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Horse Herd Optimization Algorithm for Fuel Constrained 
Day-ahead Scheduling of Isolated Nanogrid
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Kalam Azad University of Technology, Kolkata, India; bDepartment of Power Engineering, Jadavpur 
University, Kolkata, India

ABSTRACT
Day-ahead scheduling of isolated nanogrid (NG) is an important 
task in power system. Owing to slowly lessening of fossil fuel, 
the profitable use of available fuel for electric power generation 
has turn out to be an extremely important concern of electric 
power utilities. This paper suggests horse herd optimization 
algorithm (HOA) to solve fuel constrained day-ahead scheduling 
of isolated nanogrid (NG) for five neighboring homes. NG com-
prises diesel generators, solar PV plants, battery energy storage 
system (BESS) and plug-in electric vehicles (PEVs). Simulation 
results of the test system have been compared with those 
obtained from social group entropy optimization, self- 
organizing hierarchical particle swarm optimizer with time- 
varying acceleration coefficients, fast convergence evolutionary 
programming and differential evolution. It has been observed 
from the comparison that the suggested HOA has the capacity 
to give better solution.
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Introduction

The local electric power generation and utilization plays a vital role in the 
electric power system reenactment. Nanogrids (NGs) are very small-scale, 
low-voltage electricity systems consisting of distributed energy resources for 
example renewable and nonrenewable distributed generators, battery energy 
storage systems, and controllable loads.

Fossil fueled fired power plants are the major sources of power generation 
till now. Owing to slow lessening of fossil fuel, there is concern over fossil fuel 
scarcity. Fuel suppliers have enforced additional restrictions on fuel supplying 
agreement and electric power utility has been forced to reschedule power 
generation anchored in the fuel availability.

Trefny et al. (1981) have explicated economic dispatch problem taking into 
account fuel constraints. Fuel resource scheduling in energy management has 
been described by Vemuri, Hackett, and Lugtu (1984) and Kumar et al. (1984).
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Burmester et al. (2017) have described about NG technologies. Akinyele and 
Akinyele (2017) has described design as well as performance analysis of NG. 
Lee et al. (2019) have discussed about optimum power management for NG. 
Dahiru and Tan (2020) have discussed about optimum sizing and analysis of 
grid-connected NG.

NG can operate in grid-connected mode and islanded mode. In grid- 
connected mode, the NG can swop power with the grid but in islanded 
mode, there is no grid for swopping power. Therefore in islanded mode 
owing to erratic nature of renewable energy sources, battery energy storage 
device is used to increase the system dependability in power shortfall situation.

Alipour, Moradi-Dalvand, and Zare (2017) and Aliasghari et al. (2018) have 
described PEVs as an electric load while batteries are charging and automo-
biles get energy from the system i.e. grid-to-vehicle mode. PEV owners can 
achieve lesser charging cost through competent management and controlling 
of batteries charging by taking part in time of use (TOU) program as 
a bendable load.

Kumar et al. (2019) have developed and applied modified symbiotic organ-
isms search (MSOS) algorithm with six truss design problems. Kumar et al. 
(2020) have applied five improved metaheuristics i.e. improved dragonfly algo-
rithm, improved whale optimization algorithm, improved ant lion optimizer, 
improved heat transfer search, and improved teaching–learning-based optimi-
zation and simulated annealing for truss optimization. Tejani, Kumar, and 
Gandomi (2019) have applied multi-objective heat transfer search algorithm 
(MHTS) for truss optimization. Kumar et al. (2020) have developed and applied 
multi-objective heat transfer search with modified binomial crossover 
(MOHTS-BX) for multi-objective truss optimization problems. Kumar et al. 
(2021b) have developed multi-objective hybrid heat transfer search and passing 
vehicle search optimizer (MOHHTS–PVS) and applied this algorithm for multi- 
objective structural optimization problem. Kumar et al. (2021a) have developed 
physics-based multi-objective plasma generation optimizer (MOPGO) and 
applied this algorithm to solve structural optimization problems. Kumar et al. 
(2020) have developed multi-objective passing vehicle search (MOPVS) algo-
rithm and applied for structural design optimization problem.

Swarm Intelligence (SI) imitates the group behavior of animals consisting of 
several agents functioning jointly. In very recent times, MiarNaeimi et al. 
(2021) has established horse herd optimization algorithm (HOA). HOA is 
based on the social recitals of different ages of horses utilizing six significant 
traits. These are lesion, pecking order, amicability, emulation, protection 
mechanism and meander.

