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ABSTRACT

In this article, we demonstrate the first-principles computation of quantum chemistry through symbolic
computation, using computational algebraic geometry. We generate symbolic formulas of one- and two-
electron integrals. The approximations of those integrals by multivariate polynomials yield the set of
equations required by quantum chemistry. We solve these equations in hybrid ways where numeric and
symbolic computations are intertwined. Thereby polynomials are converted into the Grönber basis; and it
is decomposed to the primary ideals (each of which represents a quantum state). The primary ideals are
equipped with triangular forms, which allows us to evaluate the roots robustly.
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1 INTRODUCTION

In [1], A. Kikuchi presented an example of the first
principles of electronic structure computation through
algebraic approach, wherein a contemporary technique
of computational algebraic geometry is adopted. The
author of that article prepared the analytic energy
functional of one hydrogen molecule and approximate it
by a polynomial. Then he composed a set of polynomial
equations which give the minima of the energy
functional (through the symbolic differentiation) and
was successful in solving it using the Gröbner basis
technique. As for the construction of one or two-
electron integrals, he used the Slater-Type Orbitals
(STO) for atomic bases – even if it is not the standard
way of today’s quantum chemistry.

In the appendix of the article, he presented the analytic
expression of necessary integrals; some of them are
quite complicated because of the mathematical nature
of analytical integration involving STO. It is a very
technical and tough problem how to do analytical
integration of two-electronic integrals with STO, and
it has not yet been settled. For this reason, we
should use the conventional way of quantum chemistry,
employing Gaussian Type Orbitals (GTO). As for the
computation of the molecular integrals, there is a long
history of development, from Boy[2] to recent works,
such as [3] and the cited works therein.

To unwind this deal and make a fresh start all over
again, in the present article, we give another example of
molecular electronic structure computation, for which
electronic integrals are analytically computed by GTO.
The formulas presented below shall serve the readers
as a kind of benchmark test for the algebraic method
proposed in [1]. In the following, we describe the
problem setting and report the result of symbolic and
numeric computations.

We use higher algebra in this article. The essence of
mathematics required hereafter is reviewed in [4], [5],
and [6].

If you would like to get rigorous theories, you should
consult the following references.

• Commutative algebra: Eisenbud [7]

• Gröbner basis: Cox et al.[8, 9]; Ene and Herzog;
[10]

• Primary ideal decomposition and triangulation
of Gröbner basis: Gianni et al.[11], Mollrer
[12];Lazard[13]

• Solving systems of polynomial equations
through linear algebra: Sottile[14]

• Computational algebraic geometry: Decker [15]

2 MODEL DESCRIPTION

We take HeH+ as an example and employ minimal
STO-3G bases to describe the electronic structure.

The electronic structure of HeH+ has long been the
object of studies which cover various fundamental
chemistry to astrology, from the first half of the 20th
century to recent years [16, 17, 19, 18, 20, 22, 21, 22].
Meanwhile, the present work makes a revisit to the
basis of quantum simulation using a novel method, viz.
computational algebraic geometry, which has not been
available in the past.

Concerning this matter, an out-fashioned FORTRAN
program is attached to [23], and it is available on the
internet. We rewrite it into a Python program for
numerical and symbolic computations to prepare the
formula of the total energy.

Now we give a brief account of the program.

We assume a heteronuclear diatomic molecule, where
the nuclei A and B are located at the points RA and
RB ; the nuclear charges are given by ZA and ZB : and
the interatomic distance is R = |RA − RB |. We use
STO-NG bases with N=1,2,3, located at the nuclei A
and B. We denote them by φi(r,Ri) with i = 1, 2 and
Ri = RA, RB .

The RHF wavefunction is defined by

ψ(r) = x · φ1(r,RA) + y · φ2(r,RB). (1)

The UHF wavefunctions are defined by

ψα(r) = x · φ1(r,RA) + y · φ2(r,RB), (2)

and

ψβ(r) = u · φ1(r,RA) + v · φ2(r,RB). (3)

We use the following variables.

