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Abstract 
 
The fractional sub-equation method is proposed to construct analytical solutions of nonlinear 
fractional partial differential equations (FPDEs), involving Jumarie’s modified Riemann-
Liouville derivative. The fractional sub-equation method is applied to the fractional Fisher 
equation. The analytical solutions show that the fractional sub-equation method is very effective 
for the analytical solutions of the Fisher equation.  The fractional sub-equation method 
introduces a promising tool for solving many fractional partial differential equations. 
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1 Introduction 
 
Fractional differential equations are generalizations of classical differential equations of integer 
order. In recent years, nonlinear fractional differential equations (FDEs) have gained considerable 
interest. It is caused by the development of the theory of fractional calculus itself but also by their 
applications in various sciences such as physics, engineering, biology and others areas [1–7]. 
Among the investigations for fractional differential equations, research for seeking exact solutions 
is an important topic as well as applying them to practical problems [8–13]. Many powerful and 
efficient methods have been proposed to obtain numerical and exact solutions of FDEs. For 
example, the finite difference method [14], the finite element method [15, 16], the differential 
transform method [17,18], the adomian decomposition method (ADM) [19–21], the variational 
iteration method [22–24], the homotopy perturbation method [25]. The optimal homotopy 
asymptotic method (OHAM) has been applied to construct new approximate solutions of the 
Falkner-Skan equation with heat transfer and the coupled Drinfel’d-Sokolov-Wilson equations 
[26,27]. The modified (G´/G) expansion method has been applied to construct analytical travelling 
wave solutions to the space-time fractional order nonlinear Burgers’ equation and the coupled 
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Burgers’ equation [28,29], the first integral method has been applied to construct analytical 
travelling wave solutions for some  space-time fractional order equations [30].  
 
By taking into account the results obtained in Ref. [31], Zhang and Zhang [32] proposed a new 
algebraic method named the fractional sub-equation method to look for travelling wave solutions 
of nonlinear FPDEs. The fractional sub-equation method is a very strong technique to obtain exact 
solutions for nonlinear FPDEs. The method is based on the homogeneous balance principle [33] 
and the Jumarie’s modified Riemann-Liouville derivative of fractional order [34,35]. With the 
help of this method, Zhang et al. have successfully obtained travelling wave solutions of nonlinear 
time fractional biological population model and (4+1)-dimensional space-time fractional Fokas 
equation [32].  
 
Biological population problem are widely investigated in many papers [36,37]. The spatial 
diffusion of biological populations was considered in Ref. [38] and obtained its corresponding 
numerical solution using the variational iteration method for the biological population model: 
 

 
  

∂u x,t( )
∂t

=
∂2u x,t( )

∂x2
+ h u( ) ,                                                  (1) 

 
where u denotes the population density and h(u) represents the population supply. The explicit 
solutions of travelling waves for the Fisher equation:  
 

 
  

∂u x,t( )
∂t

=
∂2u x,t( )

∂x2
+ εu 1− uβ( ) ,

                                        
(2) 

 
were considered in Ref. [39], for the special case where β=1. A kink-like travelling wave solution 
of Eq. (2) describes a constant-velocity front of transition from one homogeneous state to another. 
The Fisher equation has been applied in the fields of logistic population growth [40], 
neurophysiology [41], autocatalytic chemical reaction [42] and Brownian motion processes [43]. 
  
A representative Fisher equation, ut = uxx+u(1-u), was first introduced by Fisher as a model for the 
propagation of a mutant gene [40], where u(x,t) denotes the population density and u(1-u) 
represents the population supply due to births and deaths. Several studies in the literature, 
employing a large variety of methods, have been conducted to derive explicit solutions for the 
Fisher equation and for the generalized Fisher equation(2). For more details about these 
investigations see references [44–50] and references therein. Recently, Wazwaz and Gorguis [51] 
studied the Fisher equation subject to initial conditions by using ADM. 
 
