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Abstract
3D particle streak velocimetry (3D-PSV) and surface flow visualization using tufts both require
the detection of curve segments, particle streaks or tufts, in images. We propose the use of deep
learning based instance segmentation neural networks Mask region-based convolutional neural
network (R-CNN) and Cascade Mask R-CNN, trained on fully synthetic data, to accurately
identify, segment, and classify streaks and tufts. For 3D-PSV, we use the segmented masks and
detected streak endpoints to volumetrically reconstruct flows even when the imaged streaks
partly overlap or intersect. In addition, we use Mask R-CNN to segment images of tufts and
classify the detected tufts according to their range of motion, thus automating the detection of
regions of separated flow while at the same time providing accurate segmentation masks.
Finally, we show a successful synthetic-to-real transfer by training only on synthetic data and
successfully evaluating real data. The synthetic data generation is particularly suitable for the
two presented applications, as the experimental images consist of simple geometric curves or a
superposition of curves. Therefore, the proposed networks provide a general framework for
instance detection, keypoint detection and classification that can be fine-tuned to the specific
experimental application and imaging parameters using synthetic data.

Keywords: instance segmentation, deep learning, particle streak velocimetry, tufts

(Some figures may appear in colour only in the online journal)

1. Introduction

In optical measurement techniques for fluid dynamics, the
flow field properties are usually observed through tracers that
indicate the flow behavior. These tracers, which can be dyes,
particles, excited molecules, smoke, tufts, oil substances, or
liquid crystals, are detected in the recorded images, and their
apparent properties (shape, displacement, intensity, color) are
analyzed to infer information about the flow.
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Therefore, the localization and segmentation of tracer
objects from images is often an initial task in the processing
chain of experimental flow visualization techniques. Image
segmentation can be tackled with classical computer vision
methods that rely on detecting engineered features, such as
edges, clusters of intensity values or colors, known sets of
gradients, thresholding, and other algorithms that are often
developed or adapted for specific applications [1].

Recently, deep learning based methods for image pro-
cessing using convolutional neural networks (CNNs) [2] and
Transformers [3] have proven to be extremely valuable in
detecting and segmenting objects in complex images with a
large number of classes. These networks are specialized to
perform various tasks such as object detection, classification,
and instance, semantic or panoptic segmentation [2–7]. They
are often trained on standardized benchmark datasets, such
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as Microsoft COCO [8], Cityscapes [9] or Pascal VOC [10],
which contain natural images with 20 to 80 annotated classes.
For applications that contain object types not represented in
the training dataset, application-specific natural or synthetic
annotated images are used to fine-tune the networks’ paramet-
ers. Therefore, these methods have been employed for a vari-
ety of segmentation tasks: for example, in [11], Mask region-
based convolutional neural network (R-CNN) [2] is fine-tuned
for crop seed phenotyping, and a review of deep learning based
segmentation for biological-image analysis is provided in [12].

Deep learning is also finding its way into an increasing
number of applications in experimental fluid dynamics. In
[13], two CNNs are used to first detect particles in an image
obtained with an astigmatic 3D Particle Tracking Velocimetry
(3D-PTV) setup and then regress their 3D coordinates from a
single image. End-to-end particle image velocimetry (PIV) is
performed using a CNN in [14], and in [15] dynamic masking
of objects is performed for PIV images, using a convolutional
autoencoder. A CNN with a fully connected regression head
is also employed for planar particle streak velocimetry (PSV)
[16] to regress a representative streak orientation and length
from an image patch containing multiple streaks obtained by
long-exposure particle imaging.

Here, we evaluate the performance of state-of-the-art CNNs
on instance segmentation, keypoint detection, and classific-
ation tasks for two different applications in experimental
fluid dynamics: volumetric 3D particle streak velocimetry
(3D-PSV) and flow visualization using tufts.

3D-PSV is a variant of 3D-PTV, where a longer expos-
ure time is used when recording the tracer particle images,
so that the particles’ pathlines, called ‘streaks’, are recorded
instead of the ‘frozen’ particle signatures required in 3D-PTV
[17–20]. This method has been researched by [21–25], where
different illumination and 3D reconstruction methods are pro-
posed. 3D-PSV allows the use of fewer and lower frame
rate cameras than 3D-PTV, it does not require displacement
assumptions as those required for tracking, and it can res-
ult in fewer reconstruction ambiguities than particle-based
methods [25]. However, the 3D reconstruction in volumet-
ric 3D-PSV requires the localization of each individual streak
in a set of images obtained from different camera views. As
the volume depth and seeding density increase, streak inter-
sections increase, posing a challenge in the accurate localiz-
ation of all streak instances. Therefore, the segmentation of
the streaks acquired for 3D-PSV is an interesting problem to
address with deep learning based methods. Related work on
streak segmentation is presented in section 2.1.

The second application for which we use deep learning
based instance segmentation is flow visualization using tufts.
In this application, pieces of string are applied to a model’s
surface and their motion under an applied flow is recorded to
deduce the behavior of the surface flow [26]. As with streaks,
tufts produce streak-like features in the recorded images: curve
segments that sometimes appear blurred. In contrast to streaks,
tufts should not intersect so as to not interfere with their neigh-
bors’ motion, and they have a fixed point, so their segmenta-
tion is significantly less challenging than that of streaks. How-
ever, depending on their shape, recorded in long-exposure

images, tufts can be classified as stationary or fluttering. This
classification task is here posed as an instance segmentation
task. Related work on tuft segmentation and classification is
presented in section 2.2.

