
International Astronomy and Astrophysics Research Journal

Volume 4, Issue 4, Page 28-48, 2022; Article no.IAARJ.97349

On the Interaction of Buoyant Magnetic
Structures with Convective Plumes

Abrar A. Ali a∗ and Lara J. Silvers b

aDepartment of Mathematics and Physics, the Australian University, P.O. Box 1411,
Safat 13015, Kuwait.

bDepartment of Mathematics, City, University of London, Northampton Square, London,
EC1V 0HB, UK.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final
manuscript.

Article Information

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional

Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are
available here: https://www.sdiarticle5.com/review-history/97349

Received: 11/11/2022
Accepted: 29/12/2022

Original Research Article Published: 30/12/2022

ABSTRACT

Motivated by the tachocline region within the Sun, we investigate the interaction of buoyant structures with
convection in a numerical set-up that resembles the base of the solar convection zone, where the fully
compressible, non-linear magnetohydrodynamics equations are solved. Fully-developed convective flows are
prescribed, with particular attention paid to identifying the features established in the earlier studies of [1] and
[2] where parameterisation of the small-scale turbulent pumping is imposed using mean-field approximation.
Analysis of several magnetoconvection regimes in quasi-two-dimensions reveals that the equipartition criterion
between kinetic and magnetic energy does contribute globally to the flux emergence process as fluctuating
motions in turbulent flows become more energetic. However, results were found to be less pronounced in the
three-dimensional simulations due to the effectively reduced fluctuations.
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1 INTRODUCTION

Until the late 1970s, solar physicists situated the
mechanism maintaining solar dynamo entirely in the
highly-turbulent convection zone, where magnetic fields
undergo repeated stretching and folding due to the
underlying turbulence [3, 4, 5]. It was then realised
that magnetic fields could not fully be generated in the
convection zone as the field can feedback on the flow
in such a way as to disrupt the regeneration rate of the
magnetic field, and so leading to spatial and temporal
inconsistencies with the magnetic features observed on
the solar surface (see [6, 7] and references therein).
The idea of an interface-type dynamo, partially situated
in the stable overshoot layer just below the convective
zone was put forward by [8], where the existence of
a toroidal field in the tachocline was assumed due to
the presence of important physical processes that can
influence the generation and sustenance of a large-
scale field.

This solar interface dynamo model was built on the
mechanisms of magnetic field transport within the solar
interior. In the convection zone, transport of flux is
enhanced, relative to the underlying sub-adiabatic layer,
due to turbulent convective motions [9, 10]. Poloidal
magnetic fields are primarily expelled to the tachocline
as a result of turbulent diffusivity, while the shear-
generated toroidal components are believed to reside
within the low diffusion environment in the tachocline
[11, 12].

The non-linear interactions between compressible
turbulence and the underlying, large-scale toroidal
component of the magnetic field serve to transport
magnetic flux into the stellar atmosphere. Emergence
of magnetic flux tubes is considered to be triggered by
instabilities of the field in the non-turbulent tachocline
[13]. Most notably, the process driven by magnetic
buoyancy instability due to an unstable vertical gradient
of the horizontally aligned magnetic field, embedded
in a gravitationally stratified compressible atmosphere
[3]. However, there remain some uncertainties on
the exact physical mechanisms that allow fairly strong
magnetic structures to traverse the turbulent convection
zone.

Inspired by the mechanism of magnetic flux emergence
that yields the observed solar features, [1] conducted
a pilot study of the effects of turbulent flux pumping on
the evolution of buoyancy structures, in a framework

resembling the base of the convection zone, proposing
a possible mechanism of suppressing the field before
magnetic buoyancy instabilities play a significant
role in the emergence of flux tubes. Results from
their numerical calculations establish an equipartition
relation between the Alfvén speed of the magnetic field
and the pumping velocity under which the evolution of
the large-scale field is determined – only structures
where the magnetic field strength is comparable to
equipartition strength can overcome the turbulent
pumping and emerge.

Following this, given that convective patterns are
highly time-dependent, [2] built on the model of [1] to
account for temporal characteristics of the magnetic
flux pumping and explore its effect on the formation and
evolution of magnetic structures. The rate of emergence
of magnetic structures, as well as their strengths, were
found to be related to the temporal characteristics of
the imposed pumping. The results reported by [1] and
[2] were based on mean-field approximations where a
net transport of mean magnetic field, that results from
the non-isotropic parts of the mean electromotive force
expansion, is adapted to simplify the effects of turbulent
convection.