• A 2 by 2 matrix S: the overlap matrix (φi|φj)

• A 2 by 2 matrix T : the kinetic energy (φi| −
1
2
∇2|φi)

• A 2 by 2 matrix Z: the matrix elements of
nuclear attractions
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(ψ| − ZA
|r −RA|

− ZB
|r −RB |

|ψ) (4)

A 2 by 2 by 2 by 2 tensor V̂ : the array to hold two-electron integrals Vijkl.

A 2 by 2 matrix Pσ: the density matrix for σ = α, β

A 2 by 2 matrix Fσ: the Fock matrix for σ = α, β
For the last three items in the above, we use the following definitions.

Vijkl =

∫
dr1

∫
dr2φi(r1, Ri)φj(r1, Rj)

1

|r1 − r2|
φk(r2, Rk)φl(r2, Rl) (5)

V̂1,1,1,1 = V1111

V̂2,1,1,1 = V2111

V̂1,2,1,1 = V2111

V̂1,1,2,1 = V2111

V̂1,1,1,2 = V2111

V̂2,1,2,1 = V2121

V̂1,2,2,1 = V2121

V̂2,1,1,2 = V2121

V̂1,2,1,2 = V2121

V̂2,2,1,1 = V2211

V̂1,1,2,2 = V2211

V̂2,2,2,1 = V2221

V̂2,2,1,2 = V2221

V̂2,1,2,2 = V2221

V̂1,2,2,2 = V2221

V̂2,2,2,2 = V2222

Pα =

Å
x2 xy
xy y2

ã
(6)

P β =

Å
v2 vw
vw w2

ã
(7)

Gσij =
∑
k,l

V̂i,j,k,l · (Pαk,l + P βk,l)− V̂i,l,j,k · P
σ
k,l, (8)

and
Fσi,j = Hi,j +Gσi,j , (9)

where σ = α, β.

The total energy is given by

Etot = Eel +
ZAZB
R

, (10)

and

Eel =
1

2

∑
i,j,σ

Pσi,j
(
Hi,j + Fσi,j

)
. (11)
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The normalization conditions of the wavefunctions are given by

(x, y)S

Å
x
y

ã
= 1, (12)

and

(v, w)S

Å
v
w

ã
= 1. (13)

Then we proceed as follows.

• Substitute concrete values of ZA, ZB , the exponents, and the coefficients of STO-nG into the formulas,
while other variables (R, x, y, u, w) are left as indeterminate ones. We obtain the analytical representation
of the total energy.

• Transform the formula of the total energy into a polynomial through Taylor expansion at a fixed point R0

on R and get a polynomial with real numbered coefficients. We denote it by ETS(x, y, u, v,R). Similarly,
get polynomial representations for the normalization conditions of the wavefunctions for α and β spins.
We denote the latter by Nα

TS(x, y,R) and Nβ
TS(v, w,R)

• Introduce the Lagrange multiplier e and f and define the objective function by F (x, y, v, w, e, f, R) =
ETS − e ·Nα

TS − f ·Nβ
TS .

• The coefficients of F are real numbers. To guarantee rigorous accuracy through symbolic computation,
we should replace them with integers. We multiply F by a power of ten and round down the real numbers
after the decimal point.

• Differentiate the objective function with respect to indeterminate variables and get the set of polynomial
equations.

For the RHF case, the formulas are composed similarly. We use the relations: (u, v) = (x, y), P β = Pα, F β = Fα,
Gβ = Gα, Nβ

TS = Nα
TS and f = e so that we define the objective function by F (x, y, e, R) = ETS − 2e ·NTS .

3 SYMBOLIC-NUMERIC COMPUTATION TOGET THE ELECTRONIC

STRUCTURE

In the symbolic-numeric computations, we go through the same path as in [1].

• From the set of polynomials prepared in the previous section, we compute the Gröbner bases of lexicographic
order. We execute the symbolic computation in the ring of integer coefficients. It might be better to use
another monomial ordering because it would be faster in computation. Then one would apply the FGLM
algorithm [24] to transform the ordering into the lexicographic one.

• Apply the triangulation of Gröbner bases and solve the equation numerically in the ring of real-numbered
coefficients.

