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Abstract

In this paper, we present sufficient generalized contractive conditions for the existence of fixed
points in what so-called G-cone metric spaces. Importantly, we have obtained our results using
contractive conditions stated in terms of variable coefficients and with no use of the normality
property of cone.
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1 Introduction

Some attempts to generalize the usual metric spaces had been made since sixties of 20th century,
see for example [1, 2]. Separate work conducted by other researchers see for example [3], refuted
these generalizations. A different generalization was introduced by Dhage [4], but unfortunately, this
one has also many fundamental flaws that demonstrated by other workers, see for example [5, 6, 7].

Later on, generalized metric spaces or more specifically, G-metric spaces, in an appropriate new
structure were introduced by Mustafa and Sims [8]. This new structure was a great alternative to
amend the flaws in the concept of D-metric spaces [4]. In [8], it is proved that in this new structure
every G-metric space is a topologically equivalent to a metric space, which allows transforming
directly many concepts and results from metric spaces into the G-metric space setting.

Separately, Huang and Zhang generalized in [9] the notation of metric spaces by replacing the
set of real numbers by ordered Banach space, and define the concept of cone metric spaces.

Beg et. al. [10] introduced a generalization of the G-metric spaces and cone metric spaces in
what is called G-cone metric spaces, and proved some convergence properties as well as some fixed
point theorems.

Several fixed point theorems were obtained in the G-metric spaces and the cone metric spaces
for mappings satisfying certain contractive conditions, see for example [9, 11, 12, 13] and references
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therein. Whereas, only few results were obtained in the G-cone metric spaces, see for example [10,
14].

In this paper, we prove in these new metric spaces, the G-cone metric spaces, new fixed point
results that are generalizations of previous results from literature, e.g. [10, 14], for mappings satisfying
contractions with variable coefficients. We should also note that we prove our fixed point results with
no use of the normality property of cone that is used to prove some similar results in the literature,

g.,in[14].

2 Preliminaries

We give in this section, preliminaries and basic definitions which will be used throughout the paper.
Throughout the paper, let E be a real Banach space.

Definition 2.1 (See [10]). A subset P of E is called a cone if and only if:
(P1) Pis closed, nonempty and P # {0},

(P2) Ifa,b €R,a,b>0,and z,y € P then ax + by € P. More generally, if a,b,c € R, a,b,c > 0,
and z,y,z € Pthenax + by +cz € P,

(P3) PN (-P) = {0}.

A partial ordering < with respect to a given cone P C FE is defined by = < y if and only if
y —x € P. We write x < y to indicate that z < y but z # y, while © << y stands for y — x € IntP,
i.e., y — x in interior of P. A cone P is called normal if there exists a number K > 0 such that for
all z,y € E, we have 0 < z < y = ||z|| < K]||y||. The least positive number satisfying the above
inequality is called the normal constant of P, and it is proved in [15] that there are no normal cones
with normal constant K < 1.

Definition 2.2 (See [10]). Let X be a nonempty set. Suppose a mapping G : X x X x X — E
satisfies

(G1) G(z,y,2) =0ifz =y =2,

(G2) 0 < G(z,x,y) whenever x # y, forall z,y € X,

(G3) G(z,z,y) X G(z,y,z) whenever y # z, forall z,y, z € X,

(G4) G(z,y,2) =G(x,z,y) = G(y,x,z) = .... (Symmetry in all three variables),

(G5) G(z,y,2) = G(z,a,a) + G(a,y, z), forall z,y, z,a € X. (Rectangle inequality).

Then G is called a generalized cone metric on X, and X is called a generalized cone metric space,
G-cone metric space.

Definition 2.3 (See [10]). Let X be a G-cone metric space, and x,, be a sequence in X. We say that
T IS

e Cauchy sequence if for every ¢ € E with 0 << ¢, there exists N such that G(zn, zm,z¢) << c,
forall n,m,£ > N.

e convergent sequence if for every ¢ € E with 0 << ¢, there exists N such that for all n,m > N,
G(xn,Tm,x) << c for some fixed x € X. Here, z is called the limit of the sequence z,,, and is
denoted by z,, - zasn — oo or lim z, = z.

n—oo

A G—cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.
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To illustrate this new concept we give the following example.