In this article, the problem of fuel constrained day-ahead scheduling in an 
isolated NG with demand side management (DSM) is formulated. NG consists 
of diesel generators, solar PV plants, battery energy storage system (BESS) and 
plug-in electric vehicles (PEVs).
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The problem is solved with and without fuel constraints by utilizing sug-
gested HOA, social group entropy optimization (SGEO), self-organizing hier-
archical particle swarm optimizer with time-varying acceleration coefficients 
(HPSO-TVAC), fast convergence evolutionary programming (FCEP) and 
differential evolution (DE).

A test system containing two diesel generators, two solar PV plants, one 
battery energy storage system (BESS) and five plug-in electric vehicles (PEVs) 
is considered to simulate fuel constrained day-ahead scheduling with DSM. It 
is seen that the suggested HOA proffers better-quality solution.

The major contributions of this manuscript can be stated as follows:

● Day-ahead scheduling of isolated NG comprising diesel generators, solar 
PV plants, BESS and PEVs has been presented.

● Uncertainty of solar PV plants has been taken into consideration.
● Fuel constraints and ramp rate limit constraints of diesel generators have 

been considered.
● Demand side management has been taken into consideration.
● The problem is solved with and without fuel constraints.
● Horse herd optimization algorithm has been used to solve the problem.

Problem formulation

The main objective is to find out fuel constrained day-ahead scheduling of 
isolated NG with DSM. The system considers diesel generators, BESS and 
PEVs. Mathematical formulation of the problem is affirmed as:

Objective function

CT ¼
XT

t¼1

XNd

i¼1
fdgit Pdgitð Þ þ

XNPV

j¼1
fpvjt Ppvjt

� �
" #

(1) 

Fuel price function of ith diesel generating unit at time t is affirmed as 

fdgit Pdgitð Þ ¼ adi þ bdiPdgit þ cdiPdg2
it (2) 

The cost of solar power as described by Liang and Liao (2007) consists of three 
terms, a direct cost, an under estimation penalty cost (Upv) and an over 
estimation reserve cost (Opv) of solar power. 

fpvkt Ppvktð Þ ¼ Kpvk � Ppvkt þ Opvkt Ppvktð Þ þ Upvkt Ppvktð Þ (3) 

The overestimation reserve cost and underestimation penalty cost on solar 
power is replicated as in (4)-(5) respectively. 
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Opvkt Ppvktð Þ ¼ opvk �

ðPpvkt

Ppvmin
kt

Ppvkt � xð Þ � fpv xð Þdx (4) 

Upvkt Ppvktð Þ ¼ upvk �

ðPpvmax
kt

Ppvkt

x � Ppvktð Þ � fpv xð Þdx (5) 

Constraints

(i) Power balance constraints 

XNd

i¼1
Pdgitþ

XNPV

j¼1
Ppvjt þ PESSDt �

XNEV

l¼1
PEVlt � 1 � Drtð Þ � LBase;t � Lst ¼ 0; t

2 T
(6) 

XNd

i¼1
Pdgit þ

XNPV

j¼1
Ppvjt � PESSCt �

XNEV

l¼1
PEVlt � 1 � Drtð Þ � LBase;t � Lst ¼ 0; t

2 T
(7) 

Equation (6) is applicable when battery is discharging mode and equation (7) 
is applicable when battery is charging mode.

Solar power model
The power output as described by Shilaja et al. (2017) from jth solar PV 

plant at time t is avowed by
PPVjt ¼ PPVrj � 1þ α� Tref � Tambt

� �� �
� G

1000 , j 2 NPV , t 2 T (8)
Battery energy storage system
The battery energy storage system (BESS) can provide power at any time 

when the state of charge SOCð Þ is more than the minimum allowable value 
SOCð Þmin. The SOC of BESS in next hour hinges on SOC and net charging 

power in the present hour and it is devised as 

SOCð Þ tþ1ð Þ ¼ SOCð Þt þ PESSCt � η � PESSDt (9) 

SOC of a BESS must be always less than SOCð Þmaxand more than SOCð Þmin. 

SOCð Þmin � SOCð Þt � SOCð Þmax (10) 

The power by which BESS can be charged is limited by maximum charging 
power limit Pchmax. 

PESSCt � Pchmax (11) 
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The power by which BESS can be discharged is limited by maximum dischar-
ging power limit Pdismax. 

PESSDt � Pdismax (12) 

PEV charging power limit
The PEV charging/discharging power in each hour is limited by the char-

ging/discharging facility and the energy requirement. 

