a gkretian of the Bonferroni mea

and geometric mean. In this paper, we also investijsgeGBM under 2-tuple linguisti

environments. We develop the 2-tuple linguistic geometric &oafi mean and the weighted

tuple linguistic geometric Bonferroni mean. We invesgaome fundamental properties a

special cases of them.

Place and Duration of Study:The Bonferroni Mean (BM) operator is a traditional megret

aggregation operator, which can capture the expressed iniersfdp of the individua

arguments and which is only suitable to aggregate crisp data.

Methodology: This paper extends the BM operator to 2-tuple linguistiérenments.

Results: Based on these operators, we develop two approachesuftiplenattribute group

decision making with 2-tuple linguistic information.

Conclusion: Two numerical examples are provided to illustrate the tffereess and

practicality of the proposed approaches.

Keywords: Multiple attribute group decision making; 2-tugdinguistic information; 2-tuple
linguistic Bonferroni mean; 2-tuple linguistic geometric Bomoni mean.
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1 Introduction

In many multiple attribute group decision making (MAGDM) peshs, the decision information
about alternatives is usually uncertain or fuzzy due toirtbeeasing complexity of the socio-
economic environment and the vagueness of inherent sivbjeature of human thinking [1,2,3];
thus, it may be appropriate and sufficient to assesddbision information in a qualitative form
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rather than a quantitative form. For example, when evalyatihouse’s cost, linguistic terms such
as “high”, “medium”, and “low” are usually used, ath when evaluating a house’s design,
linguistic terms like “good”, “medium”, and “bad” ca be frequently used. To date, many
methods have been developed for dealing with linguistic infoom4i-13]. Herrera and Martinez
[14] introduced a 2-tuple fuzzy linguistic representatioodel that represents the linguistic
information by means of 2-tuples, which are composed liyguistic term and a number [14,15].
The main advantage of this representation is to allow areenis representation of the linguistic
information on its domain; therefore, it can represemnt eounting of information obtained in a
aggregation process without any loss of information [14 [t5fhe past few decades, a variety of
2-tuple linguistic aggregation operators [15-24] have been oeeel for aggregating 2-tuple
linguistic information. However, these 2-tuple lingidsiggregation operators only emphasize the
importance of each data or ordered position and they canfiettréne interrelationships of
individual data.

The Bonferroni mean, originally introduced by Bonferroni][25 a mean-type aggregation
operator and it can provide for the aggregation lying betweem#ixeand min operators and the
logical “or” and “and” operators [26]. The desirable chtggstic of the BM is its capability to
capture the interrelationship between input arguments R&jently, Yager [27] gave a detailed
studied of the BM and proposed some generalizations d8VheHowever, the BM [25] and its
these generalizations [27] only can accommodate the isitgaivhere the input arguments take
the form of crisp humbers. In many group decision makitigsattribute values are given in the
form of the other types of domains which are not siwetablbe aggregated by the BM, such as
interval numbers [28], intuitionistic fuzzy numbers [2%terval-valued intuitionistic fuzzy
numbers [30], hesitant fuzzy elements [31], uncertain litiguisariables [32], and triangular
fuzzy linguistic variables [33]. To address this issuenesauthors have suggested some new
generalizations of the BM, including the uncertain Bonferraean operator [34], the weighted
uncertain Bonferroni mean operator [34], the intuitioni$tizzy BM (IFBM) [26], the weighted
intuitionistic fuzzy Bonferroni mean (WIFBM) [26], the @&tassov's intuitionistic fuzzy
geometric Bonferroni mean [35], the weighted Atanassov’'s iohiffic fuzzy geometric
Bonferroni mean [35], the interval-valued intuitionistic fuzzgnBerroni mean [36], the weighted
interval-valued intuitionistic fuzzy Bonferroni mean [3@je hesitant fuzzy geometric Bonferroni
mean (HFGBM) [37], the hesitant fuzzy Choquet georoeéBonferroni mean (HFCGBM) [37],
the weighted hesitant fuzzy geometric Bonferroni mean RF&BM) [37], the weighted hesitant
fuzzy Choquet geometric Bonferroni mean (WHFCGBM) [37], theeutain linguistic Bonferroni
mean (ULBM) operator [38], the uncertain linguistic weahtBonferroni mean (ULWBM)
operator [38], the uncertain linguistic geometric Bonferroeam (ULGBM) operator [38], the
uncertain linguistic weighted geometric Bonferroni mean (ULW&}Boperator [38], the
trapezoid fuzzy linguistic Bonferroni mean (TFLBM) operdt@9], the trapezoid fuzzy linguistic
weighted Bonferroni mean (TFLWBM) operator [39], the traypeéZuzzy linguistic Bonferroni
OWA (TFLBOWA) operator [39], the trapezoid fuzzy lingigs weighted Bonferroni OWA
(TFLWBOWA) operator [39], the generalized intuitionisticzzy weighted Bonferroni mean
(GIFWBM) [40], and the generalized weighted Bonferronorgetric mean (GWBGM) [40].
However, these Bonferroni mean operators cannot accommitdagituations where the input
arguments take the form of 2-tuples.

Based on the aforementioned analysis, we can concludethbagéxisting 2-tuple linguistic
aggregation operators do not consider the interrelatiprafhthe individual arguments, while the
existing Bonferroni mean operators cannot accommodate ithatiens in which the input
arguments take the form of 2-tuples. To overcome this loleky it is therefore necessary to
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develop some new aggregation operators that not only accorter®tl#ple linguistic information
but also consider the interrelationship of the individuglarents. To do this, we extend the BM
operator to 2-tuple linguistic environments and then develop2tuple linguistic aggregation
operators, including the 2-tuple linguistic Bonferroni mean dmedwteighted 2-tuple linguistic
Bonferroni mean. The desirable characteristic of thege dperators is that they not only
accommodate the input arguments in the form of 2-tuplesilba reflect the interrelationship of
the input arguments. Xia et al. [35] introduced a new Boohi mean called the geometric
Bonferroni mean based on the BM and the geometric m@if).(We further extend the GBM
operator to 2-tuple linguistic environments and develop thep-t linguistic geometric
Bonferroni mean and the weighted 2-tuple linguistic geom&adoferroni mean. Finally, we
utilize the proposed operators to develop two approachemitiiple attribute group decision
making with 2-tuple linguistic information and then applytbthe developed approaches to two
practical examples.

The remainder of this paper is organized as follows.elcti8n 2, we briefly review some basic
concepts and operations related to the 2-tuple fuzzyitiguepresentation model, the BM, and
the GBM. In Section 3, the 2-tuple linguistic Bonferroni mead the weighted 2-tuple linguistic
Bonferroni mean are developed, some desirable propertitsesé operators are studied, and
some special cases are discussed. Section 4 developsuple #nguistic geometric Bonferroni
mean and the weighted 2-tuple linguistic geometric Bonfemuan. Section 5 introduces two
approaches based on these operators for multiple attroatgr decision making with 2-tuple
linguistic information. In Section 6, we give two practieatamples to illustrate the group
decision making steps based on the proposed approaches. Seetids this paper with some
concluding remarks.

2. Preliminaries

In this section, we will introduce the basic notions of the 2-tdpizy linguistic approach,
Bonferroni mean, and geometric Bonferroni mean.

2.1 The 2-tuple Fuzzy Linguistic Representation Moel

Let S:{ $| i=0,1,2;-- Q be a finite and totally ordered discrete linguistic teehwith odd

cardinality, wheres represents a possible value for a linguistic variadnel, it should satisfy the
following characteristics [14,41,42].

(1) The setis ordereds 2 § if i 2 j;

(2) There is the negation operatoreg( $) = $ such thatj =g —i;
(3) Max operator:max(s S ) =sif§25;

(4) Min operator:min(s,§)= sifs<g.

For example, a set of seven terf@scould be given as follows [43-47]:
S:{ $ = nothing s= verylow,s law,s medium= high=s veghhs,= perfec}t.
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Based on the concept of symbolic translation, HerreraMentinez [14,41] introduced a 2-tuple
fuzzy linguistic representation model for dealing witinguistic information. This model

represents the linguistic assessment information bgnsef a 2-tuple(s,a), where§ O S

represents a linguistic label from the predefined linguisim setS and aD[—O.S,O.E) is the
value of symbolic translation.

Definition 2.1 [14,41].Let B be the result of an aggregation of the indexes of a setbefd
assessed in a linguistic term sBt, i.e., the result of a symbolic aggregation operation.
,BD[O,g] , being g+1 the cardinality ofS. Let i =rounc(,8) and @ = -i be two values

such that D[O,g] and O'D[—O.S,O.E) thena is called a symbolic translation, whereund(()
is the usual round operation.