Example 2.1. Let £ = R?, P = {(x,y) € R? : z,y > 0} be a cone in E, and X C R. Define
the mapping G : X x X x X — E by

1 2
Gl 2) = (300 = vl +ly = =1+ o= . 3l = ol + Iy = 2| + o = 2)))  foreach .31 € X.

Then G is a generalized cone metric on X and X is a G—cone metric space.
For more examples of G-cone metric spaces, and some convergence properties of sequences in
G-cone metric spaces, one could refer to the paper by Beg et. al. [10].

3 Main Results

We prove here, some fixed point theorems in G-cone metric spaces introduced in Section 2. We
should note that we would not need to use the normality property of cone to obtain the results.

Theorem 3.1. Let X be a complete G-cone metlric space, and let T : X — X be a mapping
satisfying, foreach z,y € X,

G(Tz, Ty, Ty) = a(z,y,y)G(z,y,y)
+B(z,y,y)[G(x, Tz, Tz) + 2G(y, Ty, Ty)]
+y(x,y, )Gz, Ty, Ty) + Gy, Ty, Ty) + G(y, Tz, Tx)] (8.1)
+(z,y, )Gy, y, Tx) + G(y,y, Ty) + G(z,z, Ty)]
+o(z,y,9)[G(x,z, Tx) + 2G(y,y, Ty)],

where «, 8,~, §, o are some functions from X x X x X into [0,1) such that

- a(z,y,y)+B(z,y,y)+v(z,y,y)+56(z,y,y)+80 (z,y,y) .
A= SUP{ 1= (200 ,y0)+27(@y,9) Hi0@y ) Ho @) - Y € X} <l (3.2)

Then T has a unique fixed point, say u € X. Moreover, T"x — uw asn — oo forall x € X.

Proof. Let zo € X be an arbitrary initial guess, and let the sequence {z,} be defined by x,, = T"zo,
or equivalently, x,, = Tx,_1, n > 1. Then, from (3.1), using (G1) from Definition 2.2, we get

G(@n, Tnt1,Tnt1) = G(Txp—1,Txn, Tzn)
< aG(Tn-1,Tn, Tn)
+B[G(xn-1,Tn, Tn) + 2G(Tn, Tnt1, Tnt1)] (3.3)
+[G(@n—1,Tnt1, Tnt1) + G(@Tn, Tni1, Tni1)] '
+5[G(£Bn, Tn, l’n+1) + G(.Tn_1, ITn—1, l’n+1)]
+0[G(xn-1,ZTn-1,%n) + 2G(Tn, Tn, Tnt1)],

where «, 8,7, 0, 0 are evaluated at (z,—1,xn,Zn). By rectangle inequality, (G5) in Definition 2.2, we

have
G(Tn—1,Tn+1,Tns1) X G(Tn-1,Tn, Tn) + G(Tn, Tng1, Tni1),
G(Ccnfh Tn—1, $n+1) j 20(27,171, Tn+1, l’n+1),
G(Tny Ty Tnt1) = G(Tn—1,%Tn-1,Tn+1) + G(Tn-1,Tn, Tn),
G(Zn-1,Tn-1,%n) = 2G(Tn_-1,Tn, Tn),

and together with equation (3.3), we get

(3.4)

G(ZTn, Tnt1, Tnt1) = aG(Tn-1,Tn,Tn)
+/8[G($n—17 Tn, xn) + 2G(£n, Tn+1, xn+1)]
+’Y[G($n*17 Tn, m’ﬂ) + 2G(x’ﬂ7 Tn+1, xn+1)}
+0B5G(Tn-1,Tn, Tn) + 4G(Tn, Tnt1, Tnt1)]
+U[8G(l’n—1y Tn, :rn) + 4G(13n7 Tn+1, l’n+1)]7
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or
G(xn,;tn+1,xn+1) j (OZ+,B+’Y+55+80’)G(In_1733n7$n)
+(28 + 27+ 46 + 40)G(Tn, Tnt1, Tnt1),

which implies

a+B+v+50+80
nsy n ) n j
Gl@n, Tnt1, T 1— (28 + 27 + 46 + 40)

where, X is given in (3.2), and hence, we have

G(.’En_1, Tn, lin) =< )\G(-’En—h Tny xn)a

G(Tn, Tnt1, Tnt1) 2 AN"G(z0,21,21). (3.5)
Now, for all n, m € N, with n < m, we have, using (G5) from Definition 2.2,
G(Tn, Tm, Tm) = G(Tn, Tnt1, Tnt1) + G(Tnt1, Tnt2, Tnt2) + - + G(Tm—1, Tm, Tm)-
Using equation (3.5), implies