The present work is committed to study the fractional Fisher equation within the sub-equation 
method [32]. The fractional Fisher equation as a nonlinear model for a physical system involving 
nonlinear growth takes the form [52]: 
 

 
  
D

t
αu x,t( ) = D

x
2αu x,t( ) + εu 1− uβ( ) , t > 0 ,0< α ≤ 1,          (3) 

 
where Dα

x  and Dα
t  are the partial fractional derivatives and α is a parameter describing the order 

of the fractional derivatives.  
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The outline of this work is as follows: in section 2, the sub-equation method is presented. Section 
3 contains the application of the method to solve the fractional Fisher equation for two special 
cases ε=6, β=1 and ε=1, β=6. In section 4, the analytical solution for the generalized fractional 
Fisher equation is obtained by applying the sub-equation method. Finally in section 5 some 
conclusions are presented. 
 
2  Description of the Fractional Sub-equation Method and Its 

Applications to the Space-time Fractional Differential 
Equations 

 
In this section we present the main ideas of the fractional sub-equation method. This method 
considers the Jumarie’s modified Riemann-Liouville fractional derivative of order α [34,35]: 
  

 

  

D
x
α f x( ) =

1
Γ 1−α( ) 0

x
∫ x − ξ( )−α −1

f ξ( ) − f 0( ) dξ, α < 0

1
Γ 1−α( )

d
dx 0

x
∫ x − ξ( )−α

f ξ( ) − f 0( ) dξ 0 < α < 1

f α −n( ) x( )





n( )
n ≤ α ≤ n+1, n ≥ 1.














     (4) 

 
Some properties for the proposed modified Riemann–Liouville derivative are: 
 

 

  

Dx
α xγ =

Γ γ +1( )
Γ γ +1− α( ) xγ −α

D
x
α c = 0, α ≥ 0 c = const.

D
x
α cf x( )( ) = c D

x
α f x( )( ), α ≥ 0 c = const.

D
x
α f x( )g x( )( ) = g x( ) D

x
α f x( )( ) + f x( ) D

x
α g x( )( )

Dx
α f g x( )  = fg

′ g x( ) Dx
α g x( ) = Dg

α f g x( ) ( ) ′g x( )( )α
 .

 (5) 

 
The above properties play an important role in the fractional sub-equation method. The main steps 
of this method are described as follows [32]: 
 
Step 1: Suppose that a nonlinear FPDE, say in two independent variables, is given by: 
 

 
  
P u,u

x
,u

t
,D

x
αu,D

t
αu,...( ) = 0 0< α ≤ 1 ,                                (6) 

 
where Dα

x u and Dα
t u are the Jumarie’s modified Riemann-Liouville derivatives of u, u = u(x,t) is 

an unknown function, P is a polynomial in u and its various partial derivatives in which the 
highest order derivatives and nonlinear terms are involved. 
 
Step 2: By using the travelling wave transformation 
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   u(x,t) = u(ξ ),    ξ = kx+ ct,                                          (7) 
 

where k and c are constants to be determined later, the FPDE (6) is reduced to the following 
nonlinear fractional ordinary differential equation for u(x,t) = u(ξ): 
 

 
  
P u,ku',cu',kα Dξ

αu,cα Dξ
αu,...( ) = 0 .                                   (8) 

 
Step 3: We suppose that Eq. (8) has the following solution: 
 

 
  
u ξ( ) =

i=0

n

∑a
i
φ i ,                                                                       (9) 

 
where ai (i=0,1,2,…,n) are constants to be determined later, n is a positive integer determined by 
balancing the highest order derivatives and nonlinear terms in Eq. (8), and φ =φ(ξ)

 
satisfies the 

following fractional Riccati equation: 
 

  
Dξ

αφ = σ +φ 2   ,                                                                     (10) 

 
where σ  is a constant. By using the generalized exp-function method via Mittag-Leffler function, 
Zhang et al. [31], obtained the following solutions of fractional Riccati equation (10): 
 

 

  

φ ξ( ) =

− −σ tanhα −σ ξ( ) σ < 0

− −σ cothα −σ ξ( ) σ < 0

σ tanα σ ξ( ) σ > 0

σ cotα σ ξ( ) σ > 0

− Γ 1+α( )
ξα +ω

, ω = const. σ = 0 ,


















                                  (11) 

 
where the generalized hyperbolic and trigonometric functions are defined as: 
 

 

  

sinhα x( ) =
Eα (xα ) − Eα (−xα )

2
, coshα x( ) =

Eα (xα ) + Eα (−xα )

2
,

tanhα x( ) =
sinhα x( )
coshα x( ) , cothα x( ) =

coshα x( )
sinhα x( ) ,

sinα x( ) =
Eα (ixα ) − Eα (−ixα )