XT

t¼1
PPEVlt ¼ PPEVl;total (13) 

The power necessary of the nth PEV is the total power PPEVl;total which has to 
be charged in a one day time horizon and computed by the average mileage of 
commuter vehicles for normal personal use. The charging/discharging facility 
is limited by the maximum and minimum charging/discharging power of 
PEV. Here, charging-only mode of PEV is considered. Power delivered to 
PEVs is modeled as real-valued variable. This is due to fact that the delivered 
power for a single PEV in an hour horizon is easily adjusted through control-
ling the charging time period. The majority of vehicles (about 90%) is aver-
agely idle or off road along the all day time horizon. PEVs can plug-in to the 
microgrid when they are not in use. The operational features PEV include the 
energy demand, min/max capacity and state of charge (SOC) of batteries. The 
acquired charging power ofnth PEV from the microgrid is subjected to the 
charging capacity constraints represented by Eq. (14). 

Pmin
EVl � PEVlt � Pmax

EVl (14) 

(ii) Capability frontiers of diesel generators 

Pdgmin
i � Pdgit � Pdgmax

i ; i 2 Nd; t 2 T (15) 

(iii) Ramp rate limits constraints of diesel generators 

Pdgit � Pdgiðt� 1Þ � URdi; i 2 Nd; t 2 T (16) 

Pdgiðt� 1Þ � Pdgit � DRdi; i 2 Nd; t 2 T (17) 

(iv) Fuel delivery constraints of diesel generators
Total fuel delivered to all diesel generating units should balance the fuel 

supplied by the supplier at every intermission over the scheduling horizon
PNd

i¼1
Fdgim � FDdm ¼ 0, m 2 M (18)

(V) Fuel Storage Constraints of Diesel Generators
The fuel volume of every diesel generating unit at the starting of every 

intermission plus fuel delivered to that diesel generating unit minus the fuel 
smoldered at that diesel generating unit provides the residual fuel at the 
starting of the next intermission.
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Vdgim ¼ Vdgi m� 1ð Þ þ Fdgim -
Ptm

t¼1
ηdi þ δdiPdgit þ μdiPdg2

it
� �

,i 2 Nd,m 2 M 
(19)

(Vi) Fuel Delivery Limits of Diesel Generators
Fuel delivered to every diesel generating unit at every intermission must be 

inside its minimum limit Fdgmin and maximum limit Fdgmax.
Fdgmin

i � Fdgim � Fdgmax
i , i 2 Nd, m 2 M (20)

(Vii) Fuel Storage Limits of Diesel Generators
Fuel storage limit of every diesel generating unit at every intermission must 

be inside its minimum limit Vdgmin and maximum limit Vdgmax.
Vdgmin

i � Vdgim � Vdgmax
i , i 2 Nd, m 2 M (21)

Demand side management

Demand side management (DSM) programs as described by Morsali et al. 
(2018) has several merits for example reducing the cost, boosting the power 
system security [12], etc. The DSM programs are categorized as demand 
response, strategic conservation etc. Here, demand response program is 
employed and it is modeled according to time-of-use (TOU) program, 
where some percentage of load demand is budged from expensive period 
cheap period keeping the total amount of load demand to be fixed. As 
a result, load curve is flattened and the operation cost is trimmed down. The 
numerical model of TOU program is described according to the equation (22) 
constrained by equations (23)-(26). 

Lt ¼ 1 � DRtð Þ � LBase þ Lst (22) 

XT

t¼1
Lst ¼

XT

t¼1
DRt � LBase;t (23) 

LInct ¼ Inct � LBase;t (24) 

DRt � DRmax,t 2 T (25)
Inct � Incmax, t 2 T(26)

Horse herd optimization algorithm

Horse herd optimization algorithm (HOA) developed by MiarNaeimi et al. 
(2021) is founded on the behavioral pattern of horses in their day to day life. 
The behavioral pattern of horses usually includes lesion, pecking order, 
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amicability, emulation, protection mechanism and meander. HOA technique 
is motivated by these behaviors of horses at different ages. The movement of 
horses emulated in HOA during each iteration is given by

XAge;Itr
k ¼ XAge;ðItr� 1Þ

k þ �VAge;Itr
k , Age ¼ α; β; γ; δ (27)

where, XAge;Itr
k signifies the position of the kth horse, Age and 

�VAge;Itr
k demonstrate the age range and velocity vector of the considered 

horse, Itr is the current iteration.
Horses show dissimilar behaviors at different ages. The highest natural life 

of a horse is about 25–30 years. δ signifies horses at era range of 0–5 years, γ 
signifies horses at range of 5–10 years, β signifies horses era range of 10– 
15 years, and α signifies horses older than 15 years.