Definition 2.2 [14,41]. Let S:{ $| i=0,1,2;-- ,g} be a linguistic term set anﬁD[O,g] a

value representing the result of a symbolic aggregation tigerdhen, the 2-tuple that expresses
the equivalent information t¢ is obtained with the following function:

A:[0,9] - Sx[-0.5,0.9 @)
_ ~[s, i=round B)
A(B)=(s.a), with {a:/}—i, o 0[-05,09 2

where 5 has the closest index label & and @ is the value of the symbolic translation.
Theorem 2.1 [14,41].Let S:{ $| i=0,1,2; ,g} be a linguistic term set ar(gj,a) be a 2-

tuple. There is always A™" function such that from a 2-tuple it returns its equivialemmerical
value ,BD[O,g] O R, where

A™:Sx[-0.5,0.9 - [ 04 3

As.a)=i+a=p. 4
It is obvious that the conversion of a linguistic term in@-t@ple consists of adding a value zero
as symbolic translation

§0S=(s0).

Definition 2.3 [14,41]. The comparison of linguistic information represented bygkesiis carried
out according to an ordinary lexicographic order. (BKL a’k) and (51 ,a ) be two 2-tuples, with
each one representing a counting of information as follows.

(1) If k<l then(s,,a,) is smaller thar(s,a; ).
@) If k=1 then
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«if a,=a, then(s.,a,). (5.4,) represents the same information;
«if @, <a, then(s,,a,) is smaller thar(s,a; ) ;
«if @, >a, then(s,,a,) is bigger thar(s,a, ) .

Theorem 2.2. Let (s.a,) and (s,a;) be two 2-tuples, B =A(s.a,) , and

B =07(s.,a). Then,(s.a,)<(s.a,) if and only if B <A, and (s.a)=(5.a,) if
and onlyif B, =5,

Proof. (1) We first prove that(s,a,)<(s.a,) if and only if B, < . Assume that
(g,ak)<(sf,a'|). Then, k<l , or k=I and a,<a, . If k<l , then we have
B.=k+a,<k+05<1-051+a,=8 . If k=1 and a,<a, , then we have
Bo=k+a <l+a =4.

Assume thatf, <[ . Then, k<l , or k=I and a,<a, . If k<l , then we have
(g,ak)<(sf,a|). If k=1 anda, <a,, then we have(q(,ak)<($,a|).

(2) We next prove tha(s(,a'k):(s,a'l) if and only if B, =/ . If (g,ak):(sf,a,), then
k=1 and a, =a,, which implies that3, =k+a,=1+a,=4. If B, =4, thenk=1 and
a, =a,, which implies that(g,a'k) =(Sf,a',) .

2.2 Bonferroni Mean and Geometric Bonferroni Mean

Bonferroni [25] originally introduced a mean type aggregatiparator, called Bonferroni mean,
which can provide for aggregation lying between the mam,aperators and the logical “or” and
“and” operators.

Definition 2.4 [25]. Let p,q=0, and leta, (i =12, ,n) be a collection of non-negative real
numbers. Then, the aggregation function:

B*(a, 8., a)= 2. d4 )

is called a Bonferroni mean (BM).

Based on the usual geometric mean (GM) and the Bllet al. [35] introduced the geometric
Bonferroni mean, which was defined as follows:

Definition 2.5 [35]. Let p,q=0, anda, (i =1,2,-- ,n) be a collection of non-negative numbers.
If
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I]( pa+ ag)s (6)

GBp’q(q’ 32,...’ %) =
then we callGB"“ the geometric Bonferroni mean (GBM).

3. 2-tuple Linguistic Bonferroni Mean and Weighted 2-tuple
Linguistic Bonferroni Mean

In this section, we first extend the Bonferroni meaperator (Eq. (5)) to 2-tuple linguistic
environment, i.e., develop a 2-tuple linguistic Bmnoni mean operator and its weight form.

Definition 3.1. Let p>0, q=0, and p,q do not take the valu® simultaneously. Let
{(rl,al),(rz,az) o ,an)} (ri as,a D[—O.5,0.3 i= 1,2 n) be a collection of 2-tuples. If

1
p+q

pa - 1 ()
2TLB™ (1) . (rp0@,) oo+ (1, @) = 0 A1) 2 l( ) daf; a ))

&
then 2TLB™ is called the 2-tuple linguistic Bonferroni mea (BM).
In what follows, we investigate some desirable props of the 2TLBM:

Theorem 3.1. Let p=0, q=0, and p,g do not take the valu® simultaneously. Let
{(nay).(rpa) (@)} (10S.a0[-05,09 i= 1,2;- n) be a collection of 2-
tuples. Then, the following properties hold.

(1) Commutativity: It {(r),a}).(r;.a%) - (re.@,)} is  any  permutation  of

{(rnan).(rz@z) o+ (1o @)}, then

2TLBP (1, @) (1, @,) - (1o @,)) = 2T () s ) o+ (o a1y)). ()

(2) Idempotency: I1(I’i a; ) :(r ,0’) for all i, then

2TLB™ (1@, (1o @z) v+ (1o @) =( @). 9)(

(3) Boundedness:

Elﬂ{(r, a } < 2TLBP((

ool ) s maff )} o)

((r

(4) Monotonicity: Let{(T;,@,),(,.@,) - (T, @ )} and{( a,).(r,a;) (1, a,)} be two
collections of 2-tuples, |(r a; ( a
@

)< ) . foralli , then
2TLBP((r,a,) (1, @,) -

a,))< 2T @) {7 42) - € @) ()
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Proof. (1) Since {(r.a;).(r5ay) - (real))  is  any

{(l’l,a’l) (r@,) oo

2TLB™((r,,

=A

=A

=2TLB™((r,

@1 (r,,

(r,.a,)} . we have

@) (rp,) o (1, )
S EIE |
Sl e

a).(r.as) (7 an))

a’i):(r,a) for all i , then

2TLB™((r,a,).(rp0@) v+ (10 ,))

Sl o M

— il((Al(r,a))p[QA1(r,a))q)]p+q}

=A

Nk

N

permutation

(4)
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The proof of Theorem 3.1 is complete.

Theorem 3.2. Let p=0, q=0, and p,q do not take the valu® simultaneously. Let
{(rl,al),(rz,az) RERN (8 ,an)} (ri 0S,a 0[-05,03 j= 1,2, r,1) be a collection of 2-tuples.
Then, we have

2TLB™((r,a,) (1, @,) v+ (1o @,)) = 2TLBY (1) o 20,) 5+ £, @,))- (12)
Proof.

2TLB”’q((r1,al),(r2,a2) (S ,an)) =4 [n(:—l) Z"_: ((A_l(ri a ))p [QA_l(ri 4 ))q)

N [n(nl—l) ;i((m(” @) 4o (a ))p)] (13)

i=1
j#i

n™n

= 2TLBq’p((r1,a1) '(rzvaz) L ’(r o ))
The proof of Theorem 3.2 is complete.
In the following, let us consider some special sagethe 2TLBM operator by taking different
values of the parametefg and q .
Casellf q - 0, then, by Eq. (7), we have
ETOZTLBPVQ ((rr al)*(rzaz)*""(rnlan))

sy )]

(14)
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which we call the generalized 2-tuple linguisticang21].

Case 2If p=2 andqg - 0, then Eq. (7) is transformed as:

ZTLBZ'O((I'l,O’l) 1(r2’a2) e ,(rn ,an)) =A 1 i ((A-l (ri a ))2)

) (15)

which we call the 2-tuple linguistic square meat][2

Case 3If p=1andq - 0, then Eq. (7) reduces to the 2-tuple linguistierage [21]:

2TLBl'0((I’1,0’1) 1(rz’a2) o ,(rn ,an)) =A ;Zn: ((A—l (ri a ))1)

n(n-1) 4z
( )léj ' (16)

18,

=0 =2 A7 (r.a;)

ni=

Case 4If p=g=1, then Eq. (7) reduces to the following:
1 2 %
2TLBY (. a,) . (rp00,) oo (1, @,)) =0 Z(A’l(ri a)n( g )) a7

n(n—l):,#jjﬂ

which we call the 2-tuple linguistic interrelateglsre mean.

Case 5If p - +0 andqg — O, then Eq. (7) reduces to the 2-tuple linguisticcimaum operator:
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lim 2TLB p"T'((rl, ), (ra,), - ,(rn,an))
pam
q-0

(18)

- jm 2 [n(j_l)i(m—l)(wn,ai))”)]'l) :gmA[[%i(Aﬂ(n,q))pj

=lim A(max{A’l(ri Q, )}) =2TLB™((r,.@,) (1, @,) i+ (1, @,))

p-0 I<isn

In the 2TLBM operator, the importance of the inptguments is not emphasized. Nevertheless, in
many practical situations, the weights of the inprguments should be taken into account. If we
allow the arguments to have different weights, thies weighted 2-tuple linguistic Bonferroni
mean (W2TLBM) operator can be defined as follows:

Definition 3.2. Let p>0, q=0, and p,q do not take the valu® simultaneously. Let
{(rl,al),(rz,az) ,---,(rn ,a'n)} (ri s, a, D[—O.S,O.E) =12, l;l) be a collection of 2-
tuples. w=(w, w, -, w)" is the weight vector of(1,,@,).(r,.@,) (1, @,)} . wherew,

indicates the importance degree(d;f,a’i ) satisfyingw, I][O,]] (i=1,2;-- n)and Zn:wi =1.If

i=1

W2TLB, ((r.a,).(rpa,) o (1, @)

19)

=A n(nl_l) Z((w 7 (r.a))" g 275 ))q)

then W2TLB\:JV'q is called the weighted 2-tuple linguistic Bonfarrmean (W2TLBM).