2
, cosα x( ) =

Eα (ixα ) + Eα (−ixα )

2
,

tanα x( ) =
sinα x( )
cosα x( ) , cotα x( ) =

cosα x( )
sinα x( ) ,

 (12) 
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and Eα(z) is the Mittag-Leffler function, given as: 
 

 

  

Eα (z) =
k=0

∞

∑
zk

Γ 1+ kα( ) .                                                           (13) 

 
Step 4: Substituting Eq. (9) into Eq. (8) taking into account Eq. (10) and the properties of the 
Jumarie’s modified Riemann-Liouville derivative, Eq. (8) is converted to a polynomial in φ i (ξ) 
(i= 0,1,2,…). Equating each coefficient of this polynomial to zero, yields a set of algebraic 
equations for ai (i= 0,1,2,…), k and c. 
 
Step 5: Solving the equations system in step 4, and by using the solutions Eq. (11), we can 
construct a variety of exact solutions of Eq. (8). 
 
Remark: If α→1, the Riccati equation becomes φ’  (ξ)=σ+φ 2 (ξ). The method can be used to 
solve integer order differential equations. In this sense the sub-equation method includes the 
existing tanh-function method as special case. 
 

3  Fractional Sub-equation Method Applied to the Fisher 
Equation 

 
In this section we apply the fractional sub-equation method to construct the exact solutions for 
space-time fractional Fisher equation (3), for two particular cases: I) ε=6, β=1 and II) ε=1, β=6, 
considered previously for the integer order Fisher equation. 
 
3.1 Case I: the fractional Fisher equation with ε=6, β=1. 
 
If we analyze the fractional Fisher equation (3) for the special case ε=6, β=1, i.e: 
 

  
Dt

αu x,t( ) = Dx
2αu x,t( ) + 6u 1− u( ) .                                     (14) 

 
By considering the travelling wave transformation Eq. (7), the Eq. (14) can be reduced to the 
following nonlinear fractional ordinary differential equation: 
 

 
  
cα Dξ

αu− k2α Dξ
2αu− 6u 1− u( ) = 0.                                         (15) 

 
We suppose that Eq.(15) has the following formal solution: 
 

  
u(ξ ) =

i=0

mmax

∑aiφ
i ,                                                                       (16) 

 
where φ(ξ) satisfies Eq. (10). Balancing the highest order derivatives, linear terms and nonlinear 
terms in Eq. (15), it is possible to determine the value of mmax. Putting together Eq. (16) along 
with Eq. (10) into Eq. (15), we obtain the following ansätz:  
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u(ξ ) = a0 + a1φ + a2φ

2    ,                                                         (17) 

 
substituting Eq. (17) into Eq. (15), we obtain the following set of algebraic equations: 
  

 

  

φ0 : a1σ cα = 2a2σ
2k2α + 6 a0 − a0

2( )
φ1 : 2a

2
σ cα = 2a

1
σ k2α + 6a

1
−12a

1
a

0

φ2 : cα a1 = 8a2σ k2α + 6a2 − 6a1
2 −12a2a0

φ3 : 2a2c
α = 2a1k

2α −12a1a2

φ4 : 0 = 6a
2
k2α − 6a

2
2      .

                           (18) 

 
From these equations we obtain for ai (i=0,1,2), k and c:  
 

  

a2 = k2α

a1 = − cα

5

a
0

= 1

2
+ σ k2α .

                                                                       (19) 

 
If we considered the well known solution of the Fisher equation (14), with α=1 [53]: 
 

 
  
u x,t( ) =

1− tanh x
2 − 5

2 t( )( )2

4
.                                                (20) 

 
We can compare this solution with Eq. (11) for the tanh-type solution and obtain the following 
values for the coefficients ai, the parameters k, c and the constant σ: 
 

  

k = 1

−σ a
2

= −σ k2α = 1

4

−σ a1 = − −σ cα

5
= 1

2

a
0

= 1
2

+σ k2α = 1
4

   ,

                                                    (21) 

 
therefore, we finally obtain for the coefficients ai (i=0,1,2), k, c and σ:  
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a
0

= 1

4
a1 = 1,

a2 = 1,

σ = − 1

4
k = 1

cα = −5  ,

                                                                              (22) 

 
and the solution to the nonlinear fractional Fisher equation (14) is given by:  
 

  
u x,t( ) =

1− tanhα
1
2

x + −5( ) 1
α t





α





















2

4
.                         (23) 

 
We can observe that this solution reproduces the result obtained in reference [53], for the special 
case where α =1, when the homotopy perturbation method was applied. It should be noted that the 
integer order analytical exact solution has been an important reference in the comparison when 
some approximated methods, like the adomian decomposition method and the homotopy 
perturbation method, were applied for solving the Fisher equation (2) with ε=6, β=1. The results 
of the approximated methods are in good agreement with the exact analytical solution (23) with α 
=1, and the absolute errors values were less than 0.1 % [54,55]. 
 