Parametrisation of the small-scale turbulent pumping
does reveal interesting properties relating to the
emergence of magnetic structures throughout the
convection zone. However, simplifications of the
pumping mechanism may not capture the various
physical factors that contribute to the overall dynamics
of the magnetic field. The research presented in
this paper will focus on exploring the conclusions in
the studies of [1] and [2] in a more realistic attempt
of modelling magnetoconvection, by establishing a
radial pumping that arises naturally from the turbulent
convective flow.

Previous studies have looked at such magnetoconvection
interactions but focused on the role of turbulent
convection in transporting and storing the underlying
magnetic field [10, 14, 15, 16]. The work present here
will aim to investigate the rise of magnetic structures
through the turbulent convection zone, mainly focusing
on the effect of the equipartition criterion established in
the earlier work of [1] and [2], in a framework of fully
compressible convection such that the contribution of
several competing physical factors incorporate to the
net outcome.
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Despite that convection in two dimensions represents
simplifications of the real-world three-dimensional
convective problems, it provides an understanding
of how the physical properties imply to three
dimensions. Furthermore, two-dimensional simulations
are relatively inexpensive in terms of computational
power than three-dimensional simulations. Thus, as
a first step in understanding the problem, quasi-two-
dimensional numerical experiments of compressible
magnetohydrodynamics are performed. This is followed
by numerical simulations extended to three dimensions,
to explore and compare with the quasi two-dimensional
findings.

This paper will proceed as follows: Section 2
outlines the model, parameter selection, and numerical
approach. Section 3 discusses the results and this is
followed by the conclusions in Section 4.

2 THE MODEL

A localised Cartesian system of a plane-parallel layer of
compressible fluid is considered, where the dynamical
evolution is described by the set of coupled, non-
linear MHD equations in non-dimensional form. The
layer extends from 0 ≤ x ≤ λx and 0 ≤ y ≤
λy in the horizontal directions, and 0 ≤ z ≤ d
increases vertically downwards, parallel to the constant
gravitational acceleration (refer to Fig. 1 for an
illustration). Throughout the domain, the fluid is
assumed to satisfy the perfect gas law with the dynamic
viscosity, µ, the magnetic diffusivity, η, the gravitational
force, g, the specific heats at constant density and
pressure, cv and cp respectively, all constant. Thus, the
set of non-dimensional compressible MHD equations
reads

∂ρ

∂t
+∇ · (ρu) = 0, (2.1)

Fig. 1. A schematic representation of the Cartesian plane considered for the model
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∂B

∂t
= ∇× (u×B− Ckζ0∇×B), (2.4)
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∇ ·B = 0, (2.5)

where
p = ρT, (2.6)

and
τij =

∂ui

∂xj
+
∂uj

∂xi
− 2

3

∂uk

∂xk
δij . (2.7)

In the above equations, ρ is the fluid density, p is the
pressure, T is the temperature, B is the magnetic
field and u is the fluid velocity. In keeping with the
mathematical formalism of prior related studies (for
example, [1, 2, 17]), the unit of length is scaled by
the depth of the layer d. Density and temperature are
scaled by their initial value at the upper surface, ρ0
and T0, respectively. Magnetic field is scaled by the
magnitude of the initial magnetic field B0. Velocities
are scaled by the sound travel-time across the layer in
terms of the isothermal sound speed,

√
(cp − cv)T0, and

is related to the unit of time d/
√

(cp − cv)T0.

Initially, quasi-two-dimensional simulations will be
performed, also known as 2.5D, by assuming no
gradients of quantities in the y-direction, i.e. motion

only exists in the x − z plane. This will be followed
by considering the full three-dimensional problem. In
this specific model, the thermal conductivity, K, is
assumed to be a function of depth and is scaled by
its initial value at the upper surface, K0. Following
this, several non-dimensional control parameters
are obtained. These include the Prandtl number
σ = µcp/K0, the dimensionless thermal diffusivity
Ck = K0/ρ0cpd

√
(cp − cv)T0, the ratio of magnetic to

thermal diffusivity at the top of the layer ζ0 = ηcpρ0/K0,
the ratio of specific heats γs = cp/cv, and lastly the
dimensionless field strength F = B0

2/(cp − cv)T0ρ0µ0.