Theorem 3.3. Let p>=0, gq=0, and p,q do not take the valu® simultaneously. Let
{(r_l,ﬁl),(r_z,ﬁz) ,---,(r_n ,Ern)} and {(rl,al),(rz,az) ,--~,(rn ,a'n)} be two collections of 2-
tuples, if (r,,a,) <(7,.@,) . foralli , then

W2TLB, (1, @) (ro.@,) o+ (1, @,)) < W2TLB,, ((r, @) {7 7.) i+ (., @.))- (20)
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Proof.

W2TLB, ((r.a,).(rpa,) (1o @,))

GIECE I ENEIRTENC
e SRR R

=W2TLB, ((7.2,).(F.@,) - (77 @)
The proof of Theorem 3.3 is complete.

The W2TLBM operator is neither idempotent, boundeat,commutative.

Theorem 3.4. Let p=0, g=0, and p,q do not take the valu® simultaneously. Let
{(rl,al),(rz,az) ,---,(rn ,a'n)} (ri s, a, D[—O.S,O.E) =12, l;l) be a collection of 2-

tuples. w=(w, w,,w)" is the weight vector of(r,,a,),(r,.a,) . (r, @,)} . satisfying

w [0, (i=1,2;--n) andzn:wi =1. Then, we have
i=1

W2TLB," (1. @.) . (r @) v+ (1 ,)) = W2TLB, () o 22) 5+ £, @) @D

Proof.
W2TLB, ((r.a,),(r.a,) - (1, @,))

=A

=W2TLB,  ((r,a,).(r,.a,) - (1, .a,))
The proof of Theorem 3.4 is complete.
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4. 2-tuple Linguistic Geometric Bonferroni Mean am Weighted
2-tuple Linguistic Geometric Bonferroni Mean

In this section, we shall investigate the geomeBanferroni mean under 2-tuple linguistic
environments, i.e., develop a 2-tuple linguistiometric Bonferroni mean operator and its weight
form.

Definition 4.1. Let p>0, q=0, and p,q do not take the valu® simultaneously. Let
{(rl,al),(rz,az) RE (8 ,an)} (ri 0S,a 0[-05,03 j= 1,2, m) be a collection of 2-tuples. If

- 1
p+qi|,-_:|1(p D, )+ B, g )00 | (22

i#]

2TLGBP® ((r1 ) (rp.a,) o (r, ,an)) =A

then 2TLGB"Y is called the 2-tuple linguistic geometric Bonferrmean (2TLGBM).
In what follows, we investigate some desirable prtps of the 2TLGBM:

Theorem 4.1. Let p=0, q=0, and p,q do not take the valu® simultaneously. Let
{(rl,al),(rz,az) ,---,(rn ,a'n)} (ri s, a, D[—O.S,O.E) =12, l;l) be a collection of 2-
tuples. Then, the following properties hold.

(1) Commutativity: It {(r),a}).(r;.a%) - (re.@,)} is  any  permutation  of
{(rnan).(r@z) o+ (1, @,)} . then
2TLGBP (1) (r,.@2) i+ {1y @) = 2TLGB((r) @) (5 @3) + (o @) (@3)
(2) Idempotency: I{r,,a ) =(r,a) forall i, then
2TLGB((r.a) (r,.a,) i+ (1, @,)) =(r ). (24)

(3) Boundedness:

lern]{(r' i )} < 2TLGB™ ((rl a) (ra,) i, ﬁn)) < ma*(ri Q )} ' (25)

I<isn

(4) Monotonicity: Let{(r_l,a_'l),(r_z,c_lz) ,(ﬁ] ,C_Yn)} and{(rl,al),(rz,az) ,(rn ,a’n)} be two
collections of 2-tuples, i{r,,a; ) <(F7.,&

) foralli , then

2TLGBp‘q((r1,a1) ’(rz’az) e ’(rn ﬁn))s 2TLGB"q((r_1 ﬁl) (I‘_2 ‘72) L 6: ﬁn))' (26)
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Proof. (1) Since {(r.a;).(r5.a) - (rh.@,)} is any  permutation  of
{(rnan).(r2@2) o+ (1, @,)} . then we have
2TLGB™ () (r202) v+ 1o a1,))
=n| 1 ﬁ(pm'l(ra)+qm'1(r. a'.))”("l‘l)
Pragat -
1 7 Af oy Sl o\
=4 p+q.|;|1(pm (r\a))+qm(r'.a; )
—ZT'-GB”](( a)) (r3.a2) - {ra ar))

a)=(r,

@1t (r,

2TLGB""‘((r1,a'1) (rp.a,) o |1, ,an)) =A[

A3) Becausemm{(r a )} < 2TLPQ((r, @) (r, @) +

I<isn

mln
1<isn

n

P+q|-r|

j=1
i#

a) for all i , then

1
P+ 0=

I#]

:A[

=(r.a)

1 n

pP+qii=

i#j

*(minf(x

*(r,a)+q” (

2% (ma(r 4 )}) +amn

|_| (p D™ (r; &) +q m’l(rj

ﬂ(p%’l(r,a)+qm’l(r,

a)})ram(min(; 4

)M

a)) ”1”]
a»$ﬁ]

(r a, )< ma{<r a'} we have

I<isn

(ma{(s @
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27168 ((1,) {12 2) - {1, 1) :A[ PR a) (g ))“(”11)}

i

(4) SA[ 1 ﬁ(pm'l(f,,fr,)wm'l(ﬁf, ))n(:l)J

The proof of Theorem 4.1 is complete.

Theorem 4.2. Let p=0, gq=0, and p,q do not take the valu® simultaneously. Let

{(na).(rpa,) - (ry @)} (r0S,a0[-05,04 j= 1,2;- n) be a collection of 2-tuples.
Then, we have

2TLGBP ((r,a,) (r,.a,) o+ (1, @,)) = 2TLGB®((r, &) (. @) + (. @,))- @D
Proof.

2TLGB ((r.a,) (r,.a,) ++ (1, @,)) =4

n !

10 !
A r a A r. g )|y
p+ q:l;fll(p (r' a,)+q (r' A, )) J

:A[qi pﬁ(qm’l(l’jﬂj)+ pA~*(r.a ))n(i—l)J

=2TLGB*" ((r.a,) (r,.a,) o (1, @,))
The proof of Theorem 4.2 is complete.

In the following, let us consider some special sasfethe 2TLGBM operator by taking different
values of the parameters and q .

Casellf g - 0, then, by Eqg. (22), we have

lim 2TLGB® ((r,,a,). (1, @) -+ (1, ) (28)

=L‘E*%A[l M(p2*(na)+am*(s.q ))n(i.l)J

p+ q\,le
i#]

=A{::lﬁ1(pm1(rym))“:ﬂJ=A[l " (pm’l(ﬁ,m))%j

pl:

=2TLGB ((1.a,) (r,.@,) o+ (1, @,))
which we call the generalized 2-tuple linguistiogetric mean [21].

Case 2If p=2 andq - 0, then Eg. (22) is transformed as:
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2TLGE (1) () - 1, 1) =8| L[] (287, )0

which we call the 2-tuple linguistic square geoncatiean [21].

Case 3.If p=1andq - O, then Eqg. (22) reduces to the 2-tuple linguisgormetric average
[25]:

2TLGBl’°((rl,al) (ro.a,) - (r, ,an)) =A rJ (A‘l (r, ai))m
=t (30)

Case 4If p=qg=1, then Eq. (22) reduces to the following:

1,1 1= -1 -1 ‘n(n-1)
2TLGB™((r.a,) (ry.a,) o+ (1, @,)) =4 Eil,j_zll(A (ra)+07(, aj))( RINEHY
i%]

which we call the 2-tuple linguistic interrelategliare geometric mean.

It should be noted that the 2TLGBM operator doetscoosider the importance of the aggregated
arguments, but in many practical problem, espsciall some group decision makings, the
aggregated arguments have different weights, tacomee this drawback, we introduce the
following definition:
Definition 4.2. Let p=0, q=0, and p,q do not take the valu® simultaneously. Let
{(nay).(rpa) (@)} (10S.a0[-05,09 j= 1,2;- n) be a collection of 2-
tupleS.W=(V\£,V\é,---,V\4)T is the weight vector o{(rl,a'l),(rz,az) ,~--,(rn ,an)} , Where w
indicates the importance degree(qf,ag ) satisfyingw; EI[O,J] (i=4,2;--n)and zn:wi =1.1If

i=1

W2TLGB® ((rl'al) ’(rz'a2) n '(rn ’an))
1 , 32)

-4 pi qilill(p[qA_l(“"’i )" +acfa(n.a))" )ﬁ

i#]

then W2TLGB!? is called the weighted 2-tuple linguistic geometBonferroni mean
(W2TLGBM).
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Theorem 4.3.Let p=0, q=0, and p,q do not take the valu® simultaneously. Let
{(r_l,c_rl),(r_z,ﬁz) ,---,(r_n ,Ern)} and {(rl,al),(rz,az) ,---,(rn ,an)} be two collections of 2-

tuples, if (r,,@,)<(r,.a@,) . foralli , then

W2TLGB, ((r.a) (r,.a,) i+ {r, @,)) < W2TLGE, ((; @) (, @) + ¢, @) (33
Proof.
W2TLGB;, ((r,.a,) (r,.a,) ++ (1, @,))

=4 piqglill(pﬁﬁﬂ‘l(n,cn))“+qE@A‘1(n,aj))Wj)”(”'”
=8 piqil,ill(p[@”l(f@))w +aifa”(7.a))" )ﬁ

i#]
=W2TLGB] ((r.4,) (1, @) .- r, 4,)
The proof of Theorem 4.3 is complete.