3.2 Case II: the generalized Fisher equation ε=1, β=6.  
 
If we analyze the fractional Fisher equation (3) for the special case ε=1, β=6, i.e: 
  

  
D

t
αu x,t( ) = D

x
2αu x,t( ) + u 1− u6( ) .                                     (24) 

 
We consider the following transformation: 
 

  u
3 = y  ,                                                                                (25) 

 
introduced by Wang [48]. With this transformation the Eq. (24) can be written as: 
 

( ) ( )22 2 22
3 1 .

3t x xyD y yD y D y y yα α α= − + −            (26) 

 
By considering the travelling wave transformation Eq. (7), the Eq. (26) can be reduced to the 
following nonlinear fractional ordinary differential equation: 
 

 ( ) ( )22 2 2 22
3 1 0 .

3
c yD y k yD y D y y yα α α α α

ξ ξ ξ
 − − − − = 
 

  (27) 
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We suppose that Eq. (27) has the following formal solution: 
 

max

0

( ) ,
m

i
i

i

y aξ φ
=

= ∑                                                                      (28) 

 
where φ(ξ) satisfies Eq. (10). Balancing the highest order derivatives, linear terms and nonlinear 
terms in Eq. (27), it is possible to determine the value of mmax. Putting together Eq. (28) along 
with Eq. (10) into Eq.  (27), we obtain the following ansätz:  
 

0 1( )    ,y a aξ φ= +                                                                   (29) 
 

substituting Eq. (29) into Eq. (27) we obtain the following set of algebraic equations:  
 

  

φ0 : a
0
a

1
σ cα = − 2

3
a

1
2σ 2k2α + 3 a

0
2 − a

0
4( )

φ1 : cασ a1
2 = 2 k2ασ a0a1 + 6 a0a1 −12 a1a0

3

φ2 : cα a
0
a

1
= 3a

1
2 −18a

0
2a

1
2 + 2

3
k2ασ a

1
2

φ3 : cα a
1
2 = 2 k2α a

0
a

1
−12a

0
a

1
3

φ4 : 0 = − 4

3
k2α a1

2 + 3a1
4   .

                         (30) 

 
From these equations we obtain for ai (i=0,1), k and c:  
 

  

a1 = 2

3
kα

a0 = − cα

5kα

σ = − 9

16k2α

cα

kα = − 5

2
  .

                                                                        (31) 

 
If we considered the well known solution of the Fisher equation (24), with α=1 [53]: 
 

  

y x,t( ) =
1− tanh 3

4 x − 5
2 t( ) 

2
⇒

u x,t( ) =
1− tanh 3

4 x − 5
2 t( ) 

2













1
3

   .

                                    (32) 
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We can compare this solution with Eq. (11) for the tanh-type solution and obtain the following 
values for the coefficients ai, the parameters k, c and the constant σ: 

  

  

−σ kα = 3

4

− −σ a1 = − 2 −σ kα

3
= − 1

2

a0 = −
cα

5kα  =
1

2
   ,

                                                 (33) 

 
and finally, we obtain for the coefficients ai (i=0,1), k, c and σ:   
 

  

a0 =
1

2
a1 = 1,

σ = − 1

4

kα = 3

2

cα = −15

4
,

                                                                             (34) 

 
and the solution to the nonlinear fractional Fisher equation (24)  is given by:  
 

  

y x,t( ) =

1− tanhα
1
2

3
2( ) 1

α x + − 15
4( )

1

α t







α













2
⇒

u x,t( ) =

1− tanhα
1
2

3
2( ) 1

α x + − 15
4( )

1

α t







α













2



























1
3

   .