The computational domain is split into two piecewise
polytropic layers to achieve a penetrative convection
configuration, and mimic the interface region between
the radiative zone and the convection zone. This is such
that the top layer 0 ≤ z ≤ d/2 is convectively unstable,
and the bottom layer d/2 ≤ z ≤ d is stable, with a
smooth transition between the unstable layer and the
stable layer, achieved by a hyperbolic tangent profile.
This is obtained as in earlier works (see [16, 18, 19]) via
a depth-dependent thermal conductivity as

K(z) =
1

2

[(
mB + 1

mT + 1
+ 1

)
+

(
mB + 1

mT + 1
− 1

)
tanh

(
z − (d/2)

0.1

)]
, (2.8)

where mT and mB denote the polytropic indices of the top and bottom layers respectively. This approach was
adapted in several previous investigations to account the effect of overshooting motions via penetrative convection
on the stably stratified region below the convection zone.

For convective instability, the super-adiabatically stratified medium must satisfy m < 3/2 for a monoatomic perfect
gas [20]. With the effect of adiabatic expansion (compression) of an ideal gas taken into account, the form of the
dimensionless Rayleigh number, Ra, that determines the onset of buoyancy-driven convection in this framework
is explicitly given by

Ra =
(mT + 1)θ2

σC2
kγ

(mT + 1− γmT )(1 + (θd)/4)(2mT−1), (2.9)

where the Ra values quoted in this work are evaluated at the middle of the upper convective layer.

The system is assumed to satisfy periodic boundary conditions in the horizontal directions. The conditions at
the upper and lower boundaries are such that the system is impermeable, stress-free and the magnetic field is
vertical. Temperature is fixed at the upper surface, whilst heat flux is assumed to be a constant at the lower surface.
Thus the boundary conditions in this framework are

uz =
∂ux

∂z
=
∂uy

∂z
= Bx = By = 0, T = T0 at z = 0,

uz =
∂ux

∂z
=
∂uy

∂z
= Bx = By = 0,

∂T

∂z
=
mT + 1

mB + 1

θT0

d
at z = d,

(2.10)

where the constant heat flux at the bottom of the domain is modified to account for the composite polytropic
domain.
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Fig. 2. Initial background states of temperature (left panel) and density (right panel) for
d = 2, T0 = 1, ρ0 = 1, θ = 10 with mT = 1 and mB = 9

For all calculations, an initial hydrostatic state is chosen
by setting u = 0. Accordingly, the equilibrium solutions
for ρ(z) and T (z) are found numerically given the non-
linearity of the static state thermal profile in this model.
The equilibrium solution is shown in Fig. 2 for some
value of mT , mB , θ, and d.

A uniform horizontal magnetic field B = Byŷ is
introduced into the existing hydrodynamic state, in
the region bounded by z = z1 and z = z2, at later
stages once convection has attained a statistically
stationary state. To accommodate the imposed field,
the density in the magnetic layer is adjusted so that
the system is in equilibrium. This initial configuration
is adapted together with the addition of small, random
perturbations in the temperature profile. The equations
are solved numerically using a parallel hybrid finite-
difference/pseudo-spectral code. Time discretization is
carried out based on an explicit, third-order Adams-
Bashforth scheme, whilst spatial discretization is
performed using fourth-order finite-differences in the
vertical direction (upwind derivatives being used for
the advection terms) and fast Fourier transforms in
the horizontal directions. All simulations, described
below, are carried out using a spatial resolution of
256 × ny × 400, where ny = 1 for the quasi two-
dimensional simulations and ny = 256 for the three-
dimensional simulations. More detail on the numerical
set-up can be found in [21].

This model problem is governed by a number of
non-dimensional quantities, which leads to a broad
parametric space that requires large numerical efforts.
In the solar context, the parameter settings are not
known exactly, but rather a range of estimates for the
parameters are available (see, for example, [12]). For
instance, in the lower parts of the convection zone,
the Prandtl number is of order 10−6 or less [22, 23].
Current numerical limitations do not allow to simulate
the extreme values within the Sun; however the aim is to
gain an insight into the underlying physics by choosing
appropriate parameter values. The parameter choices
are outlined in Table 1.