The W2TLGBM operator is neither idempotent, boundent commutative.

Theorem 4.4. Let p=0, q=0, and p,q do not take the valu® simultaneously. Let
{(rl,al),(rz,az) ,---,(rn ,an)} (ri us,a, D[—O.S,O.E) =12 m) be a collection of 2-
tuples. w=(w, w,--,w)" is the weight vector o{(rl,al),(rz,az) R (i ,an)} , satisfying

w [0, (i=1,2;--n) andzn“wi =1. Then, we have
i=1

WZTLGB\;q ((rl’al) '(rzlaz) " ’(rn 'an)) = WZTLGBZP ((rl ‘71) (r 2 ‘72) L ¢n an)) : (34)

Proof.
W2TLGB," ((r,.a,) (r.a,) - (r, @,))

=A 1

P+Qi=

i#]

1 n

=A

q+ p],i:l

j#

[] (q[ﬁm(ﬁ’“; )" +ptla(r.a ))W)n(n—l)

1

Ao te.)) (o)

1

=W2TLGB, (1) (r,.a,) - {1, @)

The proof of Theorem 4.4 is complete.
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5. Approaches for Multiple Attribute Group Decision making
with 2-tuple Linguistic Information

In this section, we utilize the proposed aggregatperators to develop some approaches for
multiple attribute group decision making with 24@ifinguistic information.

The multiple attribute group decision making (MAGDMith 2-tuple linguistic information can
be formulated as follows: LetX ={ Xy Xort e, )gn} be a set ofm alternatives, and let
C={q,G,...,G} be a collection oh attributes, whose weight vector = (W, W, W',

with w, D[O,ZI], j=L2:--n, andzwj =1, wherew, denotes the importance degree of the
i=1

attribute C; , and letD ={d1,d2,-~~,q} be a set of decision makers, whose weight vector is

w:(a{,wz,-u,oq)T with a)KD[O,]], k=12, and Zl:mK =1, where «j denotes the

k=1
importance degree of the decision makler Each decision maker provides his/her own linguiist

decision matrixA®) :(aék)) (k =1,2;-- ,I), Wherquk) 0 Sis a performance value, which

takes the form of linguistic variable, given by ttiecision maked, (] D, for the alternative
% U X with respect to the attribute, 0 C.

If all the attributescj (1 =12~ My are of the same type, then the performance valoesot

need normalization. Whereas there are, generadlyefit attributes (the bigger the performance
values the better) and cost attributes (the sméikerperformance values the better) in multiple
attribute group decision making, in such casesmag transform the performance values of the

Ak =g
cost type into the performance values of the behgde. Then, we can transform (a” )mxn

RY = (1)
into the matrix ' Jma where
a, for benefit attribute,
MO !
i neg( 4“)), for cost attributa]: i=1,2,--m J=1L2;~-n k=12,

(35)

k) (k)
where neg(a& ) is the complement o?"j .
In the following, we utilize the W2TLBM (or W2TLGBMoperator to develop an approach for
multiple attribute group decision making under gkulinguistic environments. The algorithm
involves the following steps.

Approach |

Al :( (_k))
Step 1. Transform the linguistic decision matrix % m<n jnto a normalized linguistic
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RY = (1)
decision matrix " Jmn using Eq. (35).

RW = (¢ =12...
Step 2. Transform the linguistic decision matrix (” )mxn (k 12, ’I) into 2-tuple

ﬁ(k):( I;(k)lo) =
linguistic decision matrix ( : ) mn (k 12, ’I).

Step 3.Utilize the W2TLBM operator (Eqg. (19)),

=l )=wers (9.6 9. 0

s,t=1
s#t

(36)
or the W2TLGBM operator (Eqg. (32)),

n=(n.a)=waries (9.9 (7.9 ... " .9)

”[piqﬂiptéﬂ1(%5%0))“’*@@1(&,0))“1

S, t=
s#t

N——
—~
w
~
~

to aggregate all of the individual 2-tuple lingigstdecision matrices
_ R=(t) =((r.a
(k=1.2:-- 1} into the collective 2-tuple linguistic decisioratrix ( ! )mX” (( e ))Wn
Step 4.Utilize the W2TLBM operator (Eqg. (19)),
I"_i ( ) WZTLBW (( i1 11) (I Z'q 2) L '(rin 'qn ))

NESTR—

X, y=1
X£y

P+

(38)

or the W2TLGBM operator (Eqg. (32)),

n =(ri G ) = WZTLGBE'q((rilvafl) '(ri 24 2) nee (rin a, ))

1
Wy Y n(n-1)
[p+qu(p|:qA IX IX +q[QA | Iy)) ) ]
(39)

X£Y
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to aggregate all of the preference valtﬁ‘és(J =12;-n ) in thei th line of R , and then derive

the collective overall preference valuéz(r"q) (I =1’2"“m)

(i=1,2,---m)

i

of alternative

Step 5.Rank the'" =(na) (i=12:-m) in descending order using Definition 2.3.

0=L2w-m)

Step 6. Rank all of the alternative& , and then select the best one(s) in

accordance with the collective overall preferengieies =(na) (i=12;--m) .

Step 7.End.
If the information regarding the weights of the id@mn makers and attributes is unknown, then we

utilize the 2TLBM (or 2TLGBM) operator to develom alternative approach for the MAGDM
problem with 2-tuple linguistic information, whid described below.

Approach Il

AlK) :(5\(-'())
Step 1. Transform the linguistic decision matrix ' Jman into a normalized linguistic
R :(r.(k)
j

decision matrix )mxn using Eq. (35).

R9=() (k=12:-1)

Step 2. Transform the linguistic decision matrix into 2-tuple
ﬁ”:(ﬁWO) —19...
linguistic decision matrix ( ! ) mxn (k =12, ’I)_
Step 3.Utilize the 2TLBM operator (Eq. (7)),
r_ij :(rii 'ai,j ) = 2TLBZq ((I:J(l)vo) v(rij(Z) 10) roo (rlj (l) 'q)
1
1 | (o9 p N q p+q
=A (A' ri.S,O) EéA' [ ,o)j
|@_Q§;( (, ) L )
(40)
or the 2TLGBM operator (Eq. (22)),
7 =(r.q ):2TLGBZ’q((rij(l),O) (2.9, " c))
1 -
=4 (P (5,0)+qma (5, g
p + qs,t:l
s#t (41)
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to aggregate all of the individual 2-tuple lingigstdecision matrices

R=(7),..=((5.4)),..

(k =12, *') into the collective 2-tuple linguistic decisioratrix
Step 4.Utilize the 2TLBM operator (Eq. (7)),

1 =(ra) =278, ((na.) (2 o) oo e G0 ))

1

p+q

=8| o 2 (7 (o)) (o))

X, y=1
X£y
(42)
or the 2TLGBM operator (Eq. (22)),
r=(r.a)= 2TLGB/€'q((rilia? Dli2as) e A ))
1 0 S
=A D (r,a,)+q@d*(r,,a, )"
p+qx|,;|1(p (v ) + a5, )
>y (43)

to aggregate all of the preference Va|l5iéS(J =12~ MY in theith line of R, and then derive

the collective overall preference valuéz(r"q) (I =1’2"“m)

(i:l,z,...m)

i

of alternative

=S|

=(r.a) (i=12-m)

Step 5.Rank the in descending order using Definition 2.3.

i =12, m)

Step 6. Rank all of the alternative& ( , and then select the best one(s) in

accordance with the collective overall preferenaleies fi _(ri ,ag) (I =12 ’m) .

Step 7.End.

Remark 5.1. Approach | is designed for situations where théghts of the decision makers and
attributes can be predefined and it utilizes theTABM (or W2TLGBM) operator to aggregate
all of the individual 2-tuple linguistic decisionatnices into the collective 2-tuple linguistic
decision matrix. Approach Il is designed for sitoms where the information regarding the
weights of the decision makers and attributes isnawn and it utilizes the 2TLBM (or 2TLGBM)
operator to aggregate all of the individual 2-tuplguistic decision matrices into the collective 2
tuple linguistic decision matrix.