For the RHS case, we get the objective function:

OBJ=-782*R**4*x**3*y - 1034*R**4*x**2*y**2 - 1036*R**4*x**2

- 1037*R**4*x*y**3 + 1799*R**4*x*y + 187*R**4*y**2 + 2633*R**4

+ 4977*R**3*x**3*y + 3982*R**3*x**2*y**2 + 8767*R**3*x**2

+ 6383*R**3*x*y**3 - 10588*R**3*x*y - 303*R**3*y**2 - 19754*R**3

- 6472*R**2*x**3*y + 5751*R**2*x**2*y**2 - 30430*R**2*x**2

- 9875*R**2*x*y**3 + 6621*R**2*x*y - 5877*R**2*y**2 + 59259*R**2

- 19598*R*x**3*y - 47149*R*x**2*y**2 + 54517*R*x**2

- 12230*R*x*y**3 + 75627*R*x*y + 29906*R*y**2 - 88889*R

- 2*e*(-419*R**4*x*y + 3017*R**3*x*y - 6319*R**2*x*y

- 2791*R*x*y + 10000*x**2 + 19093*x*y + 10000*y**2 - 10000)

+ 13071*x**4 + 48009*x**3*y + 68137*x**2*y**2 - 90397*x**2

+ 36259*x*y**3 - 153801*x*y + 7746*y**4 - 65726*y**2 + 66666.
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From this, we get the set of polynomial equations. The polynomials f[1],f[2],f[3], and f[4] are generated by the
differentiation of the objective function with respect to x, y, e, and R. We use the expression by Singular [25]:
in the power products, the exponents are given by integers just after the symbols. For example, an expression
such as -3128x3yR3 should be read as -3128*x3*y*R3.

f[1]:

-3128x3yR3-4136x2y2R3-4148xy3R3+14931x3yR2+11946x2y2R2+19149xy3R2

+3352xyeR3-12944x3yR+11502x2y2R-19750xy3R-18102xyeR2-4144x2R3

+7196xyR3+748y2R3-19598x3y-47149x2y2-12230xy3+25276xyeR+26301x2R2

-31764xyR2-909y2R2+5582xye-60860x2R+13242xyR-11754y2R+10532R3

+54517x2+75627xy+29906y2-59262R2+118518R-88889

f[2]:

838xyR4-6034xyR3+12638xyR2+5582xyR-20000x2-38186xy-20000y2+20000

f[3]:

-782x3R4-2068x2yR4-3111xy2R4+4977x3R3+7964x2yR3+19149xy2R3+838xeR4

-6472x3R2+11502x2yR2-29625xy2R2-6034xeR3+1799xR4+374yR4-19598x3R

-94298x2yR-36690xy2R+12638xeR2-10588xR3-606yR3+48009x3+136274x2y

+108777xy2+30984y3+5582xeR+6621xR2-11754yR2-38186xe-40000ye+75627xR

+59812yR-153801x-131452y

f[4]:

-2346x2yR4-2068xy2R4-1037y3R4+14931x2yR3+7964xy2R3+6383y3R3+838yeR4

-19416x2yR2+11502xy2R2-9875y3R2-6034yeR3-2072xR4+1799yR4-58794x2yR

-94298xy2R-12230y3R+12638yeR2+17534xR3-10588yR3+52284x3+144027x2y

+136274xy2+36259y3+5582yeR-60860xR2+6621yR2-40000xe-38186ye+109034xR

+75627yR-180794x-153801y

It is a time-consuming task to generate the Gröbner basis of the ideal I0=(f[1],f[2],f[3],f[4]). Instead, one can
replace f[4] (the optimization condition for R) with f[5]=100 ·R− 146, so that the R should be fixed at a value.
At first, we work in the ring Z[x, y,R, e] of the degree reverse lexicographic ordering with x > y > R > e because
this monomial ordering enables us to compute Gröbner bases rapidly. We prepare the ideal I as follows.