With the primary objective of simulating turbulent
magnetoconvection, a supercritical convection is
considered by setting the thermal stratification θ = 10,
specific gas γs = 5/3, thermal diffusivity Ck = 0.07, and
Prandtl number σ ≤ 0.5. A penetrative configuration is
achieved, via the depth-dependent thermal conductivity
profile in Eq. (2.8), by considering a convectively
unstable top layer with polytropic index mT = 1,
and a convectively stable bottom layer with polytropic
index mB = 9. As described earlier, the horizontal
magnetic layer will be introduced in the convectively
stable region, with an initial magnetic field magnitude
By = 1, magnetic diffusivity ζ0 = 0.1, and magnetic field
strength F chosen to vary to explore its dependence on
flux emergence.
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Table 1. The choice of parameters for the magnetoconvection model

Parameter Description Value
σ Prandtl number Variable
Ck Thermal diffusivity 0.07
θ Thermal stratification 10.0
γs Ratio of specific heats 5/3
ζ0 Magnetic diffusivity 0.1
F Magnetic field strength Variable
mT ,mB Polytropic indicies 1.0, 9.0
z1, z2 Top and bottom of magnetic layer 1.35, 1.65
λx, λy Box horizontal aspect ratio 6.0, 6.0
d Vertical depth of box 2.0
By Initial Horizontal magnetic strength 1.0

3 RESULTS

3.1 Quasi Two-Dimensional Simula-
tions

The investigation is initiated by restricting attention
to quasi two-dimensional simulations, where the
hydrodynamic evolution of the system is focused upon
to establish a convective motion before imposing
a magnetic layer. The topological structure of the
penetrative compressible convection can be seen in Fig.
3 for the parameter settings in Table 1 with σ = 0.01,
which shows snapshots of the vertical velocity, w, and
enstrophy density (vorticity squared), ω2 = (∇×u)2, at
a single computational time.

For the w-velocity field, the colours red and blue denote
upward and downward motions respectively. The
enstrophy density highlights the intensity of the vorticity
field, where bright and opaque colours denote strong
values of the field, whereas weak values are more
translucent. Most of the vorticity is generated at the
interface between the stable and unstable regions. The
motion in the upper convection layer is of asymmetric
nature, with narrow regions of rapid downflow and
broad regions of relatively slow upflow due to buoyancy
braking. As reported by [24], such asymmetry is
stemming from the combined effects of compressibility
and stratification.

The background density stratification within the
convectively unstable layer varies approximately by a
factor of 5, and by a factor of 58 across the entire
domain. The presence of the stably stratified lower layer
decelerates the motion as it overshoots from above, in

addition to reducing the strength of the overturning
flow. It is to note that the convective plumes may
continue to progress through the stable region, and are
not confined to the upper part of the domain, and the
extent of overshooting depends largely on the choice of
parameters.

To relate the convection simulations to the γ-pumping
in [1] and [2], we look at achieving a scale separation of
the motion and extracting the fluctuation field. A simple
way to obtain scale separation is by decomposing the
velocity field in terms of mean and fluctuating parts
[25, 26, 27]. Given that the pumping in the investigations
of [1] and [2] was depth-dependent, we choose to look
at the fluctuation field of the vertical velocity in the z-
direction. Fig. 4 displays temporal line graphs of the
average w-velocity, w̄, and the small-scale fluctuations,
w′, over horizontal coordinates for the parameters in
Table 1 with σ = 0.01, and two additional turbulent flows
with σ = 0.1 and 0.5. This is such that Ra = 4.9 × 106,
4.9× 105 and 9.8× 104 respectively.

As expected, Fig. 4 shows that at high supercritical
Rayleigh numbers non-linear effects lead to the further
development of turbulence [28, 29], and so introduces
greater variability in the field. The γ-pumping extracted
in the previous work of [1] and [2], does seem
appropriate to portray this small-scale turbulence of
the field in a simplified manner and isolate the action
of turbulence on the large-scale magnetic field. Note
that the vertical fluctuation scales are extremely small,
as opposed to the γ-pumping amplitudes imposed in
[1] and [2]. This is due to the computationally feasible
choices of Ra in this model, which are small compared
to that of the Sun, where Ra ∼ 1020 [30].
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Fig. 3. Snapshots of the vertical velocity field (left panel) and enstrophy (right panel)
for σ = 0.01 at a statistically steady state. The colours red and blue in the velocity field

correspond to upward and downward convective motions respectively. Strong
enstrophy densities are yellow, whereas weaker densities are dark and translucent
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Fig. 4. Temporal line graphs of the average component (left panel) and fluctuating
component (right panel) of the w-velocity field for several Ra values