                       (35) 

 
Again this solution reproduces the result obtained in reference [53], for the special case where 
α=1. 
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4  Fractional Sub-equation Method Applied to the Generalized 
Fisher Equation  

 
In this section we apply the fractional sub-equation method to construct the exact solutions for 
space-time fractional Fisher equation, for the general case where ε and β are any arbitrary positive 
numbers in the Eq. (3), i.e: 
 

  
D

t
αu x,t( ) = D

x
2αu x,t( ) + εu 1− uβ( ) .                                   (36) 

 
 
We consider the following transformation: 
 

  u
2

β = y  ,                                                                              (37) 
 
introduced by Wang [48]. With this transformation, Eq. (36) can be written as: 
 

 
  
yD

t
α y = yD

x
2α y − 2

β
β
2

−1






D

x
α y( )2

+ εβ
2

y2 1− y2( ) .          (38) 

 
By considering the travelling wave transformation Eq. (7), the Eq. (38) can be reduced to the 
following nonlinear fractional ordinary differential equation: 
 

 
  

cα yDξ
α y − k2α yDξ

2α y − 2

β
β
2

−1






Dξ

α y( )2





− εβ

2
y2 1− y2( ) = 0 .  (39) 

 
We suppose that Eq. (39) has the following formal solution: 
 

                        
  
y(ξ) =

i=0

mmax

∑aiφ
i ,                                                                       (40) 

 
where φ(ξ) satisfies Eq. (10). Balancing the highest order derivatives, linear terms and nonlinear 
terms in Eq.  (39), it is possible to determine the value of mmax. Putting together Eq. (40) along 
with Eq. (10) into Eq. (39), we obtain the following ansätz:  
 

  
y(ξ ) = a

0
+ a

1
φ    ,                                                                   (41) 

 
substituting Eq. (41) into Eq. (39) we obtain the following set of algebraic equations:  
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φ0 : cασ a
0
a

1
= −

(−2+ β )σ 2a1
2k2α

β
+ 1

2
εβ a

0
2 − a

0
4( )

φ1 : cασ a1
2 = 2 k2ασ a0a1 + εβa1a0 − 2βεa1a0

3

φ2 : cα a0a1 =
εβa1

2

2
+ 2 k2ασ a1

2 −
2 k2α (−2+ β )σ a1

2

β
− 3εβ  a0

2a1
2

φ3 : cα a1
2 = 2 k2α a0a1 − 2εβa0a1

3

φ4 : 0 = −2k2α a1
2 +

k2α −2+ β( )a
1
2

β
+ βε

2
a1

4   .

     (42) 

 
From these equations, we obtain for the coefficients ai (i=0,1), k, c and σ:    
 

 

  

σ = − 1

4

kα = ε
4+ 2β

β

a1 =
2 β + 2( )

εβ
kα

a
0

= −
2+ β( )

ε 4+ 2β 4+ β( )
cα

kα

cα

kα = −
4+ β( ) ε

4+ 2β
 ,

                                                (43) 

 
and the solution to the non linear fractional Fisher equation Eq. (36)  is given by:  
 

 

  

y x,t( ) =

1− tanhα
1
2

ε
4+2β β( ) 1

α
x + − εβ 4+β( )

4+2β( )
1
α t











α















2
⇒

u x,t( ) =

1− tanhα
1
2

ε
4+2β β( ) 1

α
x + − εβ 4+β( )

4+2β( )
1
α t











α















2





























2
β

   .

  (44) 

 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science4(11), 1551-1566, 2014 
 
 

1562 
 

We can observe that this solution is in good agreement with the results obtained previously in 
references [48,53], for the special case where α=1. Also we notice that for the values ε=6, β=1, we 
recover the result of Eq.  (23), and for the values ε=1, β=6, we recover the result of Eq. (35). 
 

5 Conclusion 
 
In this paper we have investigated the exact travelling wave solutions to the space-time fractional 
Fisher equation to illustrate the reliability of the sub-equation method. We found new exact 
solutions for the fractional order Fisher equation that in the limit of integer order derivatives 
reduce to the solutions obtained before [48,53]. These new exact solutions can be very useful as a 
starting point of comparison when some approximate methods are applied to the fractional Fisher 
equation, see for example [54,55] where the comparison between approximated solutions and the 
exact solutions has to be extended to consider not only the case of time-fractional derivatives but 
also space fractional derivatives. 
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