Horses are sorted founded on the best responses. Therefore, first 10% of 
horses from top of sorted matrix have been chosen as α horses. Next 20% have 
been in β group. γ and δ horses account for 30% and 40% of residual horses, 
respectively. Six behaviors of horses are precisely applied for detecting velocity 
vector. Velocity vector of horses at dissimilar eras during every cycle of 
method is confirmed as 

�Vα;Itr
k ¼ �Gα;Itr

k þ �Dα;Itr
k (28) 

�Vβ;Itr
k ¼ �Gβ;Itr

k þ �Hβ;Itr
k þ �Sβ;Itr

k þ �Dβ;Itr
k (29) 

�Vγ;Itr
k ¼ �Gγ;Itr

k þ �Hγ;Itr
k þ �Sγ;Itr

k þ �Iγ;Itr
k þ �Dγ;Itr

k þ �Rγ;Itr
k (30) 

�Vδ;Itr
k ¼ �Gδ;Itr

k þ �Iδ;Itr
k þ �Rδ;Itr

k (31) 

Grazing (G)

Horses are lesion animals, which nourish on plants, grasses, forages, etc. They 
lesion on a meadow for 16 h to 20 h a day, and they take rest for petite time. 
This sluggish lesion method has been described as continuous eating. HOA 
algorithm imitates the grazing region around every horse with coefficient 0g0as 
such every horse lesions on definite regions. Horses lesion at any age all over 
their natural life. The precise implementation of lesion is given below. 

�GAge;Itr
k ¼ gAge

Itr � u_ þ p l
_

� �
� XAge;ðItr� 1Þ

k (32) 

gAge;Itr
k ¼ gAge;ðItr� 1Þ

k � wg (33) 
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where,�GAge;Itr
k is the movement parameter of kth horse, and it demonstrates 

worried horse’s propensity for grazing which decreases linearly with wg per 

iteration. l
_

and u_ are minimum and maximum limits of graze space, respec-

tively, and p is a random number among 0 and 1. Here, l
_

and u_ are taken 0.95 
and 1.05, respectively, and the coefficient 0g0 is taken as to 1.5 for each age range.

Hierarchy (H)

Horses are elapsed their lives followed by a leader frequently undertaken by 
human. A mature horse takes responsibility for guidance in the groups of 
untamed horses and this happens in the rule of pecking order. Coefficient 0h0
in HOA is regarded as propensity of a group of horses to pursue the most 
competent and strongest horse. It is seen that horses pursue the rule of pecking 
order at middle eras β and γ. This is described as.

�HAge;Itr
k ¼ hAge;Itr

k � XðItr� 1Þ
� � XðItr� 1Þ

k

� �
, Age ¼ α; β and γ (34) 

hAge;Itr
k ¼ hAge;ðItr� 1Þ

k � wh (35) 

where,HAge;Itr
k signifies the effect of the best horse position on speed parameter, 

and XðItr� 1Þ
� demonstrates the position of the best horse.

Sociability (S)

Horses necessitate a societal life and occasionally inhabit among other beasts. 
Flock life has assured horses’ safety as predators hunt them. life also raises the 
probability of survival and they are easily escaped. Sometimes it is seen that 
horses are warfare each other owing to their societal traits, and horse’s 
singularity is a reason of their tetchiness. Some of horses are content around 
other animals. This behavior has been regarded as a progress in the direction 
of the average position of other horses. It has been seen that the horses at the 
ages of 5–15 years like to stay in the herd and this is described as

�SAge;Itr
k ¼ SAge;Itr

k
1
N
PN

j¼1
XðItr� 1Þ

j

 !

� XðItr� 1Þ
k

" #

, Age ¼ β; γ (36) 

SAge;Itr
k ¼ SAge;ðItr� 1Þ

k � ws (37) 
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where �SAge;Itr
k demonstrates the societal motion vector of kth horse and 

SAge;Itr
k signifies the concerned horse’s orientation toward the group in Itrth 

iteration. SAge;Itr
k reduces in each cycle with a ws factor. N demonstrates 

number of total horses, and Age is the era range of every horse.

Imitation

Horses emulate each other, and they learn every other’s good and bad habits. 
The simulation behavior of horses is regarded as factor 0i0 in this method. 
Youthful horses endeavor to emulate others, and this characteristic remains 
throughout their full adulthood and this is described as

�IAge;Itr
k ¼ iAge;Itr

k
1

PN
PPN

j¼1
X
_ðItr� 1Þ

j

 !