The methods used for training the models, conducting
the experiments, and post-processing the data are discussed
in section 3. The evaluation of the CNNs’ performance on
the tasks of instance segmentation and keypoint detection is
described in section 4.1. In section 4.2, we fine-tune one of
the networks that we use for the streaks to detect, segment,
and classify instances of tufts as stationary or fluttering. Both
networks are trained exclusively on synthetic data, eliminating
the need for manual image annotation. The performance on
the segmentation, keypoint detection, and classification tasks
demonstrates a successful domain shift from synthetic to real
data. The accurate segmentation of streak instances enables the
use of 3D-PSV at high seeding densities, and the automated
segmentation and classification of tufts using neural networks
can speed up the processing and increase the accuracy of flow
visualization methods using tufts.

2. Related work

2.1. 3D-PSV

In 3D-PSV, a calibrated multi-camera setup is used to record
the trajectories of particles seeded in a fluid. A long exposure
time results in images of pathlines, or ‘streaks’, which are then
reconstructed in 3D space using the known camera calibration.
To reconstruct the 3D streaks, it is necessary to first identify
the streak instances in the individual images.

In [25], curved streaks are reconstructed in a volume by
simultaneously optimizing the detected streaks’ shapes and
checking if they are projections of the same 3D curve. In previ-
ous works, the segmentation of streaks relies on binarization
using a global [21] or local adaptive thresholding using the
Otsu method [24], it is based on the detection of local oriented
structures [27], or iterative processes using the structure tensor
and region growing methods [28]. An ellipse enclosing all the
segmented pixels is fitted in [27] to provide an indication of
the streak shape based on the size of the fitted ellipse’s axes.
In [22], after segmentation by thresholding, temporal inform-
ation is used to improve the streak detection and a spline is
fitted through the skeletonized outline of the streak.

During reconstruction, the above methods assume linear
segments between thematched corresponding points and work
well as long as there are few streak intersections, which
effectively limits the maximum allowable seeding density and
volume depth. Here, we propose the use of a deep learn-
ing based method to segment the individual streaks from
the images. The neural network predicts the endpoints and a
mask containing the pixel coordinates belonging to each streak
instance detected in the image.

2.2. Flow visualization with tufts

Tufts are small pieces of string often used to visualize surface
flows and identify regions of flow separation. When recorded
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in video or images with a relatively long exposure time, the
rapid, unsteady movement of tufts in regions where flow sep-
aration occurs results in a blurry appearance, which can serve
as an indicator for flow separation [26].

Visually inspecting images of tufted models is still a com-
mon way to deduce the flow behavior in the different regions
of the examined model, e.g. by identifying reversed or blurry
tufts [29–32]. In [33], a quantitative analysis of tufts’ beha-
vior was performed, where statistics about each tuft’s orienta-
tion were used to derive information about the local flow state.
Edge detection and the Hough transform can be used to fit a
line through the detected tufts and deduce their orientation,
as in [34], though this method becomes inaccurate for highly
curved tufts. Other methods detect the tufts’ shapes by recog-
nizing one end of the tuft and progressing pixel-by-pixel along
the high-intensity ridge that defines the tuft’s centerline [35].

Non-moving tufts can be segmented from images using fil-
tering and thresholding. If a time series of images is provided,
background subtraction can improve the thresholding per-
formance, though obtaining a background image is not always
possible if, e.g. the model is moving to sample different angles
of attack. Visual inspection can be used to assess the occur-
rence of blurred ends, though this is limited by the human
capacity to process and label the different flow regions accur-
ately. Therefore, training a neural network to detect tufts and
label them according to their range ofmovement can help (a) in
the segmentation of tufts from a series of image frames and (b)
in the classification of the different flow regions. We fine-tune
a network developed for instance segmentation to predict the
tuft masks and classify them as residing in a region of attached
or separated flow.

2.3. Instance segmentation

Instance segmentation is the task of identifying individual
instances of a class in an image and predicting a segment-
ation mask for each instance. As each instance is detected
individually, and a mask is derived per instance, networks
dealing with instance segmentation can handle overlapping
objects. In contrast, another method that can identify distinct
instances, panoptic segmentation, assigns an instance ID and
class to each image pixel and is unable to deal with overlapping
objects [36].

Two of the most commonly used CNNs that can perform
instance segmentation are Mask R-CNN [2] and Cascade
Mask R-CNN [5]. Mask R-CNN is a two-stage R-CNN that
first proposes regions of interest (RoI) with a fully convolu-
tional region proposal network (RPN) [4] and then regresses
a bounding box and class, and predicts a mask with a fully
convolutional branch for each RoI (figure 1). The two-stage
detector works on a feature map extracted from a convolu-
tional ‘backbone’, typically a ResNet [37] or ResNeXt [38]. To
extract and process features at different scales, Mask R-CNN
optionally employs a feature pyramid network (FPN) [39].

The region-based CNN architecture was introduced by [40]
to enable translation-invariant object detection by first detect-
ing RoIs and then performing bounding box and class regres-
sion for each RoI. At the time, the region proposals were still

performed with classical methods for object recognition [41],
and features were extracted from each RoI individually. Build-
ing on R-CNN, Fast R-CNN [42] increased the speed and
performance of the original R-CNN by introducing a multi-
task loss to minimize the class and bounding box prediction
loss jointly and moved the feature map extraction step to be
performed on the whole image instead of on each proposed
region. The network’s performance was increased signific-
antly in Faster R-CNN [4], when a convolutional RPN that
shares features with the detection networkwas introduced, res-
ulting in a two-stage detector that learns both how to propose
RoI and provide refined bounding box coordinates and classi-
fication predictions. Mask R-CNN used the same architecture
as Faster R-CNN, introduced a new method to improve the
alignment of RoIs to the input, and added a mask prediction
head in parallel to the class and bounding box prediction to
provide a binary mask for each RoI. In recent years, improve-
ments to Mask R-CNN performance have come mainly from
exploiting new backbone architectures, such as transformers,
as demonstrated in [43].