As opposed to a dynamo-generated magnetic field
(see, for example, [19, 31, 32]), the magnetic slab
is introduced to the non-convective region, similar to
the approach conducted by [10] and [16]. Once the
convective flow has fully developed for σ = 0.01, the

horizontally aligned magnetic field is inserted in the
stable region of the domain. The magnetic field is
imposed in the region 1.35 ≤ z ≤ 1.65 by balancing the
magnetic pressure and the gas pressure, to maintain
the original pressure distribution. The discontinuity
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in the initially imposed magnetic field rapidly leads to
diffusion at the interface. More significantly, the field is
susceptible to instabilities driven by magnetic buoyancy.
The convective motion penetrating the stably stratified
layer induces distortion in the magnetic layer, with some
of the magnetic flux transported through the convection
zone, while the bulk of the field is maintained in the
overshoot region.

To highlight the magnetoconvection interactions, Fig. 5
shows snapshots of the horizontal component of the
magnetic field, together with the vertical velocity field,
for magnetic strength F = 0.0001. Initially, the field in
Fig. 5(a) appears as a thin slab of strong horizontal
magnetic field embedded in the lower region. After a
short time, the buoyancy-driven magnetic field interacts
with the overshooting convection. Magnetic flux can be
seen to rise in Fig. 5(b), resulting from the combined
effects of magnetic buoyancy and advection by the
upflows (as indicated in red).

Fig. 5(c)-5(d) depict strong downward plumes piercing
into the stable layer, with local magnetic field
amplification occurring within the vicinity of the
downflow due to stretching of the magnetic field lines,
in addition to the complex interactions due to the
small-scale vortical motions. This behaviour was also
identified in [1] and [2] as the magnetic field interacts
with the overlying downward turbulent pumping. The
system acts to restrain the magnetic field in regions
where the motion is downward. Fig. 5(f)-5(h) continue
to show the dynamics of the magnetic field as it interacts
with the overlying plumes, while for this very low value
of F , the magnetic field is largely maintained in the
stable layer.

To define the magnetic buckling effects as structures
of sufficient strength that are able to overcome the
convective region or simply the advection of the
magnetic field by the flow in a passive manner, kinetic
and magnetic energies need to become comparable
(equipartition), given that the back reaction of the
magnetic field becomes of significant importance [7,
33]. Magnetic fields need to achieve an equipartition
strength with the flow, on a local scale, to escape
through the convective motions, as found in the
turbulent pumping model of [1] and [2], or otherwise
are transported passively. Initially, on a global scale,
the magnetic field appears to be a weak field. Though,
this could give rise to local small-scale structure of the
magnetic field with energy comparable to the kinetic
energy of the flow.

To distinguish the behaviour of the magnetic field, the
equipartition of energy is investigated by calculating
the ratio of kinetic energy to magnetic energy in Fig.
6 for a case where the back reaction of the field
onto the flow is F = 0.1. Values greater than unity
suggest that the magnetic field is influenced by the
surrounding convective motions, whereas values less
than unity suggest that the magnetic field is able to
resist the surrounding motions, and so rises. According
to the equipartition measure, the magnetic field in
Fig. 6(a) predominantly behaves with respect to the
surrounding motions, which in this case causes buoyant
magnetic structures to rise further. As time evolves,
Fig. 6(b) reveals small-scale magnetic structures of
equipartition strength developing at various regions in
the domain. However, these structures do not progress
further through the upper layer, as one would imagine,
due to the frequent mixing of the overlying turbulent
convection. The locality of the equipartition strength
achieved by the magnetic field does not overcome the
motion as the magnetic structure continues to rise.

From Fig. 6(c), less than 4% the strength of the initially
imposed magnetic field emerged through the convective
layer, as a result of magnetic buoyancy and advection
by the upflows, with some stages where the magnetic
energy overcomes the kinetic energy. Although earlier
images reveal the intensification of the magnetic field
in the lower part of the domain, the efficient rise of
equipartition-strength magnetic structures as proposed
in the investigations of [1] and [2] is not seen.