G(Il?n, Ty mm)
2 (G(@n, Tnt1, Tnt1) + G(Tnt1; Tnt2, Tny2) + - + G(@m—1,Tm, Tm))
= ()\nG(l'o,thL‘l) 4+ )\n+1G(ZB0, T, 1’1) + -+ )\milG(wo,ZL‘l,xl))

j ﬁG(q"07l‘17x1)'

(3.6)

We want next to show that z,, is a Cauchy sequence. Given c such that 0 << ¢, we choose § > 0
such that ¢ + N;(0) C P, where N;(0) = {y € E : ||ly|| < §}. We also choose a natural number N
such that > G(zo,z1,21) € N3(0), for all m > No. Then, 25 G (zo, z1,21) << ¢, for all m > No.
Therefore, we have G(zn,Zm,zm) << ¢, for all m > n. Hence, z, is a Cauchy sequence. By
completeness, there exists u € X such that

lim x, = u. (3.7)

n—oo

To show that « is indeed a fixed point for T', we again use (3.1) to get

G(xn, Tu, Tu)
< aG(Tn-1,Tn,Tn)
+B|G(zn—1,Tn, zn) + 2G(u, Tu, Tu)]
+Y[G(zn-1,Tu,Tu) + G(u, Tu, Tu) + G(u, Tn, Tn)]
+0|G(u, uy zn) + G(u,u, Tu) + G(Tn—1, Tn—1,Tu)]
+0|G(Tn—1,Tn-1,%n) + 2G(u, u, Tu)],

where «, 3, v, d, and o are now evaluated at (z,—1, u,u). Taking the limit as n — oo, leads to
G(u, Tu, Tu) < 2(8 +v)G(u, Tu, Tu) + 2(6 + )G (u, u, Tu),
and using the rectangle inequality to derive the fact that
G(u,u,Tu) X 2G(Tu, Tu,u),

we get
Gu,Tu,Tu) 22(8+~v+2(6 +0))G(u, Tu, Tu). (3.8)

Now, from (3.2) we know that

a(z,y,y)+8(x,y,y)+y(=,y,y)+56(z,y,y)+80 (z,y,y) .
SUP{ 1—(28(z.y.w)+27(zy.y) + 48 (zy,) Ho(@yy) - 00 Y € X} <1

and hence,
a(z,y,y)+B8(=,y.y)+v(z,y,y)+56(z,y,y)+80 (x,y,y)
1-(28(z,y,y)+2v(z,y,y)+40(z,y,y)+4o (z,y,y)) <lVzyelX
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Consequently,
a(z,y,y) +36(z,y,y) + 3v(z,y,y) + 95(x, y,y) + 120(z,y,y) < 1,Vz,y € X, (3.9)

which implies that 2(8+~v+2(6 +0¢)) < 1. Therefore, we have G(u, Tu, Tu) = 0, and hence, Tu = u.
For uniqueness, suppose that u # v = Tw. Then, from (3.1) after simplifying, we get

G(u,v,v) 2 aG(u,v,v) +7[G(u,v,v) + G(v,u,u)] + 6[G(v, v, u) + G(u, u,v)],
where «, v, and ¢ are evaluated at (u, v, v). Using again the rectangle inequality, we have
G(v,u,u) < 2G(u,v,v).
Therefore, after simplifying, we get
G(u,v,v) 2 (a+3(y+9))G(u,v,v).

Form (3.9), we have a + 3(vy + §) < 1, and hence, we have G(u,v,v) = 0, which implies u = v.
Finally, since 2o € X was arbitrary, then from (3.7) we conclude that 7"z — u as n — oo for all
r e X. O

Corollary 3.2. Let X be a complete G-cone metric space, and let T : X — X be a mapping
satisfying, for each z,y € X,

G(Tz, Ty, Ty) = oz, y,y)G(z,y,v), (3.10)

where, 0 < X\ := sup{a(z,y,y) : z,y € X} < 1. Then T has a unique fixed point, say v € X.
Moreover, T"x — uwasn — oo forallz € X.

