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Abstract

The fractional sub-equation method is proposed to constructtigablgolutions of nonlinear
fractional partial differential equations (FPDESs), involvidgmarie’s modified Riemann-
Liouville derivative. The fractional sub-equation methadapplied to the fractional Fisher
equation. The analytical solutions show that the fractionaleswation method is very effective
for the analytical solutions of the Fisher equation. Thetional sub-equation methgd
introduces a promising tool for solving many fractionatipadifferential equations.
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1 Introduction

Fractional differential equations are generalizationslagsical differential equations of integer
order. In recent years, nonlinear fractional differergi@iations (FDESs) have gained considerable
interest. It is caused by the development of the thebfsactional calculus itself but also by their
applications in various sciences such as physics, engigedriology and others areas [1-7].
Among the investigations for fractional differential equasioresearch for seeking exact solutions
is an important topic as well as applying them to practicablpms [8—13]. Many powerful and
efficient methods have been proposed to obtain numericalegact solutions of FDEs. For
example, the finite difference method [14], the finiteneént method [15, 16], the differential
transform method [17,18], the adomian decomposition methodWjAR9-21], the variational
iteration method [22-24], the homotopy perturbation meth2s]. [ The optimal homotopy
asymptotic method (OHAM) has been applied to construct approximate solutions of the
Falkner-Skan equation with heat transfer and the cduplénfel’d-Sokolov-Wilson equations
[26,27]. The modified® /G) expansion method has been applied to construct analytgelling
wave solutions to the space-time fractional order noatirgurgers’ equation and the coupled
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Burgers’ equation [28,29], the first integral method hagrbapplied to construct analytical
travelling wave solutions for some space-time fractionder equations [30].

By taking into account the results obtained in Ref. [31], Ztemdy Zhang [32] proposed a new
algebraic method named the fractional sub-equation methlmibk for travelling wave solutions

of nonlinear FPDESs. The fractional sub-equation method/éyastrong technique to obtain exact
solutions for nonlinear FPDEs. The method is based on thedemeous balance principle [33]
and the Jumarie’s modified Riemann-Liouville derivativefraictional order [34,35]. With the

help of this method, Zhang et al. have successfully obtaiagelling wave solutions of nonlinear
time fractional biological population model and (4+1)-dimendi@pace-time fractional Fokas

equation [32].

Biological population problem are widely investigated imny papers [36,37]. The spatial
diffusion of biological populations was considered in.R8B] and obtained its corresponding
numerical solution using the variational iteration methodHerttiological population model:

au(xt) d%ulxt
(at - a(xz engy . a

whereu denotes the population density am) represents the population supply. The explicit
solutions of travelling waves for the Fisher equation:

! +gu(1—uf’) , @)

were considered in Ref. [39], for the special case whrete A kink-like travelling wave solution
of Eq. (2) describes a constant-velocity front of trémsifrom one homogeneous state to another.
The Fisher equation has been applied in the fields of logtipulation growth [40],
neurophysiology [41], autocatalytic chemical reaction [42] ar@WBian motion processes [43].

A representative Fisher equatian= u,+u(1-u), was first introduced by Fisher as a model for the
propagation of a mutant gene [40], wharg,t) denotes the population density aofll-u)
represents the population supply due to births and deathsrabestudies in the literature,
employing a large variety of methods, have been conductalerive explicit solutions for the
Fisher equation and for the generalized Fisher equation(2).nfeme details about these
investigations see references [44-50] and referencesth®ecently, Wazwaz and Gorguis [51]
studied the Fisher equation subject to initial conditionasigg ADM.

The present work is committed to study the fractional Fisheatgon within the sub-equation
method [32]. The fractional Fisher equation as a nonlinear nfiedeal physical system involving
nonlinear growth takes the form [52]:

Dt"u(x,t)=Df"u(x,t)+£u(l—u5) , t>0,0<a <], ®)

whereD? andD¢ are the partial fractional derivatives amds a parameter describing the order
of the fractional derivatives.
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The outline of this work is as follows: in section 2, the sghation method is presented. Section
3 contains the application of the method to solve the fractioshleFiequation for two special
casex=6, f=1 ande=1, p=6. In section 4, the analytical solution for the generalizadtibnal
Fisher equation is obtained by applying the sub-equationatietfinally in section 5 some
conclusions are presented.