By increasing the strength of the field to F = 1.0, one
allows magnetic structures of equipartition level to be
reached easily. Fig. 7 reveals a stage where a magnetic
structure escapes to the convective layer. From the
equipartition plot, the magnetic energy overcomes the
kinetic energy throughout the region of emergence,
thus suggesting the rise of the magnetic field despite
the surrounding convective motions. This behaviour
continues at various locations in Fig. 7(a) and 7(b).
However, these findings remain inadequate to conclude
the emergence of magnetic structures, comparable to
equipartition strength, throughout the convection zone.
This is partially due to turbulent motions appearing
weak when emergence takes place in the regime where
the magnetic energy overcomes the kinetic energy –
in addition to the possible contribution of increasing
F , which involves amplitude reduction of convective
motions in the traverse direction due to magnetic
tension, and enhanced buoyancy effect of localised
magnetic structures due to magnetic pressure [34].
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Fig. 5. Snapshots of the z-component of the velocity field overlaid with the y-component of
the magnetic field at computational times (a) t = 40.68, (b) t = 41.21, (c) t = 42.03, (d) t = 43.04,

(e) t = 44.50, (f) t = 45.73, (g) t = 46.87, and (h) t = 47.92 respectively.
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Fig. 6. Snapshots of the the z-component of the velocity field overlaid with the y-component
of the magnetic field (left) and ratio of the kinetic to magnetic energy (right) at (a) t = 40.68,

(b) t = 41.21, and (c) t = 42.03 respectively
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Fig. 7. Snapshots of the z-component of the velocity field (top), the y-component of the
magnetic field (middle) and ratio of the kinetic to magnetic energy (bottom) at (a) t = 46.31

and (b) t = 46.56 respectively
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The redistribution of the magnetic field is examined
by calculating the evolution of the average horizontal
magnetic field in the y-direction, for various magnetic
strengths in the range 10−4 ≤ F ≤ 1. Generally,
the mean magnetic field plays a passive role for all
cases and is relatively insensitive to the choices of F
on a global scale, as was also identified in [10]. Fixing
F = 0.01, we specifically discuss the analysis of the
horizontally-averaged magnetic field for σ = 0.01 and
σ = 0.1.

Fig. 8 shows the magnetic flux redistribution as line
graphs for equally-spaced time intervals, and as colour-
coded spacetime diagrams that display a colour, with
respect to the amplitude of the magnetic field, in both
space and time. For both flows, σ = 0.01 (top panel
of Fig. 8) and σ = 0.1 (bottom panel of Fig. 8), the
evolution starts with the magnetic field contained in the

region where it is initially introduced (as displayed in
solid line). The peak strength remains located within
that region, while it decreases in magnitude as it
spreads toward the unstable layer. Some of the flux
can be seen to escape through the boundaries, hence
reducing the total amount of magnetic flux. Additionally,
as time evolves, the magnetic field decays in strength
due to the absence of mechanisms that generate
the field. This is expected as this model represents
magnetoconvection rather than dynamo interactions.

From both line graphs and spacetime diagrams, greater
dispersal of the magnetic field can be noticed for σ =
0.01. This is a result of the local amplification of the field
in the more turbulent flow that leads to the emergence of
small-scale, equipartition strength magnetic structures,
in addition to the transport of the field by ascending
flows.
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Fig. 8. Line graphs (left) and colour spacetime diagrams (right) of the horizontal
average of the magnetic field in the y-direction, By for σ = 0.01 (top panel) and σ = 0.1

(bottom panel), where F = 0.01
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The fraction of magnetic flux present in the part of the
domain above the initial location of the magnetic field
(z1 = 1.35), and the measure of depth with respect to
the maximum value are quantified by

Φ =

∫ 1.35

0

〈By〉 dz
/∫ 2

0

〈By〉 dz , (3.1)

and
zmax = z

∣∣∣max
z
〈By〉(z) , (3.2)

respectively. Fig.9 displays Φ and zmax, for σ = 0.01, 0.1
and 0.5, for a fixed window of time after the field is
imposed, in order to minimise the influence of the upper
boundary as the simulation progresses. Given that
the field is imposed at different computational times
for each flow, time is normalised to unity to allow
direct comparisons. Interestingly, as σ decreases
(Ra increases), Φ reveals a greater proportion of
magnetic flux in the upper layer during the early stages
of the interaction. This indicates the contribution
of the equipartition relation in transporting magnetic
structures, which is more pronounced as the flow
increases in turbulence (case σ = 0.01). However,
as time evolves the strength of magnetic structures
reduce, as noted in Fig. 8, and so equipartition-
strength magnetic structures are unlikely to play a
significant role. Therefore, these calculations suggest
that advection becomes the predominant mechanism
for magnetic field transport, where the least turbulent
convective flow (case σ = 0.5) succeeds in carrying

larger quantities of magnetic field throughout the upper
domain.