Proof. If one takes 3 =+ =0 = o = 0in Theorem 3.1, then A = sup{a(z,y,y) : z,y € X} < 1, and
the proof is straightforward from the proof of Theorem 3.1. O

Remark 3.1. As one can see from Corollary 3.2, other selections or variations from the condition in
(3.1) are valid similarly, i.e., one couldtake a =y =d=0c=0,a=8=7v=0,a =5 =§ =0,
ora=p£=0,...,and so on, and a similar proof would follows, because any map satisfies the new
condition using one of the above would definitely, satisfies the original condition (3.1) in Theorem 3.1.

Corollary 3.3. Let X be a complete G-cone metric space, and let T : X — X be a mapping
satisfying, for each z,y € X,

G(Tx, Ty, Ty) = a(w ¥, 9)G(z,9,9)
+B(z, y,y)[G (w Tz, Tz)+ G(y, Ty, Ty)]
+y(2,y, )Gz, Ty, Ty) + G(y, Ty, Ty) + Gy, Tx, T)] (8.11)
+6(z,y, Gy, y, Tx) + G(y,y, Ty) + G(x, z, Ty)]
+o(z,y,y)[G(z, x, Tx) + 2G(y, y, Ty)],

where «, 8,7, §, 0 are some functions from X x X x X into [0,1) such that

- a(z,y,y)+B(=,y,y)+v(2,y,y)+56(=,y,y)+80 (z,y,y) .
A= SUP{ 1= (2B(@,y.9)+27 (@9,9)+40 (9. 9)+o(@yy) Y € X} <l

Then T has a unique fixed point, say v € X. Moreover, T"x — uw asn — oo forallxz € X.

Proof. From Theorem 3.1, one can see that every map satisfies (3.11) would definitely, satisfy (3.1),
and hence, the proof is straightforward from proof of Theorem 3.1. O
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Remark 3.2. In condition (3.11), we remove the coefficient 2 of G(y, T'y, T'y) which was in condition
(3.1). Therefore, following the proof of Theorem 3.1, one would realize that X in Corollary 3.3, could
be replaced by

N a(z,y,y)+8(=,y,y)+v(z,y,y)+56(x,y,y) +80(z,y,y) .
A= SUP{ T-(B(@y,y) F27(@y,y) +4d(z,y9) Lo () - 00 Y € X} <1

where we have g instead of 23 in the denominator, and the proof follows straightforwardly. Similarly,

one could also remove the coefficient 2 of G(y,y,Ty) in condition (3.1) and similar Corollary as

Corollary 3.3, and similar arguments as those for Corollary 3.3 follow straightforwardly.

Corollary 3.4. Let X be a complete G-cone metric space, andletT : X — X be a mapping satisfying
for somem € N, foreachxz,y € X,

GT™z, T"y, T™y) = afz,y,y)G(z,y,y)
+B8(z, y, Y[G(x, T2, T™x) + 2G(y, T™y, T™y)]
+y(z, y, )Gz, Ty, T™y) + Gy, Ty, T™y) + Gy, T™z, T™x)]
+0(z, y, Y[G(y,y, T"x) + Gy, y, T"y) + G(z,z, Ty)]
+o(z,y,y)[G(z,z, T") + 2G(y,y, T™y)],

where «, 8,~, §, o are some functions from X x X x X into [0,1) such that

R a(z,y,y)+B8(x,y,y)+y (2, y,y)+55(z,y,y)+80(z,y,y) |
A= 5up{ 1= (2B(2,y.9)+27 (@9.9) + 40 (.y.9) +o(yy) Y € X} <l

Then T has a unique fixed point, say v € X. Moreover, T"x — uw asn — oo forallz € X.