2 Description of the Fractional Sub-equation Methd and Its
Applications to the Space-time Fractional Differenial
Equations

In this section we present the main ideas of the fradtismb-equation method. This method
considers the Jumarie’s modified Riemann-Liouville fractialeivative of orden [34,35]:

-8 18- 1(0)]as a<o
D1 ()= fa(x—¢) [ 1(¢) - 1(0)]Jas o<a<1 @
[f(”_”)(x)}(n) n<a<n+lnx1.

Some properties for the proposed modified Riemann—Liouvilleatére are:

L A2
D/ c=0, a=0 c=const

D;”(cf(x)):c(D;”f(x)), a 20 c=const (5)
o1 (1 ()a() = a0 1)+ 1 (9 059()
o¢ 1[(x)]= 1, (o) ora() =(os [l (w (4)" -

The above properties play an important role infthetional sub-equation method. The main steps
of this method are described as follows [32]:

Step 1: Suppose that a nonlinear FPDE, say in two indegenehriables, is given by:

u,

P(u,u D:’u,Dt"u,...):O O<a<1 , (6)

xl
whereD% u andD%u are the Jumarie’s modified Riemann-Liouville detives ofu, u = u(x,t) is

an unknown functionP is a polynomial inu and its various partial derivatives in which the
highest order derivatives and nonlinear termsrarelved.

Step 2:By using the travelling wave transformation
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u(xt)=u(é), ¢=kx+ct, @)

wherek andc are constants to be determined later, the FPDEs(6duced to the following
nonlinear fractional ordinary differential equatifmm u(x,t) = u(é):

P(u,ku',cu‘,k“D?u,c"D?u,...):0 . (8)

Step 3:We suppose that Eq. (8) has the following solution

u(é)=Yas . ©)

whereg (i=0,1,2,...n) are constants to be determined lateis a positive integer determined by
balancing the highest order derivatives and noafierms in Eq. (8), ang=¢(¢) satisfies the
following fractional Riccati equation:

Dig=0+¢ | (10)

whereg is a constant. By using the generalized exp-funati@thod via Mittag-Leffler function,
Zhang et al. [31], obtained the following solutimfdractional Riccati equation (10):

~=otanh,(V=a¢] <0
-0 coth, (\/35) o<0
A¢)= Jotan, («/55) >0 (11)
«/;cota (\/;E) >0

—ﬂ”—”l, w=const 0=0,

M+

where the generalized hyperbolic and trigonoméamnctions are defined as:

_E,(X")-E,(-X") _E,(X)+E,(-x")

2

cosh, (x
sinh_(x E '
(12)

E,(ix")-E, (-ix) cos (x): E,(ix")+ E, (-ix")

sinha(x) , cosha(x) ,
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andE,(2) is the Mittag-Leffler function, given as:

E, (2= %w (13)

Step 4: Substituting Eq. (9) into Eq. (8) taking into anab Eq. (10) and the properties of the
Jumarie’s modified Riemann-Liouville derivative, .H8) is converted to a polynomial ip' (&)
(i=0,1,2..). Equating each coefficient of this polynomial zero, yields a set of algebraic
equations fog, (i=0,1,2..), k andc.

Step 5: Solving the equations system in step 4, and bggusiie solutions Eqg. (11), we can
construct a variety of exact solutions of Eq. (8).

Remark: If a—1, the Riccati equation becomes(d)=o+@? (§). The method can be used to

solve integer order differential equations. In te=nse the sub-equation method includes the
existing tanh-function method as special case.

3 Fractional Sub-equation Method Applied to the Fsher
Equation

In this section we apply the fractional sub-equatioethod to construct the exact solutions for
space-time fractional Fisher equation (3), for esticular cases: 1§=6, =1 and Il)e=1, p=6,
considered previously for the integer order Figwration.