The measure zmax emphasises the effectiveness of
the overlying pumping on the imposed magnetic field.
From all three cases of σ, strong concentrations of the
field are shown to be maintained deeper, with respect
to z, for flows where Ra is larger. This means that
overshooting convective plumes are more efficient in
pushing magnetic fields downwards in the case where
σ = 0.01.

3.2 Three-Dimensional Simulations
To allow a fuller treatment of the problem, three-
dimensional simulations are conducted for some of the
cases considered in the preceding subsection. Several
differences in the physical properties of the convective
flow become apparent, as the 3D simulations are
compared with their equivalent quasi 2D simulations.
Snapshots of the vertical velocity for σ = 0.1 are
shown in Fig. 10 in both quasi 2D and full 3D, at
different stages in time once the convective patterns are
developed. It emerges, from the vertical velocity field in
quasi 2D and the horizontal cross-section at y = 1 in 3D,
that plume structures become noticeably different near
the interface region. In 3D, the flow is dominated by
small convective structures, while contrastingly, quasi
2D reveals more coherency within the flow, in addition to
the effective penetration towards the underlying stably
stratified layer.
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Fig. 9. The temporal evolution of the magnetic flux fraction contained above the initial
location of magnetic field, Φ, (left panel) and the location of the maximum magnetic

field, zmax (right panel)
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(a)

(b)
Fig. 10. The vertical velocity field at computational times (a) t ≈ 26 and (b) t ≈ 35 for

the case σ = 0.1 in two dimensions (left) and three dimensions (right)

Evaluation of the horizontally average vertical velocity
profiles in Fig. 11 depicts the substantial difference
in transitioning from quasi 2D simulations to full 3D
simulations. In the three-dimensional framework, the
average vertical motion varies more smoothly in time,
with smaller amplitudes in comparison to the more
chaotic quasi 2D regime. The constrained motion in
the two-dimensional plane triggers the accumulation
of energy, as displayed in the kinetic energy profiles
in Fig. 12, which consequently leads to the rapid
variation of velocity in time. Analogous findings were
also established in [35], where flows are consistently
more turbulent in 2D, and converge at large Prandtl
numbers.

To capture the dynamics associated with the transport
of the magnetic field through the turbulent convecting

region in three-dimensions, a horizontal magnetic layer
is inserted at computational time t ≈ 42, in the case
where σ = 0.1 and F = 0.01. Snapshots of the 3D
magnetoconvection interactions in Fig. 13 generally
reveal similar characteristics to that determined in two-
dimensions (Fig. 5). The effects of convection and
turbulence can clearly be viewed in Fig. 13(a)-13(k),
where the buoyancy-driven magnetic field undergoes
suppression and amplification as it competes with the
overlying convective motion to escape.

Fig. 14 highlights the equipartition-strength magnetic
structures for the 3D simulation, by displaying
snapshots of the vertical velocity, horizontal magnetic
field, and ratio of kinetic energy to magnetic energy, at
several computational times.
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Fig. 12. Temporal evolution of the total kinetic energy for σ = 0.1 (left panel) and
σ = 0.5 (right panel) in two and three dimensions

The transport of the magnetic field through the
convective layer is predominantly a result of advection.
Magnetic structures of equipartition-strength occur at
the interface region, and almost remain within the lower
domain as the strength of the field is insufficient to
overcome the relatively stronger, overlying convective
downflows. Therefore, to rise further through the
domain, magnetic structures must be transported by
the convective upflows.

Focusing on the global distribution of the magnetic field,
Fig. 15 shows Φ and zmax, as defined in Equations
(3.1) and (3.2) respectively, for σ = 0.1 and σ = 0.5.
The magnetic field is found to behave differently, in
comparison to the quasi 2D cases. Here, a smoother
time evolution of the profiles Φ and zmax is noticed.

This is expected, given the reduced turbulence as
the additional dimension is introduced. For the least
turbulent flow in 3D, σ = 0.5, a greater amount
of magnetic field is present in the upper domain.
This agrees with the pattern determined in the final
stages of the quasi 2D evolution, where advection
overtakes as the more active process in transporting
the magnetic field, and so suggests that the degree of
turbulence in the 3D cases is insufficient to highlight
the contribution of equipartition-strength magnetic
structures in enhancing the rate of flux emergence.