Cascade Mask R-CNN [5] uses a sequence of detectors
based on theMask R-CNN architecture and trained on increas-
ing intersection over union (IoU) thresholds to make use of
close false positives during training and not overfit on the
very high-confidence positive samples. While this network is
slower during inference compared toMaskR-CNN, it achieves
higher precision and recall values on the reported cases.

Keypoint detectors are often trained for human pose estim-
ation, typically estimating keypoints for the joints, eyes, nose,
etc. Keypoint R-CNN [2] is an extension of Mask R-CNN that
treats keypoints as a single-pixel mask and follows the same
architecture as Mask R-CNN to detect this mask. As Keypoint
R-CNN is an additional branch parallel to the bounding box,
class and mask prediction branches of Mask R-CNN, these
features are predicted jointly for each instance, thus elimin-
ating the need to assign keypoints to masks at a later step.

To circumvent the need for obtaining and annotating large
numbers of natural images, fine-tuning these networks for new
applications often relies on fully synthetic data [13], synthetic
data generated from augmentations of a pool of real data [11]
or real data augmented with synthetic data generated using
generative adversarial networks [44, 45]. However, fully syn-
thetic data is often not representative of the complexity of real
data, and the shift from the synthetic to the real domain can
result in performance loss. Domain randomization [46] is a
common method to bridge the simulation-to-real world gap,
and it is based on the idea that by introducing variability in the
synthetic data, the shift to the real data domain ‘may appear to
the model as just another variation’ [46].

3. Methods

In the following, we present the synthetic data generation,
training, and evaluation process forMask R-CNN andCascade
Mask R-CNN on the tasks of instance segmentation, keypo-
int detection, and classification for two different applications
of fluid flow visualization: 3D-PSV and flow visualization
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Figure 1. Outline of Mask R-CNN [2]. Here, ConvNet stands for the convolutional backbone, FCs for fully connected layers and ‘conv’ for
a convolutional branch.

using tufts. We validate and test the methods on synthetic data
and demonstrate their applicability on experimental data in
section 4.

3.1. Networks

WeuseMask R-CNN [2] and CascadeMask R-CNN [5] on the
Detectron2 platform [47]. For the streak detection we include
a Keypoint R-CNN head to multi-task instance segmentation
and keypoint detection. The settings used during training and
inference are reported in appendix C.

The keypoint detection head is trained to detect two key-
points per instance, representing a streak’s endpoints. During
training, the cost function compares the heatmaps generated
by the predicted keypoints and the ground truth keypoints to
calculate the cross-entropy loss.

In our case, the two endpoints are interchangeable. There-
fore, we modify the input to the keypoint loss function by first
rearranging the predictions relative to the ground truth before
calculating the keypoint loss, so that the sum of the Euclidean
distance of the two keypoint proposals to the ground truth is
minimized.

3.2. 3D-PSV

3.2.1. Training data. Ground truth data of images contain-
ing streaks and the corresponding bounding boxes, masks,
and keypoints are required to train the networks. As a typical
image for 3D-PSV might consist of 103–104 individual streak
instances, annotating the data manually would be challenging.
Additionally, streak images of many different flows with dif-
ferent acquisition and experimental settings would have to be
obtained to cover the range of different streak appearances.
On the other hand, using synthetic data for particle images
has a long history in PIV, as they allow the reliable evalu-
ation of reconstruction algorithms [48], and are easy to modify
to simulate optical aberrations, particle sizes, and illumination
intensities.

Therefore, we use exclusively synthetic ground truth data
during training and use the principle of domain randomization
to enable generalization to real data by varying the generation
parameters of the synthetic streaks. The streaks are generated
as particles that follow a path along a given conic section seg-
ment, initialized at random locations in the images. The conic
section segment parameters, axes, orientation, segment length,
width, and brightness are chosen randomly from a given uni-
form distribution. The curve segments are generated from con-
catenated particles that follow the conic section path, using the
best practice method described for particle image generation
for PIV [48] and summing the particle intensities at each time
step. For each training dataset, we generate 10 000 imageswith
random initializations.

We use images of size 250 × 250 px2. This choice allows
the longest required streaks to fit in the training images while
keeping the number of streaks per image low enough for our
memory constraints, with 118 streaks per image on average.
Additionally, training on smaller images produces better res-
ults on the keypoint detection accuracy when we scale up the
images to the default 800 × 800 px2, as the resolution around
the keypoints increases. The performance for different image
sizes is reported in tables 1 and 2.

Finally, we use overlapping masks so that each instance’s
mask is a set of connected pixels despite possible overlaps
and intersections with other instances. An intensity threshold
defines each mask’s extent, and the mask is saved as a set of
pixel coordinates and their corresponding intensity. The end-
points of each streak are the known start and end positions of
the traveling particle.

3.2.2. Experimental setup. We acquire images of a vortex
ring in air with three Photron AX-100 high-speed cameras
with image resolution of 1024 × 1024 px2 and pixel size of
20× 20 µm2. All cameras use Nikon Micro-NIKKOR 55 mm
1:2.8 lenses with the aperture set to f# = 11. The magnific-
ation factor is M= 0.06. The particle images are acquired at
1000 fps with an exposure time of 1 ms.
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Figure 2. Sketch of the experimental setup for the acquisition of vortex ring images and view from the three cameras. The camera
coordinates and the location of the vortex ring’s center are given in mm. The coordinate system is defined by the position and orientation of
Camera 1. The grayscale images are cropped around the region of interest, with dimensions 650 × 600 px2.