6. lllustrative examples

In this subsection, let us consider a numericalgta adapted from Herrera et al. [48] and
Herrera and Martinez [41].
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Example 6.1 [41,48]Suppose that an investment company wants to ivesim of money in the
best option. There is a panel with four possibierahtives in which to invest the money: ()i) is

a car industry; (Z)X2 is a food company; (33(3 is a computer company; and (ﬁ‘) is an arms
industry. The investment company must make a detastcording to the following four attributes:

Q) G is the risk analysis; (2532 is the growth analysis; (3':)‘3 is the social-political impact
analysis; and (45:4 is the environmental impact analysis. Among theswatered attributes(,:2 is

the benefit attribute, angj (J :1’3’4) are the cost attributes. The weight vector oftattes €i

(J :1’2’3’4 is W:(0'3’0'25’0'25'0')§. The four possible alternative$ (I :1’2’3’4
to be evaluated using the linguistic term set

are

5= S, = extremely poorg = very poorg = poorg= slightlper, g= fair,
- s, =slightly good, s, = good,s = very goodg= extremely good

by three decision maker%< (k=ZL 2’3 (suppose that the weight vector of three decisiakers

_ T

is w—(0.2,0.5,0.;8 ) under the above four attributes, and constresipectively, the linguistic
Ak =g -

decision matrices (6\, )4x4 (k 1’2’3 as shown in Tables 1-3.

Table 1.Linguisticdecision matrixA(l) provided bydl.
1 Cl CZ C3 C4
X, Sy S S S
X S S S, S
X3 S S, S S
% S S 5 S,
Table 2.Linguistic decision matrixA(z) provided byd2.
2 (o} c, C, c,
X S S, S 5
X S 5 S S,
X3 S S S S,
% So S S; S5
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Table 3.Linguistic decision matrixA(s) provided byd3.
3 G G Cs C,
X S; S Se So
X S S S, S;
X3 S; S S5 Su
X4 S, Sy S5 S

Assume that the weights of the decision makersadinitbutes are known. We use Approach | to
find the decision result.

AKX = (a4
Step 1. Using Eq. (35), we transform the linguistic demfsimatrix ( ' )4X4 into a
R :( r_(k))
normalized linguistic matrix ! /44 (see Table 4, 5, and 6).
Table 4.Linguistic decision matrixR(l) provided bydl.
4 Cl CZ C3 C4
X 5 S; S S5
X S Se S5 S5
X3 S S, S; S5
X4 S S S; Se
Table 5. Linguistic decision matrix R? provided by d2.
5 C c, C, c,
X 5 S, S; S
X, S Sy S Ss
X3 S S S Se
% S Se 5 S
Table 6. Linguistic decision matrix R provided by d3.

6 Cl CZ CB C4
X S S S, S
X S S S S5
X S Se S Sy
Xy S S S S

o RY(Y) (k=129
Step 2. Transform the linguistic decision matrices x4 "7 given in Tables 4-
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ﬁ(k) :( r-(k),O ) =
6 into 2-tuple linguistic decision matrices ( ! ) 4xa (k 1’2’3 which are given in

Tables 7-9.

Table 7. 2-tuple linguistic decision matrixF_z

(9

7 C C, C; Cy

% (s1,0) (s,0) (s,0) (s.0)

%, (s:,0) (s,0) (s,0) (s,0)

X (s:,0) (s:,0) (s:,0) (s,0)

X, (s.0) (s,0) (s:,0) (s,0)
Table 8. 2-tuple linguistic decision matrix ﬁ(z).

8 ¢ c, G c

X (s.0) (s,0) (s,0) (s:,0)

X (s,,0) (s.,0) (s.0) (s:0)

%, (s:,0) (s.:0) (s,0) (s:0)

X, (s.0) (s:0) (s,0) (s:,0)
Table 9. 2-tuple linguistic decision matrix R® .

9 c c, c c,

X, (s.0) (s,0) (s,,0) (s.,0)

X (s,0) (s,0) (s:,0) (s,0)

X (s.0) (s,0) (s:,0) (s:,0)

X, (s,0) (s.0) (s,0) (s,,0)

Step 3. Use the W2TLBM operator (Eq. (36)) (here, teke p= q:1) to aggregate all of the

R = ((r.(k>,o

individual 2-tuple linguistic decision matrices ! ))4X4 (k :1'2'3) into the collective

2-tuple linguistic decision matrif - (_r” )‘M - ((r" a ))‘M (see Table 10).
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Table 10. The collective 2-tuple linguistic decision ntax R

10 (o) c, C, c,

X, (s,,-0.4779 (s,,—-0.4009 (s,-0.0139 (s,,-0.4189
X, (s,,-0.1109 (s,,-0.1679 (s,,0.0817 (s,,-0.0252
X, (s,,—0.3417) (s,,-0.2189 (s,,-0.4719 (s,,—0.3879
X, (s,,0.3439 (s,,-0.3387) (s,0.4319 (s,,-0.4229

r.,a.
Step 4. Use the W2TLBM operator (Eg. (38)) to aggte all of the preference valugé‘, ! )
(1:1'2'3’4) in the ith line of R and then derive the collective overall preferenedue

r_i:(ri 70?) (i :1’2’3’4 of the alternative’ (i :1’2’3’4.

F=(s,,0.2859 T, =(s,,0.483) T;=(s,,0.410) F,=(s,,0.4399

(i=1,2,34

Using Definition 2.3, we then rank te in descending order:

(i=1,2,3,9

Step 5. Rank all of the alternativés as follows:

XrmX=X%~= X
The best alternative i%2.

We can find that as the values of the parameRalandq change according to the decision
makers’ subjective preferences, we may obtain mifferankings of the alternatives, which can

reflect the decision makers’ risk preferences. Wes talues of the parametepsandCl change,

the collective overall preference vaILrJez(ri ,0{) (I =1’2'3’A)

can be obtained and shown in Table 11.

and the ranking of alternatives
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Table 11. The collective overall preference values obtaidevith the W2TLBM operator and

rankings of the alternatives.

11 p=0,q=20 p=0509=15 | p=g=5 p=15,q9=0.1 p =20,
q=0.05

X (s,-0.2259 (s,-0.3119 (s,0.3779 (s,-0.2669 (s,-0.2309

%, (s,-0.0577) (s,-0.1233 (s,-0.4132 (s.,-0.0949 (s,-0.0610

%, (s,-0.0577) (s,-0.1302 (s,-0.4712 (s,,-0.0963 (s,,-0.0615

X, (s,0.0599 (s,-0.0280 (s,-0.4210 (s,0.0079 (s,,0.0560

Ranking Xy =X = X=X Xy =X = XK= X X = X=X X Xy =X = X=X X=X = X=X

Furthermore, it is possible to analyze how theedéht attitudinal characterp and q play a role
in the aggregation results. As the values of thrampatersp and g change betweefl and 20,

different results of a symbolic aggregation operat} =A™ (f) (i :1,2,3,1) of the collective

overall preference valueg (i=12,3,4 of the four alternativesc (i =1,2,3,4 can be
obtained. Figs. 1-4 illustrate the valugs=A"(T) (i =1,2,3,9 of the four alternative,
(i =1,2,3,4) obtained by the W2TLBM operator in detail.

helta

0.75

0.7

0.65

-08

-0.55

-05

-0.45

0.4

0.35

0.3

0.25

Fig. 1. The valuesf3 for alternative x, obtained by the W2TLBM operator (p [ (O, Zq , ql:I(O, Zq ).
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Fig. 2. The values3 for alternative X, obtained by the W2TLBM operator (p ] (O, Zq ,qQd (0, Zq ).

Fig. 3. The values/3 for alternative X, obtained by the W2TLBM operator (p ] (0, Zq ,qQd (0, Zq ).
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08

-0.8

helta

-0.7

-0.6

0.5

0.4

Fig. 4. The values3 for alternative X, obtained by the W2TLBM operator ( p[J (0, Zq | D(O, Zq ).
If we let the parametep fixed, different valuesS, and rankings of the alternatives can be
obtained as the parametgrchanged which was shown in Fig. 5.

1 T
—x1
— X2

09 X3 g
4 q=4.6560 belta=0.6251

0.8 B

0.7 =

Fig. 5. Variation of £ obtained with the W2TLBM operator ( p=1, q D(O, Zq ).
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From Fig. 5, we can find that,
1) whenq(0,4.656Q, the ranking of the four alternatives %> x, - x, - x and the best

choice isx, .

2) whenq(4.6560,2(, the ranking of the four alternatives x> x, - %>~ % and the best
choice isx, .

From Fig. 5, we also find that the collective oVlepaeference values obtained by the W2TLBM
aggregation operators become bigger as parangetand g increase for the same aggregation
arguments. Therefore, it plays a crucial part iniglen making. For example, in the real group
decision making problems, the decision makers vaked a gloomy view of the prospects could
choose the smaller values of the parameterand g while the decision makers who are

optimistic could choose the bigger values of thexpeetersp and q .

If the W2TLGBM operator is used in place of the VWBM operator to aggregate the values of
the alternatives in steps 3 and 4, then the collectverall preference values and the rankings of
the alternatives are listed in Table 12.