Proof. From Theorem 3.1, T™ has a unique fixed point, say u, i.e., T™u = u, and since Tu =
T(T™u) = T™ 'y = T™(Tu), we have Tu as another fixed point for 7™, and by uniqueness,
Tu = u. The rest of the proof follows similarly. O

Theorem 3.5. Let X be a complete G-cone melric space, and let T : X — X be a mapping
satisfying, foreach z,y,z € X,

G(Tz, Ty, Tz) =Xa(x,y,z2)G(z,y,2)
+B8(z,y, 2)[G(z, Tz, Tz) + G(y, Ty, Ty) + G(z,Tz,Tz)]
+y(z,y, 2)[G(x, Ty, Ty) + G(y, Tz,Tz) + G(z, Tz, Tx)] (3.12)
+0(z,y, 2)[G(y,y, Tz) + G(2,2,Ty) + G(z,2,Tz)]
+o(z,y,2)[G(z,z,Tx) + G(y,y, Ty) + G(z, z,Tz)],

where «, 8,~, §, 0 are some functions from X x X x X into [0,1) such that

o @) E @) Fy (@) 456 (@y,2) HBo ()
A= Sup{ 1= (380ry. =) 137wy ) T4 (my. ) Ao (e g s - Do Yr 2 € X} <1

Then T has a unique fixed point, say uw € X. Moreover, T"x — uw asn — oo forallxz € X.

Proof. If we Take z = y in (3.12), then we get the condition (3.1) in Theorem 3.1, and therefore, the
proof follows straightforwardly from the proof of Theorem 3.1. O

It should be noted that previous Corollaries following Theorem 3.1 also follow Theorem 3.5
straightforwardly.

Remark 3.3. If «, 3,7, 6, 0 are only constants in [0, 1) instead of functions from X x X x X into [0, 1),
then (3.2) in Theorem 3.1 will be replaced by
0<a+38+3y+95+120 < 1,
which clearly implies
Noo @+ By +55+80
T 1— (28427445 + o)
and the proof follows straightforwardly. Similarly, for the other theorem and other corollaries.

<1,
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We give in what follows an example to validate our results.

Example 3.1. Let E = R? P = {(z,y) € R* : z,y > 0} be acone in E, and X = [-1,1] C R. Define
the mapping G : X x X x X — E, as given in Example 2.1, by

1 2
G(a,y,2) = <§(|x,y|+|y,z|+|x,z\),§(\m,y|+\y,z|+ \xfzw) Yoy, € X,
Let T : X — X be given by

_ 1
T(x) = { 7%1’6 le] , T E [7130) U (07 1]7
0, xz = 0.

Then, for all z,y, z € X, we have

G(Tz,Ty,Tz)=
(2(|Tz — Ty| +|Ty — Tz| + [Tz — Tz|), 2(|Tz — Ty| + [Ty — Tz| + [Tz — Tz)) .

Now, we consider each coordinate separately. So, for the first coordinate, we have

1
3 (ITx — Ty| + |Ty — Tz| + |[Tx — Tz|) =
1 1 1 1
% (’f%xefm + %yefm + .féxefm + %zefm
_1 _1
+ |~ dye BT + dzeT T
< g (lel+ glyl+ glal + §l2l + §lyl + §l21)

IN
Wl
[N

—+

+

[Tz~ 2| + Ty — yl+ 5Tz — 2| + [Tz ]

1
6|Tz—z|>

1
(ITz — x|+ |Tz — z|) + 6(|Ty —yl+ 1Ty —yl)

—+

Il
Wl
D= 7 N O~ N OR O~ N

~
<
|
=
+
|

Wl
|

+ -(|Tz— 2|+ Tz — z\)) .

Similar arguments hold for the other coordinate, and we get
2
§(|Tx —Tyl+ Ty —Tz|+ |Tx —Tz|) <

25Tz — 2|+ |Tz — ) + (1 Ty — y| + [Ty — yl)
+ é(|Tz —z|+ Tz — z|)) .
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If we let
w=(Tz —z|+ [Tz —z|) + ([Ty —y| + Ty —yl) + (|T% — 2| + [Tz — 2),
then, since
1 <1w7 g'w) —G(Tz, Ty, Tz) € P,
6\3 '3
we have

which implies

G(Ta, Ty, Tz) 2 - (G(z, Tz, Tx) + Gy, Ty, Ty) + G(2,Tz,Tz)).

| =

If we take 8 =
satisfied with \

0,1),and a = v = § = o = 0 in Theorem 3.5, then the contraction condition is

1 c [
6 )
=36 < 1, and T has a unique fixed point in [—1, 1] which is clearly v = 0.

4 conclusion
New fixed point results in G-cone metric spaces for mappings satisfying certain contractions with

variable coefficients have been proved. These results have been proved with no use of the normality
property of cone and are generalizations of previous results in the literature.
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