The profile of zmax reveals similar features to the
earlier quasi 2D findings; maximum field strength is
maintained deeper for turbulent flows of greater velocity
fluctuations, in this case σ = 0.1.
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Fig. 13. Snapshots of the z-component of the velocity field overlaid with the
y-component of the magnetic field in three dimensions at computational times (a)

t = 41.78, (b) t = 43.02, (c) t = 44.15, (d) t = 46.40, (e) t = 48.60, (f) t = 49.80, (g) t = 52.16,
(h) t = 54.66, (i) t = 55.61, (j) t = 57.37 and (k) t = 58.69 respectively
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Fig. 14. Snapshots of the z-component of the velocity field (top), the y-component of the
magnetic field (middle) and ratio of the kinetic to magnetic energy (bottom) at y = 0 for times

(a) t = 45.3, (b) t = 50.9, and (c) t = 55.6 respectively
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Fig. 15. The temporal evolution of the magnetic flux fraction contained above the
initial location of magnetic field, Φ, (left panel) and the location of the maximum
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4 CONCLUSIONS

Starting from the fundamentals of MHD and the
key equations governing the interactions between
electrically conducting fluid and magnetic field, an
idealised numerical model is adapted to explore the
non-linear interaction between convective flows and
buoyancy-driven magnetic structures, in a regime
resembling the solar interior where the convection
zone meets the tachocline, and address the nature of
rising magnetic structures that eventually form active
regions when they reach the surface of the Sun.
Initially, prior to exploring the MHD model, various
convective flows were established with respect to the
non-dimensional Rayleigh number. The magnetic
field was later introduced in a stably stratified region,
positioned below the convectively unstable region once
the hydrodynamic convection was fully developed, and
the evolution of the magnetic field was investigated.

The quasi-two-dimensional results revealed two
possibilities to explain the behaviour of the rising
magnetic field. It was found that the magnetic field,
while it is largely maintained in the vicinity where it was
initially prescribed, can rise passively via convective
motions, or alternatively strong magnetic structures,
comparable to the surrounding motions, can rise without
getting distracted by the overlying complexities of
convection as was shown in [1] and [2]. Given the

extreme conditions in the solar interior, the second
possibility is most likely to occur. However, this
equipartition phenomenon was complicated and difficult
to solidly highlight due to the limitation of the simplified
model.

In the presented simulations, the transport of the
field was mainly passive through the upper layer,
but in the lower layer, it was observed that small-
scale, equipartition strength magnetic structures were
reached. These magnetic structures were easily
captured for larger values of F and were found
to escape fractionally, however, they cannot rise
unhindered given the inescapable, larger velocities
present further through the upper region. Hence, the
only possible way to escape completely is through the
combination of both mechanisms.

The equipartition criterion of [1] and [2] was found
to appear on a local scale and does contribute
towards the global behaviour of the magnetic field,
particularly as the flow becomes more turbulent.
Greater fluctuations in the velocity field revealed an
increased fraction of magnetic flux escaping through
the convection zone. This is a result of the effective
pumping and local amplification of the field due
to turbulence, which enhances the emergence of
equipartition-strength magnetic structures. However,
the absence of mechanisms for generating magnetic
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fields led to a reduction in the magnetic field as time
evolves. Consequently, the occurrence of equipartition-
strength magnetic structures becomes less likely, and
so advection overtakes as the primary source of field
transport.

In this work, we also provided an insight into the
magnetoconvection interactions in three dimensions by
conducting some of the quasi-two-dimensional cases
in three dimensions. The additional degree of freedom
was found to smoothen the variability and reduce the
fluctuations of the velocity field. Therefore, unlike the
quasi-2D simulations, equipartition-strength magnetic
structures were not found to globally contribute toward
the transport of magnetic field through the overlying
convective layer. Results in quasi-2D highlight the
findings of [1] and [2], in terms of the effective role
of turbulent pumping in transporting and maintaining
the magnetic field. To capture similar dynamics to the
quasi-2D calculations in 3D, further calculations of very
high Rayleigh number turbulent convection must be
investigated in 3D space, which numerically remains
challenging.

It is important to note that due to the gap
between numerical calculations and observations, our
understanding of the Sun remains incomplete. The
extreme conditions within the Sun cannot be retrieved
in numerical simulations of convection, for instance.
The desired Rayleigh number that portrays the property
of convection in the solar interior cannot be simulated
as the available computational capacity remains a major
constraint to achieving the strong turbulence required.
Therefore, the adaption of simplified models, such as
the γ-pumping in [1] and [2], might be a better approach
to shed further light on the effect of turbulence in the
solar convection zone.
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