The center of the recorded vortex ring is at a distance of
1024 mm from the center of the first camera. The other two
cameras are arranged as shown in figure 2. The field of view
covers approximately 350 × 350 mm2 but for the presented
results only the region shown in figure 2 is processed, which
covers an area of 650 × 600 px2, corresponding to a field of
view of 224 × 218 mm2.

Themeasurement volume is illuminated by a continuous 50
W white LED light source, and the light is collimated with a
Fresnel lens with a diameter and focal length of 300 mm. The
tracers, which are helium-filled soap bubbles (HFSBs), are
generated using an in-house built bubble generator [22] with
a modified nozzle based on [49]. The HFSB size is approxim-
ately 300 µm.

The particle images are filtered and thresholded to the same
intensity value used to threshold the images of the training
dataset, and they are subsequently summed to obtain images of
particle streaks. This acquisition method allows an evaluation
of the same data with a 3D-PTV algorithm, as in [25]. For the
results presented in section 4.1.3, 60 frames are summed, res-
ulting in an effective exposure time of 60 ms.

The cameras are calibrated using the pinhole camera model
with radial and tangential distortion correction. A custom 2D
target with regularly arranged dots is moved within the field
of view to obtain 300 images of the target at different posi-
tions and orientations, covering the field of view of the three
cameras. The fit error obtained by the calibration is 0.018 px.
For the evaluation with the 3D-PTV type software, a self-
calibration is performed, but this is not used for the streak
evaluation. The fit error after the self-calibration is 0.032 px.

3.2.3. Post-processing. Instances are inferred from the
experimental images using the trained networks. For the infer-
ence, we resize the images by the same ratio of 800:250
used during training (table C1). Given the predicted keypoints,

multi-camera endpointmatching is performed across the views
using a tolerance of 2 px for the epipolar constraint. Sub-
sequently, we perform 2-view streak matching for all image
pairs and transfer thematched endpoints to the remaining cam-
era view. If both transferred endpoints overlap with a pre-
dicted mask, and the path connecting them has a large IoU
with this mask, we assign the transferred endpoints to the pre-
dictedmask and consider the new triplet of streaks a successful
match.

For the reconstruction of the experimental data
(section 4.1.3) we subsequently perform conic section seg-
ment matching [25] for all matched triplets of streaks: a multi-
view correspondence criterion is imposed to optimize conic
section fits through the predicted masks while ensuring that
the fits are 3D-consistent.

3.2.4. Baseline method for linear streaks. Our baseline
method is used to compare the performance of the deep learn-
ing based segmentation to a classical segmentation method.
The images are thresholded to generate enclosures of indi-
vidual or intersecting streaks. For each enclosure, the probab-
ilistic Hough transform [50] returns lines that fit through the
enclosure points, which are then grouped in clusters [51] to
derive the most dominant line orientations in the enclosure.
The endpoints of these lines are then refined and used as end-
points for the further processing steps andmasks are generated
from the fitted lines.

3.3. Tufts

3.3.1. Training data. We generate synthetic data for tufts by
calculating the displacements for the first four eigenmodes of a
cantilever beam and superposing the first mode and one more,
chosen randomly, with different amplitude ratios to obtain
various shapes of moving tufts. The fluttering is simulated by
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Figure 3. Experimental setup for the acquisition of vortex ring images (left) and surface flow visualization using tufts (right).

Figure 4. Examples of images used for the different training cases. The default settings are described in section 3.2. Images for the case
‘σ = 0.4−0.5’ contain streaks generated with a reduced range of variable thickness. For the case ‘50 spi’, the training images contain 50
streaks per image on average, approximately half as many as in the ‘default’ case.

calculating the cantilever beam’s position for different amp-
litudes, scaling it to keep the arc length of the resulting curve
constant, and averaging the resulting curve intensities.

The tufts’ lengths, intensities, and positions on the image
are varied within pre-defined ranges but, contrary to the
streaks, the synthetic tufts do not overlap, as they also should
not overlap or cross during experiments. The masks are
obtained by thresholding and the classes are assigned based
on the range of motion of each simulated tuft. We use images
of size 250 × 250 px2.

Finally, as tufts are usually placed on a surface, it
is common that some surface reflections, tapes and other
objects might be visible in the images. Therefore, we intro-
duce random background shapes and noise in the images
to enable accurate segmentation despite background objects
(figure 8). The network settings for the training and evaluation
are provided in table C2.

3.3.2. Experimental setup. Weuse aNACA0012 [52] airfoil
with a chord of 0.2 m and span length of 1 m for our tuft visu-
alization tests. The wing is installed vertically in the subsonic
wind tunnel of the Institute of Fluid Dynamics at ETH Zurich
(figure 3), at the center of the 3 mwide, 2.1 m high test section.
We test at a free stream velocity of 6.9 m s−1, resulting in a

Reynolds number of Re= 98000, and set the wing to angles
of attack of 8◦–12.4◦ to record states of attached and separated
flow.

Fifty tufts, made of white yarn of ≈2 mm thickness and
a length of 25–30 mm, are applied to the model. The images
are acquired with a Photron AX100 high-speed camera at 500
fps and exposure time of 1 ms to obtain the instantaneous tuft
positions. The time series of images is then averaged to obtain
simulated long-exposure images. The camera is placed at a dis-
tance of 1.5 m from the model, at the edge of the test section.