� XðItr� 1Þ
k

" #

, Age ¼ γ (38)  

iAge;Itr
k ¼ iAge;ðItr� 1Þ

k � wi (39) 

where �IAge;Itr
l is motion vector of lth horse in direction of average of best horses 

with X
_

positions. PN denotes number of horses in the best positions. It has 
been suggested that P is taken as 10% of horses. Additionally, wi is a lessening 
factor per cycle for Itr.

Defense mechanism (D)

Horses’ response is a reflection of the fact that they are preyed by predators. 
Horses protect themselves by demonstrating the scuffle or escape response. 
Horses scuffle for food and water to remove rivals and stay away from unsafe 
environments. Horses’ protection system in HOA by absconding from horses 
shows unsuitable responses. Horses’ protection system is typified by factor 0d0. 
Horses must escape or scuffle against their foes. This protection mechanism 
must be present during whole natural life of a youthful or adult horse. Horses’ 
protection mechanism has been described by a negative coefficient to keep the 
horse far from unsuitable locations.

�DAge;Itr
k ¼ � dAge;Itr

k
1

qN
PqN

j¼1
X
^ðItr� 1Þ

j

 !

� XðItr� 1Þ

" #

, Age ¼ α; β and γ (40) 

dAge;Itr
k ¼ dAge;ðItr� 1Þ

k � wd (41) 
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where �DAge;Itr
k demonstrates escape vector of kth horse from average of some 

horses with worst positions shown by X
^

vector. qN denotes number of horses 
in the worst positions. Here, q has been taken as 20% of total horses. wd 
demonstrates lessening factor per cycle.

Roam (R)

Horses rove and lesion in nature from meadow to meadow looking for food. 
The majority of horses are remained in stable, although they keep the men-
tioned characteristic. All of a sudden a horse can go to another site for a lesion. 
Horses are very inquisitive, and they frequently visit far and wide for finding 
out new meadows and knowing their locality. Side walls are planned in 
a manner that horses are able to observe every other and their inquisitiveness 
has been met up. This behavior is imitated as a random movement and 
revealed by a factor 0r0. Roving in horses is approximately detected at youthful 
eras and vanishes slowly as they arrive at adulthood. This procedure is 
described below.

�RAge;Itr
k ¼ rAge;Itr

k pXðItr� 1Þ, Age ¼ γ; δ (42) 

rAge;Itr
k ¼ rAge;ðItr� 1Þ

k � wr (43) 

where, �RAge;Itr
k stands for random speed vector of kth horse for a local search 

and flee from local minima, and wr demonstrates the lessening factor of rAge;Itr
k 

per cycle.

Velocity of δ horses at the age of 0–5 Years

�Vδ;Itr
k ¼ gδ;ðItr� 1Þ

k � wg u_ þ p l
_

� �
� XðItr� 1Þ

k

h i
+   

iδ;ðItr� 1Þ
k � wi �

1
PN
PPN

j¼1
X
_ðItr� 1Þ

j

 !

� XðItr� 1Þ

( )" #

rδ;ðItr� 1Þ
k � wr � pXðItr� 1Þ

h i
(44) 
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Velocity of γ horses at era of 5–10 Years

�Vγ;Itr
k ¼ gγ;ðItr� 1Þ

k � wg � u_ þ p l
_

� �
� XðItr� 1Þ

k

h i
+  

hγðItr� 1Þ
k � wh XðItr� 1Þ

� � XðItr� 1Þ
k

� �h i

+ 

sγ;ðItr� 1Þ
k � ws

1
N
PN

j¼1
XðItr� 1Þ

j

 !

� XðItr� 1Þ
k

( )" #

+ 

iγ;ðItr� 1Þ
k � wi �

1
PN
PPN

j¼1
X
_ðItr� 1Þ

j

 !

� XðItr� 1Þ

( )" #

- 

dγ;ðItr� 1Þ
k � wd �

1
qN
PqN

j¼1
X
^ðItr� 1Þ

j

 !

� XðItr� 1Þ

( )" #

+ 

rAge;ðItr� 1Þ
k � wr � p� XðItr� 1Þ

h i
(45)

Velocity of β horses at era of 10–15 Years

�Vβ;Itr
k ¼ gβ;ðItr� 1Þ

k � wg � u_ þ p l
_

� �
� XðItr� 1Þ

k

h i
+ 

hβðItr� 1Þ
k � wh XðItr� 1Þ

� � XðItr� 1Þ
k

� �h i
(46)

+ 

sβ;ðItr� 1Þ
k � ws

1
N
PN

j¼1
XðItr� 1Þ

j

 !

� XðItr� 1Þ
k

( )" #

- 

dβ;ðItr� 1Þ
k � wd �

1
qN
PqN

j¼1
X
^ðItr� 1Þ

j

 !