Table 12. The collective overall preference values obtad with the W2TLGBM operator
and rankings of the alternatives

12 p=0,q=20 p=0.5q=15 p=9g=5 p=15,qg9=0.1 p=20, q=0.05
X (s,0.1057) (s.,0.106§ (s,0.1139 (s,,0.1059 (s,,0.1057)

% (s,0.1609 (s.,0.1619 (s,,0.1677) (s,,0.160§ (s,,0.1609

% (s,0.1469 (s.0.1479 (s.,0.1559 (s.0.146§ (s.0.1469

X4 (s,0.1479) (s.,0.1489 (s.,0.1560 (s,0.1479 (s,0.1478
Ranking | %> x> x> x X = X m X % RrXm XX | XmXm Xm X | X=X X X

Furthermore, it is possible to analyze how theedéht attitudinal characterp and q play a role
in the aggregation results. As the values of thrampatersp and g change betweefl and 20,

different results of a symbolic aggregation operat =A™ (TI) (i =1,2,3,4) of the collective

overall preference valueg (i =1,2,3,l) of the four alternativesx (i =1,2,3,l) can be

obtained. Figs. 6-9 illustrate the valugs=A"(T) (i =1,2,3,9 of the four alternatives,
(i =1,2,3,Z) obtained by the W2TLGBM operator in detail.
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1112
1116
1114 =1.111
1112
- =111
3 14
1108 -1109
1.106
1.108
1104
20
1.107
1108

1.167
117
1 166
1.168
{1,165
1166
s
= _
SRR 17 S {1 164
.2 11163
116
20 1.162
1.161

Fig. 7. The values3 for alternative X, obtained by the W2TLGBM operator (p [J (O, Zq , q D(O, Zq ).
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1156
1188 . 1154
B -1.153
1184 .
-1.152
£ 11524
< -1.151
1154
11484, e
1145 =& 1.143
20 |
20 1.148
1147

Fig. 8. The vaIues'B for alternative =3 obtained by the W2TLGBM operator ( pU (O’ Zq , qD(O’ Zq ).

1.155
1.154

-1.153

helta

-1.152

-1.1481

1.15
20 B81.149

1.143

Fig. 9. The values'g for alternative =4 obtained by the W2TLGBM operator ( P D(O’ Zq , qD(O’ Zq ).
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If we let the parametelp fixed, different valuesgi and rankings of the alternatives can be
obtained as the parametgrchanged which was shown in Fig. 10.

1.18

—x1
—x2

117 3|

1.161 —

1.15p =

1.141 —

belta

1.12- *

111 —_— B

11 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Fig. 10. Variation of B obtained with the W2TLGBM operator ( p :l, q D(O’ Zq ).

From Fig. 10, we can find that whe(llllj(o’Zq , the ranking of the four alternatives is
% =% =%~ X and the best choice {%.

From Fig. 10, we find that the collective overaleference values obtained by the W2TLGBM
aggregation operators become smaller as paranﬁ)etmdq increase for the same aggregation
arguments. Therefore, it plays a crucial part iniglen making. For example, in the real group
decision making problems, the decision makers vake fn gloomy view of the prospects could

choose the bigger values of the parametgrand 9 while the decision makers who are
optimistic could choose the smaller values of ta&ametersp andd.

It should be noted that the belta obtained by tHETWBM operator are smaller than the belta
obtained by the W2TLGBM operator, which indicatesttthe W2TLBM operator can obtain
more unfavorable (or pessimistic) expectations, laviihe W2TLGBM operator has more
favorable (or optimistic) expectations. Therefone can conclude that the W2TLBM operator
can be considered as the optimistic operator, vihéeW2TLGBM operator can be considered as
the pessimistic operator and the values of thenpeters can be considered as the optimistic or
pessimistic levels. By Figs. 1-10, we can concltiagg the decision makers who take a gloomy
view of the prospects could use the W2TLBM operatod choose the smaller values of the

parametersp andq, while the decision makers who are optimistic douse the W2TLGBM
operator and choose the smaller values of the mmnmp and9¥.

In order to obtain the more neutral results, we us@ the arithmetic averages of the optimistic
and pessimistic results, which can be found in.Fids14.
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Fig. 11. The vaIues'B for alternative % obtained by the W2TLBM and W2TLGBM operators ( p|:|(0,20] ,
ao(o.2q,.

Fig. 12. The valuesﬁ for alternative % obtained by the W2TLBM and W2TLGBM operators ( pD(O, 2(]’
q0(0,29 ).
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Fig. 13. The valuesﬁ for alternative X obtained by the W2TLBM and W2TLGBM operators
( p0(0,20 q0d(0,20 )

Fig. 14. The valuesﬁ for alternative % obtained by the W2TLBM and W2TLGBM operators
(pD(O,Zq' qu(o,zq)_
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In the following, we compare our operators and apphes with the existing 2-tuple linguistic
aggregation operators and approaches so as to deatenthe advantages of the operators and
approaches proposed here. In Example 5.1, we autiiz 2-tuple linguistic weighted average
(2TLWA) operator [14,41]:

2TLWA((r, @), (rpa,) (1o @,)) = A(Z:,Wi A7 (r @ )j

(44)
: : r=(r.a)
to replace the W2TLBM operator; then the collectiveerall preference valug ‘'’
(I :1'2'3’19 of alternative™ (I :1'2'3’19 are shown as follows:
,=(s,,—0.0300 T, =(s;0.1800 T,=(s;,0.4700 T, =(s,,~0.2700
Using Definition 2.3, we then rank te (I =1 2’3’4 in descending order:
LT >
According to the ranking of thk (I :1’2’3’4 , rank all of the alternative® (I :1’2’3’4 as
follows:
X =Xm X=X

Thus, the best alternative f.

Based on the aforementioned analysis, we can sg¢ehth 2TLWA operator is simpler than the
W2TLBM and W2TLGBM operators from the computatiomalint of view, but the W2TLBM
and W2TLGBM operators can capture the interrelatigm of the aggregated arguments [35] and
can provide the decision makers more choices byngthg the values of the parameters
determined by the preferences of the decision nsgl8&i.

k) — (40 _
Example 6.2. Let us reconsider Example 6.1. Asstirae (5}, )4“‘ (k _1’2’3) are three

RY = (¥

linguistic decision matrices shown in Tables 1-3. ! )4“‘ (k 12, 3) are three normalized

R :( ri.(k),O) _

linguistic decision matrices given in Tables 4-6. ( : ) ax4 (k 1’2'3 are three
corresponding 2-tuple linguistic decision matrigagen in Tables 7-9. Suppose that the weights
of the decision makers and the attributes are unknthen, we use Approach Il to determine the

= :(_rij')4x4 =((rij"0i'j' ))

decision. The collective 2-tuple linguistic decisimatrix
Table 13. The best alternative fe.

4x4 is given in

Table 13. The collective 2-tuple linguistic decision mex R

13 C, G C,

X, (sJ. -0.3453 (s,,-0.085) (s,,-0.2313 (s;,0.1319
X, (s5,-0.4929 (s5,-0.1129 (s,0.2719 (s,0.2719
X, (s;,-0.1352 (s,0.0332 (s;,-0.1352 (s;,-0.0339
X, (s,,0.3030 (s5,-0.4539 (s,,0.2817) (s,0.1962
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We can find that as the values of the parameesra;ndq change according to the decision
makers’ subjective preferences, we may obtain mifferankings of the alternatives, which can

reflect the decision makers’ risk preferences. Wes values of the parametepsandCl change,
the collective overall preference valligl @) (i=1239 5n4 the ranking of alternatives can be
obtained and shown in Table 14.

Table 14. The collective overall preference values obtaid with the 2TLBM operator and
rankings of the alternatives.

14 p=0,g=20 p=0.5,qg=15 p=q=5 p=15,q=0.1 p=20, q=0.0%
X, (s,,0.089) (s,,-0.4043 (s,,0.4483 (s,,-0.2153 (s,,0.0689

X, (s,,0.4823 (s,,0.2599 (s,0.3807) (s,,0.3249 (s,,0.4753

X (s,,0.1133 (s,,-0.2625 (s,,-0.4659 (s,,-0.1379 (s,,0.098)

X, (s,,0.4749 (s,,0.2039 (s,,0.2012 (s,,0.2939 (s,,0.4629
Ranking Xy = Xy = Xg = X Xy = Xy = Xg = X Xp = Xy = X X Xy = Xy = X X Xo = Xy = X = X

As the values of the parameteps and 9 change betweeR and 20, different results of a

symbolic aggregation operatioﬁ =a7(T) (I :1’2'3’4

valuesFi (i =1 2’3’4

of the collective overall preference

i=1,2,3,9

of the four alternative ( can be obtained. Figs. 15-18

( =A_l(ﬁ) i= i=
illustrate the valuesﬁ (' 1’2’3’4 of the four alternativess (I 1'2’3’4 obtained
by the 2TLBM operator in detail.

helta

Fig. 15. The vaIues’B for alternative % obtained by the 2TLBM operator (pD(O,Zq’ qD(O,Zq)_
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Fig. 16. The values'g for alternative *2 obtained by the 2TLBM operator ( P D(O’ Zq , qD(O’ Zq ).