I[1]=100R-146

I[2]=-2346x2yR4-2068xy2R4-1037y3R4+14931x2yR3+7964xy2R3+6383y3R3

+838yeR4-19416x2yR2+11502xy2R2-9875y3R2-6034yeR3-2072xR4+1799yR4

-58794x2yR-94298xy2R-12230y3R+12638yeR2+17534xR3-10588yR3+52284x3

+144027x2y+136274xy2+36259y3+5582yeR-60860xR2+6621yR2-40000xe

-38186ye+109034xR+75627yR-180794x-153801y

I[3]=-782x3R4-2068x2yR4-3111xy2R4+4977x3R3+7964x2yR3+19149xy2R3

+838xeR4-6472x3R2+11502x2yR2-29625xy2R2-6034xeR3+1799xR4+374yR4

-19598x3R-94298x2yR-36690xy2R+12638xeR2-10588xR3-606yR3+48009x3

+136274x2y+108777xy2+30984y3+5582xeR+6621xR2-11754yR2-38186xe

-40000ye+75627xR+59812yR-153801x-131452y

I[4]=838xyR4-6034xyR3+12638xyR2+5582xyR-20000x2-38186xy

-20000y2+20000
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From the ideal I, we get the Gröbner basis SI in degree reverse lexicographic monomial ordering, shown below.
The lengthy integer coefficients are abbreviated, while the power products of the variables (xy, y2, e2, and so
on) are faithfully recorded.

SI[1]=50R-73

SI[2]=14139961485244...896614288073601619xy

+3780975798828566366...961173352539062500y2

-5085368678636127527...933593750000000000e2

...........................................

SI[3]=30165251168521...794438145570167872x2

+2287830791971866817...747500665595656831y2

+9800854311720465164...651202059100000000e2

...........................................

SI[4]=12272113878047...995000000000000000e3

-9278947466890114698...263392067138650177y2

+3485269694547254105...542045093600000000e2

...........................................

SI[5]=30106893964785...09254038300000000ye2

+6583664909804927960...399718493462500000xe

+4096722245974589325...234800060784312322ye

...........................................

SI[6]=18816808727991...00578377393750000xe2

+4352852234527109287...535234860661708014xe

+2838801409079480521...916529204862500000ye

...........................................

SI[7]=23566602475407...01226693650000000y2e

+1965485251085135028...873838114649359991y2

+1697918650085873984...945312500000000000e2

...........................................

SI[8]=57815402373877...342631947248598441y3

-1209549779387565779...519859020237500000xe

-2809578379906795490...109072218274832334ye

...........................................

Using the FGLM method, we transform the basis SI into a new Gröbner basis j in lexicographic monomial
ordering, which is shown below. Take note of the feature of the polynomials: j[1] includes only one variable R;
j[2] includes e; j[3] includes (e,y); j[4] includes (e,y,x). We can determine R by j[1] and e by j[2]. Substituting e
in j[3], we determine y from the polynomial of one variable. Similarly, by the substitution of (e,y), we determine
x by j[4]. In other words, the Gröbner basis j is the result of triangulation with respect to the arrangement of
variables; it contains four variables and the same number of polynomials. (To be precise, the polynomials j[2]–j[4]
would include R; however, R is uniquely determined from the linear polynomial j[1] and is trivially eliminated
from the other polynomials.) In general, the Gröbner basis of lexicographic monomial ordering would not exactly
achieve triangulation in itself, for it might contain more number of polynomials than that of variables – even
if the polynomials are arranged in such a way that the polynomial coming later shall include a wider range of
variables than the polynomials coming earlier do. In such cases, we resort to primary ideal decomposition to
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generate several subsets of polynomials, each of which attains the triangulation. The obtained Gröbner basis j
is bloated enormously in integer coefficients. For the sake of brevity, we rewrite it using decimal numbers:

j[1]=50*R-73

j[2]=0.32546359543271216179e+110*e4+0.11957546526364418935e

+111*e3+0.15835313702445794059e+111*e2+0.93171646353491856679e

+110*e+0.2018495617476418506e+110

j[3]=0.92789474668901146989e+220*y2-0.12272113878047188795e

+222*e3-0.34852696945472541054e+222*e2-0.29973398543970094406e

+222*e-0.91024830149288986731e+221

j[4]=0.10585258284464530396e+244*x-0.34283892042708711652e

+244*ye3-0.12216573931889300904e+245*ye2-0.10488364636905783834e

+245*ye-0.20673267158033923667e+244*y

Using the Gröbner basis j, one could get the numerical solutions in Table 1, where the ground and excited states
are obtained in a single run.