� XðItr� 1Þ

( )" #

Velocity of α horses older than 15 Years

�Vα;Itr
k ¼ gα;ðItr� 1Þ

k � wg � u_ þ p l
_

� �
� XðItr� 1Þ

k

h i
-  

dα;ðItr� 1Þ
k � wd �

1
qN
PqN

j¼1
X
^ðItr� 1Þ

j

 !

� XðItr� 1Þ

( )" #

(47)

The pseudo code as well as flowchart of horse herd optimization algorithm 
(HOA) has been illustrated in Figure 1(a) and Figure 1(b) respectively. 

Start
Input problem specific system data and their respective constraints as well 

as algorithm parameters like NP, Itrmax, hβ, hγ, sβ, sγ, iγ, dα, dβ,dγ, rδ and rγ etc. 
Set Itr = 1.
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Initialization: Initialize the position of horses in uniformly distributed 
random manners within their limits or feasible spaces.

Fitness Evaluation: With the help of current positions of horses, evaluate 
the fitness value of all the horses as per the problem’s objective function.

while Itr ≤ Itrmax
Sort the fitness values of horses in ascending order and arrange the position 

of horses accordingly.
Classify the horses in α, β, γ and δ categories as per age groups.
Velocity/Motion Vector Calculation: Calculate the motion vector for horses 

of each category with the help of equation (33) to (36).
Position update: Calculate the new updated position of horses after apply-

ing the corresponding motion to the horses of all age groups as per equation 
(16).

Fitness Evaluation: With the help of current positions of horses, evaluate 
the fitness value of all the horses as per the problem’s objective function.

Itr = Itr + 1;

Initialization

Start

Fitness evaluation

Horse classification based on age 

Update horse position

Best solution 

Finish

Yes

No

Motion calculation

If stopping criteria is 
reached

Figure 1. (a). Pseudo code of the recommended HOA. (b). Flowchart of HOA.
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end while
Return the best solution.
end

Numerical results

Fuel constrained day-ahead scheduling of isolated NG with DSM is simulated 
in MATLAB (Version: 8. 1. 0. 604 (R2013a)) environment using horse herd 
optimization algorithm (HOA), SGEO developed by Feng et al. (2018), HPSO- 
TVAC developed by Ratnaweera et al. (2004), FCEP developed by Basu (2017) 
and DE.

The isolated NG comprises two diesel generators, two solar PV plants, one 
BESS and five PEVs. Energy consumed of each PEV is assumed to be 20KWh/ 
day. The installed capacity of battery energy storage system (BESS) is 10 KW. 
The data of the diesel generators is presented in Table A.1 and A.2 in the 
appendix. The rating of solar PV plants is PPV1= 20 KW and PPV2= 10 KW. . 

Figure 2. Power generation acquired from diesel generators, solar PV plants, PEVs and BESS 
considering fuel constraints using HOA.

Table 1. Fuel delivered (liter) to diesel gen-
erators obtained from HOA with fuel 
constraints.

Interval Fdg1 Fdg2

1 
2 
3 
4 
5 
6

8.6625 
2.1625 
9.0671 
8.5923 
8.4710 
9.2896

11.3375 
17.8375 
12.9329 
16.4077 
13.5290 
10.7104
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Direct cost coefficient (KPV), reserve cost (opv) and penalty cost (upv) for each 
solar PV plant are taken 0.06, 0.02 and 0.01 respectively. The reference 
temperature (Tref ) is taken as 25oC and temperature coefficient (α) is taken 
as � 0:25%=k(per Kelvin). The hourly power demand and temperature are 
shown in Table A.3. Fuel delivered during the scheduling period is given in 
Table A.4 in the appendix. The maximum and minimum forecast limits of 
solar irradiation are given in Fig. A.1. PEVs are connected to the system for 
charging from 1st hour to 6th hour and 18th hour to 24th hour. 10% of 13th, 14th, 
15th and 16th hour load is shifted to 1st, 2nd, 3rd and 4th hour during DSM.