Fig. 17. The values'B for alternative %3 obtained by the 2TLBM operator ( pO (O’ Zq , q D(O’ Zq ).
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helta

P q
Fig. 18. The valuesﬂ for alternative *+ obtained by the 2TLBM operator ( pD(O,Zq ,
q0(0,29 )

If we let the parametelp fixed, different vaIuesBi and rankings of the alternatives can be
obtained as the parametgrchanged which was shown in Fig. 19.

7.5 T

Score functions

3.5 L 1
0 2 4 6 8 10 12 14 16 18 20

lambda

Fig. 19. Variation of 4 obtained with the 2TLBM operator ( P :1, qD(O, Zq ).
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From Fig. 19, we can find that whe(i‘lllj(o’Zq , the ranking of the four alternatives is
% =% 7%~ X and the best choice {%.

From Fig. 19, we find that the collective overatieference values obtained by the 2TLBM

aggregation operators become bigger as paranpe'amdq increase for the same aggregation
arguments. Therefore, it plays a crucial part iniglen making. For example, in the real group
decision making problems, the decision makers vake fn gloomy view of the prospects could
choose the smaller values of the paramet@rand 9 while the decision makers who are

optimistic could choose the bigger values of theapmatersp and 4.

If the 2TLGBM operator is used in place of the 2T Bperator to aggregate the values of the
alternatives in steps 1 and 2, then the colleatixerall preference values and the rankings of the
alternatives are listed in Table 15.

Table 15. The collective overall preference values obtaid with the 2TLGBM operator and
rankings of the alternatives.

15 p=0,q=20 p=05,q=15 p=q=5 p=15,q=0.1 p=20, = 0.0%
X (s,,0.1649 (s;,0.2330 (s,,-0.3679 | (s,,0.1799 (s;,0.1700

X (s,,-0.1449 (s;,-0.1209 (s:,0.0329 (s,,-0.1399 (s,,-0.1423
X (s,,-0.2650 (s,-0.2279 (s;,0.0098 (s,,-0.257Q (s,,-0.2629
X (s,,-0.1387 (s,,-0.0529 (s:,0.3829 (s,-0.1199 (s,-0.1319
Ranking | x, > x, > x> X Xy = Xy = X = X X = Xy = X X Xy = X, = X = X X, = X, = X = X

As the values of the parametePs and 9 change betweeR and 20, different results of a

—_n-l
symbolic aggregation operatidﬁ =4 (
T (i =1,2,3,£)

values

—ALFY (i =
illustrate the vaIues'B' =4 (r') (I _1’2'3’4 of the four alternativess (
obtained by the 2TLGBM operator in detail.

of the four alternatives (

r

) (i=12.34 of the collective overall preference

'=1’2'3’4 can be obtained. Figs. 20-23

i=1,2,3,9
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helta

P g

Fig. 20. The values'B for alternative " obtained by the 2TLGBM operator ( pU (0’ Zq , q D(O’ Zq ).

6.02

-5.98

-5.96

helta

-5.94

=592

P C

(0,2 (0,2
Fig. 21. The values'g for alternative 2 obtained by the 2TLGBM operator(p ( ’ q q ( ’ q).
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4.55

-4.9

helta

-4.85

4.8

4.758

P i

Fig. 22. The values'g for alternative @ obtained by the 2TLGBM operator ( P D(O’ Zq , q D(O’ Zq ).

5.35

83

525
-52

-8.15

helta

-5

-5.05

Fig. 23. The values'g for alternative X, obtained by the 2TLGBM operator ( pO (0’ Zq , qC] (0’ Zq ).

If we let the parametep fixed, then different vaIueg and rankings of the alternatives can be

1606



British Journal of Mathematics & Computer Scien€&l4, 1567-1614, 2014

obtained as the parametgrchanged, which was shown in Fig. 24.

6.5

belta

4.5~ -
—x1
—x2
x3
x4

3.5—/” — i

3 I I I I ! I I | I
0 2 4 6 8 10 12 14 16 18 20

Fig. 24. Variation of B obtained with the 2TLGBM operator ( P :l, q D(O’ Zq ).

From Fig. 24, we can find that Whe(rlllj(o’Zq , the ranking of the four alternatives is
% = % = %> X and the best choice {%.

From Fig. 24, we find that the collective overaibferencevalues obtained by the 2TLGBM

aggregation operators become smaller as paranpetmdq increase for the same aggregation
arguments. Therefore, it plays a crucial part iniglen making. For example, in the real group
decision making problems, the decision makers vake & gloomy view of the prospects could

choose the bigger values of the parametgrand 9 while the decision makers who are
optimistic could choose the smaller values of tammetersp and4.

It is worth noting that most of the belta obtairmdthe 2TLBM operator are bigger than most of
the belta obtained by the 2TLGBM operator, whictlidates that the 2TLBM operator can obtain
more favorable (or optimistic) expectations, wtithe 2TLGBM operator has more unfavorable
(or pessimistic) expectations. Therefore, we canckmle that the 2TLBM operator can be
considered as the optimistic operator, while the. @BM operator can be considered as the
pessimistic operator and the values of the paramet@n be considered as the optimistic or
pessimistic levels. By Figs. 15-24, we can conclinde the decision makers who take a gloomy
view of the prospects could use the 2TLGBM operatod choose the bigger values of the

parametersp and q, while the decision makers who are optimistic douke the 2TLBM
operator and choose the bigger values of the paeamB and Y.

In order to obtain the more neutral results, we us@ the arithmetic averages of the optimistic
and pessimistic results, which can be found in.F2§s28.
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Fig. 25. The values'g for alternative X obtained by the 2TLBM and 2TLGBM operators (pD(O,zq’
q0(0,29 )

Fig. 26. The valuesﬂ for alternative % obtained by the 2TLBM and 2TLGBM operators (pIZI(O,ZO]'
q0(0,2q )
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5.9
58
57
-56
-lEis

-5.4

helta

5 __”__.“..é ; - E g -__“;H.“ E B

helta

Fig. 28. The values'g for alternative X obtained by the 2TLBM and 2TLGBM operators (pIZI(O, Zq ,
q0(0,29 )
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By examples 1 and 2, we can see that the decigisults obtained with Approach | may be
different from the decision results obtained withpfoach Il. Approach | utilizes the W2TLBM
(or W2TLGBM) operator to aggregate all of the irdival 2-tuple linguistic decision matrices
into a collective 2-tuple linguistic decision matend then utilize the W2TLBM (or W2TLGBM)
operator to derive the collective overall prefeeemalues of each alternative. Approach Il utilizes
the 2TLBM (or 2TLGBM) operator to aggregate alltb€ individual 2-tuple linguistic decision
matrices into a collective 2-tuple linguistic deeois matrix and then utilize the 2TLBM (or
2TLGBM) operator to derive the collective overatieference values of each alternative. The
2TLBM and 2TLGBM operators only involve the inputd and their interrelationships, but the
importance of each datum is not emphasized. The\MBRTand W2TLGBM operators not only
involve the input data and their interrelationshijps also take the importance of each datum into
account.

7. Conclusions

In this paper, we have developed several new 2tlipduistic aggregation operators, including
the 2TLBM, W2TLBM, 2TLGBM, and W2TLGBM operators. &V have studied some
fundamental properties of the developed operatetgh as commutativity, idempotency,
boundedness, and monotonicity. We also discuss spmeal cases of the proposed operators.
Compared with the existing 2-tuple linguistic aggtion operators, the primary advantage of
these operators is that they capture the inteielstip of the input arguments and thus consider
the decision information as much as possible. Euntlore, we have used the proposed operators
to develop two approaches for multiple attributeugr decision making with 2-tuple linguistic
information. Finally, two numerical examples areyded to illustrate the developed approaches
and to compare the developed approaches with flsérgxones. In the future, we will study the
Bonferroni mean and the geometric Bonferroni meadeu interval-valued 2-tuple linguistic
environments [49,50].

Acknowledgements

The authors thank the anonymous referees for #adilable suggestions in improving this paper.
This work is supported by the National Natural Scie Foundation of China (Grant Nos.
61073121,71271070 and 61375075) and the Natural Sciencedabion of Hebei Province of
China (Grant Nos. F2012201020 and A2012201033).

Authors’ Contributions

‘Zhiming Zhang' designed the study, performed tteistical analysis, wrote the protocol, and
wrote the first draft of the manuscript. ‘Chong Wuanaged the analyses of the study and the
literature searches. All authors read and appravedinal manuscript.

Competing Interests

Authorshave declared that no competing interests exist.

1610



British Journal of Mathematics & Computer Scien€&l4, 1567-1614, 2014

References

(1]

(2]

(3]

[4]

(5]

[e]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Cebi S, Kahraman C. Developing a group decisionpedpsystem based on fuzzy
information axiom. Knowledge-Based Systems. 2013:28.