4. Results and discussion

4.1. Streaks

4.1.1. Validation. We validate the performance of Mask
R-CNN and Cascade Mask R-CNN on streak detection, seg-
mentation and keypoint detection for training with different
backbones, and image size and complexity. Our default set-
tings use a ResNet-101 as backbone, and networks trained on
the default training dataset (figure 4), with overlapping masks.
Two more datasets are used to assess the effect of training
with a smaller variation in streak thickness (‘σ = 0.4−0.5’)
and fewer streaks per image (‘50 spi’). The datasets of 10 000
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Table 1. Instance segmentation mean precision (P50) and recall
(R50), and average precision (AP50) for masks with IoU > 0.5. n/o:
non-overlapping masks; min 500: minimum image size set to 500,
images rescaled to 500 × 500 px2 during training; 50 spi: trained
with 50 streaks per image on average; σ = 0.4−0.5: trained with
data with reduced streak thickness range.

Network P50 R50 AP50

Mask R-CNN 79.8 80.1 81.7
Cascade M R-CNN 84.4 81.7 84.6
Cascade M R-CNN, n/o 80.1 77.6 80.2
Cascade M R-CNN, ResNet-50 83.2 80.7 83.9
Cascade M R-CNN, min 500 84.5 79.1 81.7
Cascade M R-CNN, 50 spi 81.7 78.8 82.3
Cascade M R-CNN, σ = 0.4−0.5 81.2 78.2 82.3

Table 2. Keypoint detection: number of detected streaks with mask
IoU > 0.5, whose endpoints are both closer than 1 px (d1) and 2 px
(d2) from the ground truth endpoints, as percentage of the number
of ground truth streaks.

Network d1 d2

Mask R-CNN 64.3 70.7
Cascade M R-CNN 65.9 74.8
Cascade M R-CNN, n/o 64.8 72.6
Cascade M R-CNN, ResNet-50 65.5 74.0
Cascade M R-CNN, min 500 61.8 70.5
Cascade M R-CNN, 50 spi 64.1 71.8
Cascade M R-CNN, σ = 0.4−0.5 61.3 69.5

images are split into 9900 images for training and 100 images
for validation and all models are trained for 15 000 iterations
with amini-batch size of four images. For the results of tables 1
and 2 we use the validation data from the hardest (‘default’)
dataset with 118 streaks per image on average.

A commonly used metric to evaluate segmentation per-
formance is the IoU between the predicted and ground truth
masks, that describes by how much the masks overlap rel-
ative to their size and alignment (appendix A). For a given
IoU threshold, the recall and precision of the network for a
given dataset are calculated, with recall describing how many
of the ground truth instances were identified correctly and
precision telling how many of the predicted instances were
matched to ground truth instances for the given IoU threshold
(appendix A).

We report the mean precision, P50, and recall, R50, for
bounding box and mask detections with IoU > 0.5 (table 1).
The average precision, AP50, is also evaluated so that the mod-
els’ performance can be compared to benchmarks found in lit-
erature. The AP50 metric is commonly used in object detec-
tion, and includes an evaluation of different score thresholds
by measuring the area under the precision-recall curve [10].
For P50 and R50, we use a constant score threshold of 0.5.
Finally, to evaluate the performance on keypoint detection,
we report the number of streaks whose endpoints are both
within 1 px (d1) and 2 px (d2) from the matched ground truth
(table 2).

Cascade Mask R-CNN with overlapping masks and trained
with our default settings described above exhibits the best

performance of the examined cases. The trainedMask R-CNN
has lower precision than any of the other test cases, and
using Cascade Mask R-CNN with non-overlapping masks
(case ‘n/o’) results in the lowest recall of all examined cases.
Further, Cascade Mask R-CNN with our default settings and
a ResNet-50 backbone only slightly underperforms both in
instance segmentation and keypoint detection compared to
ResNet-101. A network trained on smaller images (case ‘min
500’) performs well on instance segmentation, but the keypo-
int detection deteriorates significantly (table 2). Introducing
fewer streaks per image in the training dataset (case ‘50 spi’)
results in slower learning and the network probably does not
learn sufficiently how to detect difficult intersections, result-
ing in lower precision and recall on the validation dataset.
Finally, the importance of introducing variability in the train-
ing data is clear in the results of case ‘σ = 0.4−0.5’, which
performs significantly worse than the default Cascade Mask
R-CNN case.

4.1.2. Testing: synthetic flow field data. Synthetic images
and ground truth data of streaks for the flow field describ-
ing Hill’s spherical vortex [53] are generated in a volume
and projected to three camera views. Streaks and their end-
points are detected from the images and reconstructed as
described in section 3.2.3 for an end-to-end evaluation of the
instance segmentation and keypoint detection on images of a
realistic flow field. We perform the evaluation for Mask R-
CNN, Cascade Mask R-CNN and Cascade Mask R-CNNwith
non-overlapping masks. The same synthetic flow field data is
used to detect lines with the classical line detection method
described in section 3.2.4, as the streaks are nearly linear in
the synthetic data.

Three seeding densities of 1000, 2000 and 3000 streaks
per image are evaluated (figure 5). The image size is 1024 ×
1024 px2 and the spherical vortex and surrounding flow are
within a volume of 300 × 300 × 300 mm3 at a distance of 1
m from the cameras. For each seeding density we evaluate P50
and R50 on 10 datasets consisting of three views each where
the particles are initialized at different random positions and
assigned random intensities and thicknesses (table 3).