Day-ahead scheduling problem with and without fuel constraints is solved 
by utilizing HOA, SGEO, HPSO-TVAC, FCEP and DE. In case of HOA, hβ, hγ, 
sβ, sγ, iγ, dα, dβ,dγ, rδ and rγ are taken as 0.9, 0.5, 0.2, 0.1, 0.3, 0.5, 0.2, 0.1, 0.1 
and 0.05 respectively. Number of horses i.e. NP is taken as 50. In case of SGEO, 
the parameters are taken as NP ¼ 50, MT ¼ 0:2, DT ¼ 0:1, c ¼ 1:5, w ¼ 0:3. 
For FCEP parameter is chosen as NP ¼ 50 and β ¼ 1. In case of HPSO-TVAC 
the parameters are taken as NP ¼ 50,wmax ¼ 0:25, wmin ¼ 0:05, c1i ¼ 2:5, 

Figure 3. Power generation acquired from diesel generators, solar PV plants, PEVs and BESS 
considering fuel constraints using SGEO.

Table 2. Fuel delivered (liter) to diesel gen-
erators obtained from SGEO with fuel 
constraints.

Interval Fdg1 Fdg2

1 
2 
3 
4 
5 
6

7.7092 
7.0027 
9.7082 
8.5863 
4.4807 
9.6353

12.2908 
12.9973 
12.2918 
16.4137 
17.5193 
10.3647
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c1f ¼ 0:2 and c2i ¼ 0:2, c1f ¼ 2:5. In DE, parameters are chosen as NP ¼ 50, 
F ¼ 0:75 and CR ¼ 1. Maximum iteration number is chosen as 100 for all the 
four techniques.

Figure 4. Power generation acquired from diesel generators, solar PV plants, PEVs and BESS 
considering fuel constraints using HPSO-TVAC.

Figure 5. Power generation acquired from diesel generators, solar PV plants, PEVs and BESS 
without fuel constraints using HOA.
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Power generation obtained from diesel generators, solar PV plants, PEVs and 
BESS with and without fuel constraints corresponding to best cost obtained from 
HOA is shown in Figure 2 and Figure 5 respectively. Fuel delivered to diesel 
generators corresponding to best cost obtained from HOA with fuel constraints 
are given in Table 1. Power generation obtained from diesel generators, solar PV 

Figure 6. Power generation acquired from diesel generators, solar PV plants, PEVs and BESS 
without fuel constraints using SGEO.

Figure 7. Power generation acquired from diesel generators, solar PV plants, PEVs and BESS 
without fuel constraints using HPSO-TVAC.
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plants, PEVs and BESS with and without fuel constraints corresponding to best 
cost obtained from SGEO is shown in Figure 3 and Figure 6 respectively. Fuel 
delivered to diesel generators corresponding to best cost obtained from SGEO 
with fuel constraints are given in Table 2. Power generation obtained from diesel 
generators, solar PV plants, PEVs and BESS with and without fuel constraints 
corresponding to best cost obtained from HPSO-TVAC is shown in Figure 4 and 
Figure 7 respectively. Fuel delivered to diesel generators corresponding to best 

Table 3. Fuel delivered (liter) to diesel gen-
erators obtained from HPSO-TVAC with fuel 
constraints.

Interval Fdg1 Fdg2

1 
2 
3 
4 
5 
6

8.8212 
9.2395 
9.2827 
9.7192 
6.3402 
8.7186

11.1788 
10.7605 
12.7173 
15.2808 
15.6598 
11.2814

Table 4. Comparison of performance.
Best price ($) Average price ($) Worst price ($) CPU time (s)

With fuel 
constraints

HOA 137.1420 137.1524 137.1648 7.44
SGEO 137.1875 137.1982 137.1996 8.05
HPSO-TVAC 137.2230 137.2352 137.2487 8.38
FCEP 137.3685 137.3769 137.3832 7.25
DE 137.5102 137.5301 137.5437 7.47

Without 
fuel 
constraints

HOA 136.5432 136.5543 136.5677 6.78
SGEO 136.6293 136.6389 136.6478 7.11
HPSO-TVAC 136.7158 136.7288 136.7399 7.46
FCEP 136.9600 136.9715 136.9802 6.39
DE 136.9979 136.9998 137.0132 6.43

Figure 8. Cost convergence characteristics considering fuel constraints.
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cost obtained from HPSO-TVAC with fuel constraints are given in Table 3. The 
best, average and worst cost and average CPU time among 100 runs of solutions 
obtained from these four algorithms are summarized in Table 4. The cost 
convergence characteristics with and without fuel constraints are shown in 
Figure 8 and Figure 9 respectively. It has been observed from Table 4 that the 
cost in case of fuel constraints is more than the cost without fuel constraints. It 
has been also seen from Table 4 that the cost obtained from HOA is the lowest 
among all the four techniques. Due to page limitation detail results obtained 
from FCEP and DE are not given here.