Table 1. The list of RHF solutions. There are also solutions with inverted signs (R,-x,-y,e) with
respect to the wave function components (x, y), but they are omitted.

R x y e Etotal
1.46 0.8015 0.3371 -1.5997 -2.8627 Ground state
1.46 0.6039 -1.1152 -0.5379 -0.4737 Excited state

Similarly, one could get the solutions of the UHF model, which are shown in Table 2.

As for the robustness of the algorithm, the computation of Gröbner basis and the primary ideal decomposition is
very stable so long as one uses the integer coefficients; every term can be evaluated exactly in theory. However,
at the end of the computation, there occurs a huge discrepancy in the lengths (or the magnitudes) of the integer
coefficients. Hence, to solve the processed equations numerically, one should use the computation with arbitrary
precision.

Table 2. The list of UHF solutions. The complex-valued solutions are omitted since they are
absurd. There are also solutions with inverted signs of the wavefunction components. In

addition, there are solutions where (x,y,e) and (v,w,f) are interchanged due to the symmetry of
the spins. Those redundant solutions are omitted.

R x y v w e f Etotal
1.46 -0.8013 -0.3373 -0.8013 -0.3373 -1.6003 -1.6003 -2.8636 Ground state
1.46 0.6041 -1.1152 0.6041 -1.1152 -0.5377 -0.5377 -0.4739 Excited state
1.46 0.9096 0.1734 0.8310 -1.0464 -1.8824 -0.5897 -1.8958 Excited state

4 HOW THE TRIANGULATION WORKS TO GET EIGENSTATES

In the example above, the efficacy of triangulation is obscure. Let us compute another example (the UHF of
H2), using STO-3G. We compute the Grönber basis of the polynomials whose roots give the local minima of the
energy functional. Working in the lexicographic monomial orderings, we get a triangulation that is decomposed
into two triangular sets through Moller’s algorithm [12].

In the below, we show two resulting triangular sets (T[1] and T[2]), each of which includes seven polynomials
( [1],... [7]). In the presented polynomials, the length integer coefficients are abbreviated, while the power
products of the variables are faithfully recorded. The tangible difference lies in the third polynomials in these
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two sets: T[1] [3] is e-f, while T[2] [3] is more complicated. It means that the former represents the quantum
state where the two electrons with different spins have equal orbital energy, while the latter represents the state
lacking in such a symmetric feature. We have successfully decomposed the equation into different subsets which
give different electronic configurations.

T[1]: The first triangular set.

_[1]=5R-7

_[2]=801399222030...170032137001335625f2

+3043462323791652...8701746433379249346f

-1271909255306394...64711461694927766603

_[3]=e-f

_[4]=124265968727...963754965612968924w4

-1626966225314171...90339173830057533w2f

-5486085686194680...604030872578693149w2

+1739854071254451...2412131125000000000f

+8537297330291821...94842178812500000000

_[5]=399943914650...2697665231318750000v

-1234497384567144...53282985876224375w3f

-1468437643427458...924954485246719547w3

+1234497384567144...153282985876224375wf

+6739370164557969...7353267035762645404w

_[6]=621944877024...669665030789398808y2

-3205596888121015...80128548005342500w2f

-6086924647583305...403492866758498692w2

-9801053048616961...1739909708522223125f

+4051900478244171...73320854416630935169

_[7]=513331214005...4905719466175000000x

+5792959023903118...8724869774795000yw2f

-1974205463586649...74770597342356624yw2

+2246059961750649...686566455420870625yf

+8622685126305071...7359601249754719375y

T[2]: The second triangular set.