CascadeMask R-CNNwith the default settings has the best
performance across all metrics, as with the validation dataset.
All models perform better than the baseline, which performs
particularly poorly in terms of recall, which is detrimental
when performing 3D reconstruction. Indeed, as faulty matches
can often be eliminated through the multi-view constraints,
high recall is more desirable than high precision. Recall can be
increased at the expense of reduced precision by reducing the
strictness of non-maximum suppression for the RPN propos-
als (case ‘more proposals’ in table 3). However, faulty multi-
view matches will increase when the instances are detected
with lower precision, also causing a drop in the overall 3D
reconstruction precision.

Following detection, the streaks are reconstructed using
the methods described in section 3.2.3 and the mean
reconstruction precision (P3D) and recall (R3D) are evaluated
(table 4). The final step of conic section reconstruction is
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Figure 5. Synthetic images of Hill’s spherical vortex for different numbers of streaks per image, n, and predicted masks with Cascade
Mask R-CNN and with the classical baseline method. Correct mask predictions are shown in green and wrong in red. The IoU threshold is
set to 0.5.

Table 3. Instance segmentation mean precision (P50) and recall (R50) for masks with IoU > 0.5 and number of detected streaks whose
endpoints are both closer than 1 px (d1) and 2 px (d2) from the ground truth endpoints, as percentage of the number of ground truth streaks.
Evaluation for images with n streaks per image.

Network n P50 R50 d1 d2

Mask R-CNN 1000 90.3 89.7 64.8 72.2
2000 84.2 78.0 53.5 59.6
3000 78.8 64.7 42.0 47.0

Cascade M R-CNN 1000 93.1 89.9 67.8 76.1
2000 88.3 78.3 55.7 63.2
3000 84.5 65.7 44.7 50.9

Cascade M R-CNN 1000 90.8 87.0 66.2 74.6
n/o 2000 84.1 73.1 54.2 62.2

3000 77.8 58.8 42.7 49.4
Cascade M R-CNN more proposals 2000 74.1 82.1 57.2 64.9
Baseline 1000 89.5 55.5 33.6 41.3

2000 77.8 27.8 15.7 19.3
3000 70.5 13.7 7.7 9.5
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Table 4. Mean reconstruction precision (P3D) and recall (R3D) for masks with IoU > 0.5. Evaluation for images with n streaks per image.

Network n P3D R3D

Mask R-CNN 1000 88.9 72.9
2000 76.3 52.4
3000 66.3 36.7

Cascade M R-CNN 1000 91.2 76.4
2000 82.8 57.1
3000 74.1 40.7

Cascade M R-CNN, n/o 1000 93.2 75.4
2000 86.2 53.6
3000 81.0 36.3

Cascade M R-CNN, more proposals 2000 56.8 65.6
Baseline 1000 88.5 28.5

2000 84.5 7.7
3000 84.7 2.0

Figure 6. Mask and keypoint predictions from inference with Cascade Mask R-CNN on experimentally acquired images. The predicted
keypoints are shown in red.

not performed for the synthetic flow field data, as the streak
curvature is very small. As the number of streaks per image
increases, R3D drops significantly, since corresponding streaks
must be well detected in all three views for a valid streak to be
reconstructed. Using more, less reliable predictions in the case
‘more proposals’ increases recall by 8.5% but causes a reduc-
tion of 26% in reconstruction precision, with about half of
the reconstructed streaks not corresponding to a ground truth
streak.

4.1.3. Testing: experimental data. The vortex ring images
obtained from the setup described in section 3.2.2 are pro-
cessed in the same way as the synthetic data, and the
matched masks are processed and reconstructed in 3D with

our conic section matching method. As ground truth data are
not available, the results are inspected visually (figure 6) and
compared to particle-based reconstruction using commercial
3D-PTV software [54] (figure 7).

Using a Cascade Mask R-CNN model, trained with our
default settings, 2438 to 2539 streaks are detected in each
image. The average number of particles per image, detected
from the short-exposure particle images is 2852. Therefore,
the number of detected streaks is comparable to the num-
ber of detected particles, but as it is unknown which of these
particles form streaks we cannon directly evaluate what per-
centage of the imaged streaks is actually detected. After per-
forming endpoint and conic sectionmatching, 2070 streaks are
reconstructed in the 3D volume, while the 3D-PTV method
reconstructs 810 streaks on average per time step. The settings
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Figure 7. (a) Reconstructed conic section segments and their projections on the three camera views, from streak detections with Cascade
Mask R-CNN and (b) reconstructed trajectories and their projections using commercial 3D-PTV software. A section of the reconstructed
3D (a) streaks and (b) trajectories is zoomed in.

for the evaluation with 3D-PTV can be found in appendix B.
While our method seems to perform better across a wider
range of displacements and identifies correctly many streaks

that remain undetected by 3D-PTV, some of the longer streaks
detected by 3D-PTV are not reconstructed with our method.
Additional processing steps, such as iterative elimination of
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Figure 8. Top row: original images of three samples from the synthetic validation data with random synthetic tuft arrangements. The
images include tufts and background features introduced to encourage the model to neglect background objects. Bottom row: detected and
classified tuft instances. The various background features are successfully ignored.

the matched streaks from the images and renewed detection
of the remaining streaks, could help to increase recall. Finally,
it must be noted that the streak direction cannot be derived
from a single frame with the presented method, unless addi-
tional experimental techniques such as colored light flashes
are employed, as for example, proposed by [24]. However,
provided the 3D reconstruction of multiple time frames, the
direction of each streak can also be inferred by its position
in the next time frame which requires some form of tracking
based on the known shape and average speed obtained from
each 3D streak.