Conclusion

In the study, HOA has been suggested to solve day in advance scheduling of 
isolated nanogrid with and without fuel constraints considering DSM. The 
suggested scheduling is performed to a nanogrid system for five neighboring 
homes using two diesel generators, two solar PV plants, one battery energy 
storage system and five plug-in electric vehicles (PEVs). Test system is also 
solved by using SGEO, HPSO-TVAC, FCEP and DE. It has been observed 
from numerical results, that the total cost with fuel constraints is more than 
the cost without fuel constraints. Numerical results show that fuel consump-
tion is properly managed for satisfying constraints imposed by fuel suppliers. 
Though optimal scheduling is not achieved all the time, but this is generally 
much better than the penalty which is imposed because of fuel constraints 
violation. It has been also observed that the suggested HOA performs best 
among all the four techniques.

Figure 9. Cost convergence characteristics without fuel constraints.
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Nomenclature

CT: total price
adi; bdi; cdi: fuel price coefficients of ith diesel generating unit
Pdgit : power output of ith diesel generator at time t
Pdgmin

i ,Pdgmax
i : lower and upper limits of power generation for ith diesel generating unit

URdi, DRdi: ramp-up and ramp-down rate limits of the ith diesel generating unit
Fdgim: Fuel delivered to ith diesel generator in interval m
Fdgmin

i ; Fdgmax
i : minimum and maximum fuel delivery limits of ith diesel generator

FDdm: Total fuel delivered to all diesel generators in interval m
Vdgim: Fuel storage of ith diesel generating unit in interval m
Vdgmin

i ;Vdgmax
i : minimum and maximum fuel storage limits of ith diesel generating unit

Vdg0
i : Initial fuel storage of ith diesel generating unit

Ppvjt : power output from jth solar PV plant at time t
PPVrj: rated power output of jth solar PV plant
Gt: solar irradiation forecast at time t
Kpvj: direct cost coefficient for the jth solar PV plant
Opvjt Ppvjt

� �
: reserve cost function due to overestimation of the jth solar PV plant at time t

Upvjt Ppvjt
� �

: penalty cost function due to underestimation of the jth solar PV plant at time t
upvj, opvj: penalty cost and reserve cost for the jth solar PV plant
PEVlt : charging load of lth PEV at time t
Pmin

EVl , Pmax
EVl : lower and upper charging power of lth PEV

PESSCt : power charge to the battery system at time t
PESSDt : power discharge from the battery system at time t
LBase;t : predicted base load at time t
DRt : percentage of predicted based load participated in DRP at time t
Lst : shiftable load at time t
Nd: number of diesel generators
NPV : number of solar PV plants
NEV : number of PEVs
t, T: time index and scheduling eon
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Appendix

Table A.1: Data of diesel generators

Table A.2: Fuel consumption coefficients, fuel delivery limits, fuel storage limits
and initial fuel storage of diesel generators

Table A.3: Hourly Power demand and Temperature 

Hour
Power 
(KW) Temperature 0Cð Þ Hour

Power 
(KW) Temperature 0Cð Þ Hour

Power 
(KW) Temperature 0Cð Þ

1 
2 
3 
4 
5 
6 
7 
8

37 
39 
35 
37 
40 
42 
45 
47

23 
23 
24 
25 
25 
25 
26 
27

9 
10 
11 
12 
13 
14 
15 
16

49 
47 
48 
47 
49 
50 
50 
49

27 
28 
29 
29 
29 
28 
28 
27

17 
18 
19 
20 
21 
22 
23 
24

47 
46 
44 
42 
40 
39 
38 
37

26 
25 
24 
24 
24 
24 
23 
23

Table A.4. Fuel delivered
during scheduling period 

Interval Duration FDd 
(h) (liter)1 4 20 
2 4 20 
3 4 22 
4 4 25 
5 4 22 
6 4 20

Fig. A.1. The maximum and minimum predicted limits of solar irradiation
1) Day-ahead scheduling of isolated NG is presented.
2) Fuel constraints and ramp rate limit constraints of diesel generators are considered.
3) Demand side management is taken into consideration.
4) Horse herd optimization algorithm has been used for solving the problem.

UnitPdgmin Pdgmaxad bd cd URd DRd 
KW KW $/h $/KWh $/ KW2h KW/h KW/h

1 0 15 2.0350 0.0602 0.000044 3 3 
2 0 25 1.1825 0.0653 0.000044 5 5

Unit ηd δd μd Fdgmin Fdgmax Vdgmin Vdgmax Vdg0 

liter/h liter/MWh liter/(MW)2h liter liter liter liter liter

1 2.00669 0.060200 0.00010033 0 10 0 20 15 
2 1.33779 0.060200 0.00005017 0 20 0 40 20
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