Gao CY, Peng DH. SWOT analysis with nonhomogeneausertain preference
information. Knowledge-Based Systems. 2011;24:79®-8

Noor-E-Alam M, Lipi TF, Hasin MAA, Ullah AMMS. Algathms for fuzzy multi expert
multi criteria decision making (ME-MCDM). Knowleddgased Systems. 2011;24:367-377.

Degani R, Bortolan G. The problem of linguistic egppmation in clinical decision making.
International Journal of Approximate Reasoning.892843-162.

Delgado M, Verdegay JL, Vila MA. On aggregation @ens of linguistic labels.
International Journal of Intelligent Systems. 183351-370.

Martin O, Klir GJ. On the problem of retranslation computing with perceptions.
International Journal of General Systems. 2006635%5-674.

Pedrycz W, Ekel P, Parreiras R. Fuzzy Multicritdbiacision-Making: Models, Methods
and Applications, John Wiley & Sons, Ltd., ChicleestUK, 2010.

Xu ZS. A method based on linguistic aggregatiorraoes for group decision making with
linguistic preference relations. Information Sciesc2004;166(1-4):19-30.

Xu ZS. EOWA and EOWG operators for aggregatinguistic labels based on linguistic
preference relations. International Journal of Uraiety, Fuzziness and Knowledge-Based
Systems. 2004;12:791-810.

Xu ZS. Deviation measures of linguistic preferemelations in group decision making.
Omega. 2005;33:249-254.

Xu ZS. On generalized induced linguistic aggregatperators. International Journal of
General Systems. 2006;35:17-28.

Xu ZS. Induced uncertain linguistic OWA operatoppléed to group decision making.
Information Fusion. 2006;7:231-238.

Xu ZS. An approach based on the uncertain LOWG imaldiced uncertain LOWG
operators to group decision making with uncertaidltiplicative linguistic preference
relations. Decision Support Systems. 2006;41:48B-49

Herrera F, Martinez L. A 2-tuple fuzzy linguistiepresentation model for computing with
words. IEEE Transactions on Fuzzy Systems. 200068752.

Martinez L, Herrera F. An overview on the 2-tugleglistic model for computing with
words in decision making: Extensions, applicatiang challenges. Information Sciences.
2012;207:1-18.

1611



British Journal of Mathematics & Computer Scien€&l4, 1567-1614, 2014

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Chang KH, Wen TC. A novel efficient approach for \MEA combining 2-tuple and the
OWA operator. Expert Systems with Applications. @3%:2362-2370.

Jiang YP, Fan ZP. Property analysis of the aggm@yaiperators for 2-tuple linguistic
information. Control and Decision. 2003;18(6):73#7

Ju YB, Wang AH, Liu XY. Evaluating emergency respertapacity by fuzzy AHP and 2-
tuple fuzzy linguistic approach. Expert Systemswipplications. 2012;39:6972-6981.

Wei GW. A method for multiple attribute group décis making based on the ET-WG and
ET-OWG operators with 2-tuple linguistic informaticExpert Systems with Applications.
2010;37(12):7895-7900.

Wei GW. Grey relational analysis method for 2-tupteguistic multiple attribute group
decision making with incomplete weight informatidexpert Systems with Applications.
2011;38:4824-4828.

Wei GW. Some generalized aggregating operators kviguistic information and their
application to multiple attribute group decision kimg. Computers & Industrial
Engineering. 2011;61:32-38.

Wei GW, Zhao XF. Some dependent aggregation opsratath 2-tuple linguistic
information and their application to multiple dbwie group decision making. Expert
Systems with Applications. 2012;39:5881-5886.

Xu YJ, Huang L. An approach to group decision mgkproblems based on 2-tuple
linguistic aggregation operators, in: ISECS Intéoral Colloquium con Computing,
Communication, Control, and Management, IEEE Comp8bciety, Guangzhou, China,
2008, pp. 73-77.

Yang W, Chen ZP. New aggregation operators basetieohoquet integral and 2-tuple
linguistic information. Expert Systems with Applins. 2012;39:2662-2668.

Bonferroni C. Sulle medie multiple di potenze. Bttho Matematica Italiana. 1950;5:267-
270.

Xu ZS, Yager RR. Intuitionistic fuzzy Bonferroni ames. IEEE Transactions on Systems,
Man and Cybernetics. 2011;41:568-578.

Yager RR. On generalized Bonferroni mean operaforsmulti-criteria aggregation.
International Journal of Approximate Reasoning.280:1279-1286.

Xu RN, Zhai XY. Extensions of the analytic hieraygirocess in fuzzy environment. Fuzzy
Sets and Systems. 1992;52:251-257.

Xu ZS, Yager RR. Some geometric aggregation oper&@sed on intuitionistic fuzzy sets.
International Journal of General Systems. 2006;354133.

1612



British Journal of Mathematics & Computer Scien€&l4, 1567-1614, 2014

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Xu ZS. Methods for aggregating interval-valued itmunistic fuzzy information and their
application to decision making. Control and Degisi2007;22:215-219.

Xia MM, Xu ZS. Hesitant fuzzy information aggregatiin decision making. International
Journal of Approximate Reasoning. 2011;52:395-407.

Xu ZS. Uncertain linguistic aggregation operatoesddl approach to multiple attribute
group decision making under uncertain linguisticviemment. Information Science.
2004;168:171-184.

Xu ZS. Group Decision Making with Triangular Fuzkinguistic Variables, Springer,
Berlin, Heidelberg, pp. 17-26, 2007.

Xu ZS. Uncertain Bonferroni mean operators. Intéomal Journal of Computational
Intelligence Systems. 2010;3(6):761-769.

Xia MM, Xu ZS, Zhu B. Geometric Bonferroni meansttwiheir application in multi-
criteria decision making. Knowledge-Based Syste2643;40:88-100.

Xu ZS, Chen Q. A multi-criteria decision making gedure based on interval-valued
intuitionistic fuzzy bonferroni means. Journal gs&ms Science and Systems Engineering.
2011;20:217-228.

Zhu B, Xu ZS, Xia MM. Hesitant fuzzy geometric Benfoni means. Information Sciences.
2010;205(1):72-85.

Wei GW, Zhao XF, Lin R, Wang HJ. Uncertain lingigsBonferroni mean operators and
their application to multiple attribute decision kiteg. Applied Mathematical Modelling.
2013;37:5277-5285.

Liu PD, Jin F. The trapezoid fuzzy linguistic Bomfni mean operators and their
application to multiple attribute decision makisgientia Iranica. 2012;19:1947-1959.

Xia MM, Xu ZS, Zhu B. Generalized intuitionistic Zmy Bonferroni means. International
Journal of Intelligent systems. 2012;27:23-47.

Herrera F, Martinez L. An approach for combinimggliistic and numerical information
based on 2-tuple fuzzy linguistic representatiordehian decision-making. International
Journal of Uncertainty, Fuzziness, Knowledge-Basgstems. 2000;8:539-562.

Herrera F, Martinez L. A model based on linguigtituples for dealing with multigranular
hierarchical linguistic contexts in multi-expertcitgon making. IEEE Transactions on
Systems, Man, and Cybernetics-Part B: Cyberneiagl;31:227-234.

Bonissone PP, Decker KS. Selecting uncertaintyutiagdnd granularity: an experiment in

trading-off precision and complexity, in: L.H. Kdnd.F. Lemmer (Eds.), Uncertainty in
Artificial Intelligence, North-Holland, Amsterdarh986, pp. 217-247.

1613



British Journal of Mathematics & Computer Scien€&l4, 1567-1614, 2014

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Delgado M, Herrera F, Herrera-Viedma E, Martin-Bstat MJ, Martinez L, Vila MA. A
communication model based on the 2-tuple fuzzyistic representation for a distributed
intelligent agent system on internet. Soft Commut2002;6:320-328.

Dong YC, Xu YF, Li HY, Feng B. The OWA-based consas operator under linguistic
representation models using position indexes. Eaoplournal of Operational Research.
2010;203:455-463.

Herrera F, Herrera-Viedma E. Linguistic decisioralgsis: steps for solving decision
problems under linguistic information. Fuzzy Setd &ystems. 2000;115:67-82.

Herrera F, Herrera-Viedma E, Martinez L. A fusiorppaach for managing
multigranularity linguistic term sets in decisionaking. Fuzzy Sets and Systems.
2000;114:43-58.

Herrera F, Martinez L, Sanchez PJ. Managing nonelgemeous information in group
decision-making. European Journal of Operationaelaech. 2005;166:115-132.

Zhang HM. The multi attribute group decision makingethod based on aggregation
operators with interval-valued 2-tuple linguistidarmation. Mathematical and Computer
Modelling. 2012;56:27-35.

Zhang HM. Some interval-valued 2-tuple linguistggeegation operators and application
in multiattribute group decision making. Applied tlamatical Modelling. 2013;37:4269-
4282.

© 2014 Zhang & Wu; This is an Open Access artiéiriduted under the terms of the Creative Commaittsbution
License [ittp://creativecommons.org/licenses/by)3which permits unrestricted use, distribution, aadroduction in any
medium, provided the original work is properly cited

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your
browser address bar)

www.sciencedomain.org/review-history.php?iid=477&id=6&aid=4208

1614