4.2. Tufts

4.2.1. Validation. Mask R-CNN is used for the detection and
classification of tufts, as the segmentation of tufts is an easier
task than that of streaks andMask R-CNN is faster at inference
time. Wherever not defined, a ResNet-101 backbone is used.
The models are trained for 6000 iterations with 4900 images
containing random background shapes and polygons with dif-
ferent edge intensities and degree of blurriness (figure 8). The
goal of this augmentation is to avoid that the network asso-
ciates all edges and blurry parts of the image with tufts. 100
images of this dataset are used for the validation of the mod-
els described below. The best performing training settings are
used to train a model up to 15 000 iterations. The inference
results from this model are shown in figure 8.

The model trained with a ResNet-101 backbone outper-
forms ResNet-50, and using training data without background
augmentations results in lower performance (table 5). Finally,
training up to 15 000 iterations results in a small increase in
performance.

4.2.2. Testing: experimental data. The default Mask R-
CNN model, trained for 15 000 iterations is used for inference
on the images of a NACA 0012 airfoil on which 50 tufts are
applied. The network segments the streaks and predicts the

Table 5. Instance segmentation mean precision (P50) and recall
(R50), and average precision (AP50) for masks with IoU > 0.5 and
correct class assignment, for the case of tuft segmentation.

Network P50 R50 AP50

Mask R-CNN 93.3 93.9 98.5
Mask R-CNN, ResNet-50 91.1 92.2 97.7
Mask R-CNN, black background 88.1 90.8 94.5
Mask R-CNN, 15 000 iterations 94.0 94.4 98.7

Table 6. Instance segmentation precision (P50) and recall (R50) for
masks with IoU > 0.5 and correct class assignment for the three
angles of attack shown in figure 9.

Angle of attack P50 R50

8◦ 94.3 100.0
11◦ 89.3 100.0
12.4◦ 87.7 100.0

classes accurately, with 100% recall for all cases and 94.3,
89.3 and 87.7% precision for 8, 11, and 12.4◦ angle of attack
respectively (table 6, figure 9). On the classification task, tufts
with a wide range of motion are classified correctly as ‘flut-
tering’, while those for which both classes are predicted tend
to be difficult to classify even by visual inspection. Some
entirely faulty detections remain, as small, blurry clusters of
high intensity pixels whose scale fits that of the tufts are
detected.

At an angle of attack of 8◦ the flow is attached and all tufts
are recognized as stationary. For angles of attack of 11 and
12.4◦ flow separation occurs, and the tufts display a flutter-
ing, unsteady motion on the wing’s suction side (figure 9). The
top row of tufts remains attached for all angles of attack. The
gradual separation toward the tip of the airfoil as the angle of
attack increases is consistent with finite wing flow separation
patterns [55, 56].
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Figure 9. Predictions with Mask R-CNN for three angles of attack for the NACA 0012 airfoil. Some false detections remain, though these
could be masked out as they are outside of the airfoil geometry. Stationary tufts are shown in green, fluttering tufts in red show regions of
separated flow and yellow colored tufts are those where the network predicts both classes.

5. Conclusion and outlook

3D-PSV and flow visualization with tufts both require the
detection of small sections of curves or a superposition of
curves: the particle streaks and stationary or fluttering pieces
of string, the tufts. In this work, we presented the training
strategies, synthetic data generation process, and evaluation
of two CNNs built for instance segmentation on the tasks of
(a) particle streak segmentation and endpoint detection and
(b) tuft detection and classification based on the tufts’ range
of motion. We used two state-of-the-art instance segmenta-
tion networks, Mask R-CNN and Cascade Mask R-CNN, and
trained them on synthetically generated training data. The
training strategies were evaluated on synthetic data and, for
the streaks, an end-to-end evaluation of the complete pro-
cessing chain, from segmentation to 3D reconstruction, was
performed. The networks clearly outperformed our classical
segmentation baseline, especially for high seeding densities.
Though trained exclusively on synthetic images, the neural
networks performed well on all tasks, as shown by the high
reconstruction quality of experimental data using 3D-PSV and
the high precision and recall on the tuft images. Finally, while
the accuracy of 2D detections is high, the fact that the cor-
responding streaks must be well segmented on all camera
views results in a reduction in recall after 3D reconstruction.
Pair-wise endpoint matching and transfer to the third view,
as described here, can be performed, but additional methods
can be considered to make the method more robust, such as
mask transfer to the additional views or iterative deletion of
the detected streaks from the images and repeated inference
on the residual images.

The proposed segmentationmethod for streak-like features,
as presented here for particle streaks and tufts, can enable
the use of 3D-PSV with higher seeding densities than before,

making the method a viable alternative to 3D-PTV when few
cameras or not high-speed cameras are available and seeding
densities of the order of 0.01 ppp are acceptable. Provided
the ease in the segmentation step when neural networks are
employed, one can focus on efficient reconstruction and track-
ing methods, as well as on informing the segmentation with
constraints available from previous time steps and the camera
geometry.

On the other hand, the segmentation and classification of
tufts using neural networks can enable the automated detection
of separation regions, which were previously detected manu-
ally, allowing the processing of a larger amount of data with
higher accuracy.