_[1]=5R-7

_[2]=610729994390...092845856727498721f4

+4658149845705284...034411595989026052f3

-5680360790681349...251982271043873858f2

-5566291054774740...2367043024020291084f

+8593637453448086...77349315653555217769

_[3]=147725437365...9490443785400000000e

+1017755035287551...400806093509475833f3

-2592019554047912...251283850363855229f2

-3684750207917733...6045163863486752073f

+7978230722523506...45439898622626274509

_[4]=654311505104...723696396630434131w2

+3112891080506857...600843916534765625f3

+1780171830853346...750573460316796875f2

-1112543953229220...9191887189737890625f

-8339344332146638...96529825162969921875

_[5]=115158824898...1370565806956407056v

-9407852666005712...39743338549262047wf3

-5380077192458336...76704351486875773wf2
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+3362356512240005...930356958574916247wf

+7727490576779581...8260831914283439029w

_[6]=430022542773...686670821540182848y2

+4645726947773738...974360298304433313f3

-1014075517163233...839728775946966469f2

-1616557538344848...6000954092094883953f

+2933360528129523...82831318262444742549

_[7]=295640498156...8980887570800000000x

-5484541128828930...67709118342972759yf3

+1197173003093830...97269419559522067yf2

+1908436807810983...809150269238934279yf

-3911644380907348...3708961991460941507y

5 SOLUTION BY EIGENVALUE PROBLEM

We can solve sets of polynomial equations through eigenvalue problems in linear algebra [14]. The application
of this algorithm to quantum chemistry is demonstrated in this section.

Let I be a polynomial ideal defined in a ring R. We can get the monomial basis in the factor ring R/I with the
aid of Gröbner basis of I. In the aforementioned RHF model of HeH+, we get the monomial basis as follows.

Qbase =



ye3,
ye2,
ye,
y,
e3,
e2,
e,
1


We can compute the product between an arbitrary monomial p and Qbase in R/I. This is a linear transformation
(by a matrix Mp) on Qbase:

p ·Qbase = Mp ·Qbase. (14)

Even if p6=q, it is guaranteed that

Mp ·Mq = Mq ·Mp. (15)

In other words, any pair of such transformation matrices are commutable with each other, and they share
common eigenvectors. The eigenvalues of Mp give the numerical data of p in the roots of the set of polynomial
equations defined by the ideal I:

MpVeig = wpVeig. (16)

From this eigenvector, we can compute the numerical data of other monomials q( 6= p by

wq =
(V ∗
eig,Mq · Veig)
(V ∗
eig, Veig)

. (17)

In this way, we get the solutions to the set of non-linear polynomial equations by linear solvers. If we look
at this matter in another light, it means that we can solve the non-linear Hartree-Fock model by applying the
eigenvalue problem only once.

Let us investigate the RHF model of HeH+ by this method. The transformation matrices (Mx,My,Me,MR) for
variables (x, y, e, R) are given below, from which we get the numerical solutions of the quantum states, which
are equivalent to the ones computed by the triangulation of the polynomial ideal.
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Mx=

[[0, 0, 0, 0,

11.080151325865552, -4.533316123788358,

-0.35836894442630574, 3.2388337744224454]

[0, 0, 0, 0,

21.07390644331965, -5.5752716552661035,

-5.8499651704764695, 11.541120304847897]

[0, 0, 0, 0,

13.19994598967836, -0.9827794471874843,

-7.318902812741645, 9.908463596300761]

[0, 0, 0, 0,

2.811521428790274, 0.22225715991443362,

-2.008695249222711, 1.953024347868306]

[8.931697287643605, -8.397156206184581,

6.545956632156977, -3.5365217362474493,

0, 0, 0, 0]

[24.310030931798412, -21.919490812550833,

15.652716678834729, -6.447239472143048,

0, 0, 0, 0]

[19.979101497085832, -16.546029346336013,

9.929624789762936, -1.5541021159188364,

0, 0, 0, 0]

[5.207839905693149, -4.059742766816225,

2.1933186156303637, -0.19450451855497125,

0, 0, 0, 0]]

My=

[[0, 0, 0, 0, 1, 0, 0, 0]

[0, 0, 0, 0, 0, 1, 0, 0]

[0, 0, 0, 0, 0, 0, 1, 0]

[0, 0, 0, 0, 0, 0, 0, 1]

[-5.535885815356438, 8.47906706551838,

-11.030456182591696, 13.225760703827165,

0, 0, 0, 0]

[-17.8798032915008, 25.616243135133775,

-32.0468764996916, 37.56104565721137,

0, 0, 0, 0]

[-17.43234485713924, 23.374791314708975,

-28.052043082927877, 32.302584588309806,

0, 0, 0, 0]