3.1 Case [: the fractional Fisher equation withe=6, p=1.

If we analyze the fractional Fisher equation (3)tfe special case=6, =1, i.e:

Dfu(xt) = DZu(xt)+6u(1-u) . (14)

By considering the travelling wave transformatiog. E7), the Eq. (14) can be reduced to the
following nonlinear fractional ordinary differentiaquation:

c’Dfu-k* D?”u—6u(1— u) =0. (15)
We suppose that Eq.(15) has the following formaitsmn:

m“ax .
uoH=Ya4, (16)

where ¢(€) satisfies Eq. (10). Balancing the highest ordenivatives, linear terms and nonlinear
terms in Eq. (15), it is possible to determine ¥adue of m,,,. Putting together Eq. (16) along
with Eqg. (10) into Eq. (15), we obtain the followiansatz:
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ué)=a,+ag+ray 17)

substituting Eq. (17) into Eq. (15), we obtain thikowing set of algebraic equations:

@ aoc’ =2a,0°K* +6(aO - aj)
¢ 1 2a,0c” =2a0k* +6a -12a3,
@ : c"a =8a,0k™ +6a,-6a’ -12a,3, (18)
@ : 2ac’ =2ak* -12aa,
¢ 0=6ak’ -6a
From these equations we obtain &o(i=0,1,2),kandc:
az - k2£7
e
a=-= (19)
a, = % +0k®.

If we considered the well known solution of theHe&sequation (14), with=1 [53]:
(1-tanh(; —gt)!2
u(x,t) = . J20
4

We can compare this solution with Eqg. (11) for tAeh-type solution and obtain the following
values for the coefficients, the parametels c and the constamt:

k=1
1
-ga,=-0k* ==
% 4
a 21
J—aal:—/—a%:% (21)
1 1
=Z+0k¥ ==,
% 2 4

therefore, we finally obtain for the coefficierai=0,1,2),k, c ando:
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= 1
% 4
=1,
a,=1,
22
1 (22)
o=-=
4
k=1
c“=-5,
and the solution to the nonlinear fractional Fiskguation (14) is given by:
( a]\®
Ll—tanhﬂ E(x+(—5)%’tj b
u( x,t)= . 23
(xt) y (23)

We can observe that this solution reproduces thgltrebtained in reference [53], for the special
case where =1, when the homotopy perturbation method was agdplt should be noted that the
integer order analytical exact solution has beerngortant reference in the comparison when
some approximated methods, like the adomian decsiiqgpo method and the homotopy
perturbation method, were applied for solving ti&€h&r equation (2) with=6, =1. The results
of the approximated methods are in good agreemithitie exact analytical solution (23) with
=1, and the absolute errors values were less tHatb (54,55].

3.2 Case IlI: the generalized Fisher equatiog=1, p=6.
If we analyze the fractional Fisher equation (3)tfe special case=1, =6, i.e:

Dt"’u(x,t) = Df"’u(x,t) + u(l— u6) . (24)
We consider the following transformation:

3 —

uw=y, (25)

introduced by Wang [48]. With this transformatite tEq. (24) can be written as:
a a 2 2
yory=yoi y-<( Dy +3¥(1-¥) (26)

By considering the travelling wave transformatiog. E7), the Eq. (26) can be reduced to the
following nonlinear fractional ordinary differentiaquation:

0 . @7)

¢ yDf y- kz”[ Vo -2 (O 92j-3 y(1- 9)

1557



British Journal of Mathematics & Computer Sciendg4( 1551-1566, 2014

We suppose that Eq. (27) has the following fornséutson:
Mhax

WO=a0, 28)

where ¢(€) satisfies Eq. (10). Balancing the highest ordenivatives, linear terms and nonlinear
terms in Eq. (27), it is possible to determine thé&ie of m,,,. Putting together Eq. (28) along
with Eqg. (10) into Eq. (27), we obtain the followi ansatz:

y=a+ap , (29)

substituting Eq. (29) into Eq. (27) we obtain thiédwing set of algebraic equations:

a 2 2 221,20 2 4
: a,a0c :—Ealak +3(q)—ao)
s c’oa’=2k*oaa +6aa -12aa’
: c"a,a =3a’ -18a’a’ +?23k2”0af (30)
cfa’ =2k aa ~12a,8°
¢ 0=-Ska+aa)

A W ST

From these equations we obtain &(i=0,1),kandc:

2 a
3 =3k
ay= -
x (31)
g9
16k*
c"_ 5
K2

If we considered the well known solution of theHesequation (24), with=1 [53]:

yxt)=" ta”*{i(X-%t)]
= )
u(xt) ={1_ ta“r{i(x-zt)]}lé
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We can compare this solution with Eqg. (11) for tAeh-type solution and obtain the following

values for the coefficients, the parametets c and the constamt:

JTEW:%
_ﬁalz_ZJ;k”: 1

3 2
__¢ 1
P75 T2

and finally, we obtain for the coefficieras(i=0,1),k, c ando:

_1
% 2
a =1,

1
o=-=
4
o2
2
.15
Cc ]
4

and the solution to the nonlinear fractional Fisbguation (24) is given by:

1-tanh, [%[(%)%H(_%s)%t]”}

y(xt)=

Again this solution reproduces the result obtaiivedeference [53], for the
o=1.

313

(34)

(35)

special case where
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4 Fractional Sub-equation Method Applied to the Geeralized
Fisher Equation

In this section we apply the fractional sub-equatioethod to construct the exact solutions for
space-time fractional Fisher equation, for the garease where andp are any arbitrary positive
numbers in the Eq. (3), i.e:

D7u(xt)= Du(xt)+ su(l— uﬂ) : (36)
We consider the following transformation:
u% =y, (37
introduced by Wang [48]. With this transformati@g. (36) can be written as:
oy = yory-2{ B-1) (ory) +Lye(i- ) (38)
t X ,GL 2 J X 2 )

By considering the travelling wave transformatiog. E7), the Eq. (38) can be reduced to the
following nonlinear fractional ordinary differentiaquation:

c’yDfy - kz"{yD‘f"y—%(g—l}(D?y)z} —%8 yz(l— y2) =0 . (39

We suppose that Eqg. (39) has the following fornoditson:
n"“ax .
y(&=>ad, (40)
i=0

where ¢§) satisfies Eq. (10). Balancing the highest ordmnivétives, linear terms and nonlinear
terms in Eq. (39), it is possible to determine w¥atue ofmy,,,. Putting together Eq. (40) along
with Eqg. (10) into Eq. (39), we obtain the followiansatz:

y(é)=a+agp , (41)

substituting Eq. (41) into Eq. (39) we obtain thiédwing set of algebraic equations:
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. 24 292k 1 .
o =-2IATEIC 'g);al +— (s - )

: ¢’oa’ =2 k™ oaa, + gfaa, - 2eaa;

4
¢
F =t ﬂal +2K0a - w—&sﬂagaf (42)
¢
¢

cfal =2 kZ”anl—Zsﬁaoaf
- 0= =2k 2+—ka(_2+ﬂ)al +%af

From these equations, we obtain for the coeffisignti=0,1),k, c ando:

k= 4+2,8’8
_y2(6+2)
P
__ !2+IBP C_ﬂ
% Ve Ja+2p(4+ p) K
o _ (4B
Ja+2p

and the solution to the non linear fractional Fiskguation Eq. (36) is given by:

( 17
1—tanh{%t( eyl ) (‘Zfzf)flj ]
J(x0)-
= (44)

1 \7 }/
l—tanh{%{(\/%ﬁ)%x%_%%l);q } B

u(xt)= 5

ke 143
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We can observe that this solution is in good agesgnwith the results obtained previously in
references [48,53], for the special case wherk Also we notice that for the values6, =1, we
recover the result of Eq. (23), and for the vaksel =6, we recover the result of Eq. (35).

5 Conclusion

In this paper we have investigated the exact tliagelvave solutions to the space-time fractional
Fisher equation to illustrate the reliability ofetlsub-equation method. We found new exact
solutions for the fractional order Fisher equattbat in the limit of integer order derivatives
reduce to the solutions obtained before [48,53ksEhnew exact solutions can be very useful as a
starting point of comparison when some approximag¢hods are applied to the fractional Fisher
equation,see for example [54,55] where the comparison betvegg@roximated solutions and the
exact solutions has to be extended to consideomlgtthe case of time-fractional derivatives but
also space fractional derivatives
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