Other areas in experimental fluid dynamics that can profit
from the segmentation of streak-like features are 3D-PTV
images with streak regions, where a hybrid particle-streak
method for reconstruction could be employed, the segment-
ation of streaks of colored oil used for surface flow visualiza-
tion, the detection of rigid or non-rigid non-spherical particles
in flows, or the segmentation of microorganisms in biofluidics.
The main challenge in applying the proposed method lies in
generating sufficiently diverse and representative training data
to close the synthetic-to-real domain gap.
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Appendix A. Evaluation metrics

A.1. IoU

To evaluate the similarity between the ground truth and
predicted masks, we use the IoU metric (figure A1). The
ground truth is a binary mask encompassing all the pixels
that belong to the specific instance. The prediction consists
of pixels whose intensity corresponds to a score in the range
[0 . . .1] that shows how confident the network is that a pixel
belongs to the mask. This mask is thresholded at a confidence
of 0.5 for the IoU calculation. The ratio of the intersection
area of the two masks to the union of the two masks’ areas
is the IoU.

A.2. P50

The mean precision at an IoU threshold of 0.5 (P50) is calcu-
lated from all mask predictions that can be matched to ground
truth instances with an IoU of 0.5 or higher, as the ratio of
true positive to the sum of true positive and false positive pre-
dictions. For cases where more than one classes participate in
the evaluation, P50 is themean P50 over all classes. To calculate
P3D, we use the ratio of the number of 3D reconstructed streaks
that can be matched to ground truth streaks to the number of
total reconstructed streaks. It is not a direct measure of ghost
streak generation, as some of the 3D reconstructions are due to
faulty 2D detections and not due to reconstruction ambiguities.

A.3. R50

The mean recall at an IoU threshold of 0.5 (R50) is calculated
from all mask predictions that can be matched to ground truth
instances with an IoU of 0.5 or higher, as the ratio of true pos-
itive to the sum of true positive and false negative predictions.
To calculate R3D we use the ratio of the number of 3D recon-
structed streaks that can be matched to ground truth streaks to
the number of total ground truth streaks.

A.4. d1,d2

d1 and d2 are the number of streaks for which the sum of
both endpoints’ Euclidean distance to the ground truth end-
points is below 1 or 2 px respectively. Both endpoints are
used in the metric to provide a realistic indication of how well
these streaks could be matched across multiple views, as only
streaks whose endpoints can both be matched to endpoints of
streaks in reconstructions.

Finally, the average precision, AP50 is commonly used
in object detection, and its value is the area under the

Figure A1. Example of IoU calculation for mask detection. On the
right-most image, the green pixels are those that belong exclusively
to the ground truth, red pixels belong only to the predicted mask,
and blue pixels belong to both the ground truth and prediction. The
ratio of the number of blue pixels to the sum of blue, green, and red
pixels results in an IoU of 0.68 in this example.

Table B1. Settings for the reconstruction with 3D-PTV type
commercial software.

Name Assigned value

Allowed triangulation error 2 voxels
Minimum track length required 6 time steps
Threshold for 2D particle detection 1000 counts
Voxel to mm ratio 4

precision-recall curvother views can result in valide. The curve
is obtained by evaluating the precision and recall values at dif-
ferent score threshold levels [10].

Appendix B. 3D reconstruction settings

B.1. 3D-PSV

For a triplet of streaks on the tree camera views to be a valid
pair, all endpoints muss fulfill the epipolar constraint with a
maximum distance tolerance set to 2 px. The conic sections
are then matched using the predicted masks.

B.2. 3D-PTV

The settings for the flow reconstruction using the commercial
3D-PTV software listed in table B1.

Appendix C. Network settings

Models that are pre-trained on ImageNet are used for Mask
R-CNN and Cascade Mask R-CNN, and the following
changes were made to train the networks for streak and
tuft detection. Wherever not mentioned, the default settings
of the configuration ‘Base-RCNN-FPN’ in Detectron2 are
used.
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Table C1. Settings for Cascade Mask R-CNN and Mask R-CNN for
the steaks application.

Name Assigned value

INPUT
MASK_FORMAT Bitmask
RANDOM_FLIP None
MIN_SIZE_TRAIN 800/3276a

MODEL
KEYPOINT_ON True
MASK_ON True
RESNETS

DEPTH 50 or 101
ROI_BOX_HEAD

CLS_AGNOSTIC_BBOX_REGb True
SMOOTH_L1_BETA 1.0

ROI_HEADS
NAMEb CascadeROIHeads
NUM_CLASSES 1
SCORE_THRESH_TEST 0.5

ROI_KEYPOINT_HEAD
NUM_KEYPOINTS 2
POOLER_SAMPLING_RATIO 2

RPN
POST_NMS_TOPK_TRAIN 4000
PRE_NMS_TOPK_TRAIN 9600
POST_NMS_TOPK_TEST 16 000/100 000a

PRE_NMS_TOPK_TEST 16 000/100 000a

SMOOTH_L1_BETA 0.2
SOLVER

MAX_ITER 15 000
TEST

DETECTIONS_PER_IMAGE 1000/5000a

a Settings used for the validation/test datasets, due to different image
sizes and number of instances.

b Setting not modified for Mask R-CNN.

Table C2. Settings for Mask R-CNN for the tufts application.

Name Assigned value

INPUT
MASK_FORMAT Bitmask
RANDOM_FLIP None
MIN_SIZE_TRAIN 800/3276a

MODEL
MASK_ON True
ROI_HEADS

NUM_CLASSES 1
SCORE_THRESH_TEST 0.5

SOLVER
BASE_LR 0.002
MAX_ITER 15 000

TEST
DETECTIONS_PER_IMAGE 1000

a Settings used for the validation/test datasets, due to different image
sizes and number of instances.
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