[-5.258640275660543, 6.840988600806554,

-8.202496498256208, 9.80982277074971,

0, 0, 0, 0]]

Me=

[[-3.6740043108251648, 1, 0, 0, 0, 0, 0, 0]

[-4.865463887410308, 0, 1, 0, 0, 0, 0, 0]

[-2.8627363447398095, 0, 0, 1, 0, 0, 0, 0]

[-0.6201909048515171, 0, 0, 0, 0, 0, 0, 0]

[0, 0, 0, 0, -3.6740043108251648, 1, 0, 0]

[0, 0, 0, 0, -4.865463887410308, 0, 1, 0]
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[0, 0, 0, 0, -2.8627363447398095, 0, 0, 1]

[0, 0, 0, 0, -0.6201909048515171, 0, 0, 0]]

MR=

[[1.46, 0, 0, 0, 0, 0, 0, 0]

[0, 1.46, 0, 0, 0, 0, 0, 0]

[0, 0, 1.46, 0, 0, 0, 0, 0]

[0, 0, 0, 1.46, 0, 0, 0, 0]

[0, 0, 0, 0, 1.46, 0, 0, 0]

[0, 0, 0, 0, 0, 1.46, 0, 0]

[0, 0, 0, 0, 0, 0, 1.46, 0]

[0, 0, 0, 0, 0, 0, 0, 1.46]]

Table 3. shows the real roots of the equation of the RHF model which are computed from different eigenvectors
{Vi | i = 1, 2, 3, 4} of the transformation matrix My: (V ∗

i ,Mp · Vi)/(V ∗
i , Vi) for p = x, y, e, R. It includes the

computations by the eigenvectors which give real roots only. We can ascertain that the roots are computed with
good precision.

Table 3. The roots of the equation of the RHF model are computed from different eigenvectors
{Vi | i = 1, 2, 3, 4} of the transformation matrix My. The rows and columns are indexed by the
eigenvectors (V1, V2, V3, V4) and the transformation matrices Mx,My,Me,MR, respectively. The

crossing of a column and a row shows the corresponding expectation value: (V ∗
i ,Mp · Vi)/(V ∗

i , Vi)
for i = 1, 2, 3, 4 and p = x, y, e, R.

Mx My Me MR

V1 -0.8015 -0.3371 -1.5997 1.46
V2 -0.6039 1.1152 -0.5379 1.46
V3 0.8015 0.3371 -1.5997 1.46
V4 0.6039 -1.1152 -0.5379 1.46

6 CONCLUDING REMARKS

In this article, we presented a benchmark test problem
of algebraic quantum chemistry for the electronic
structure of heteronuclear diatomic molecule HeH+,
which should be solved by the Gröbner basis technique.
The example in the present article is a little more
complicated than that in [1], for, in the latter, the
computation of H2 (the simplest homonuclear model)
through STO basis φ(r) ∼ exp(−r) was discussed. The
benchmark problem in the preset article is extensible
for various purposes; for example–

• In the present article, we prepared the atomic
orbital by the GTO-nG model which is given
by fixed numerical data, but we easily replace
them with symbolic variables. Thus we could
derive an analytic representation of total energy
where the wavefunction, the nuclear distance,
and the orbital exponents are variables. The
optimization of all of those variables shall be a

more complicated benchmark problem.

• Extension to molecules including more number
of electrons. To this end, we should include the
orthogonality of wavefunctions in the same spin.

• The GitHub of the authors of the present
article [26] shows several model problems,
such as the case of H3+: they cover the
simple RHF or UHF computations and the
simultaneous optimization of the bond length
and the electronic structures, or so.

One of the left problems (which shall be the hardest)
would be the preparation of symbolic formulas of
atomic orbital integrals. In [1], the atomic orbital
integrals were prepared by STO, and the mathematical
difficulty to compute two-electron integrals did not
allow that seminal study to proceed into the
investigation of the general polyatomic molecules. The
method to compute two-electron integrals in the three-
or four-centered systems by STO has not yet been
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settled; but without them, one could not discuss
the quantitative electronic structure by STO models.
On the other hand, if one adopts the GTO, the
hardship shall greatly be mitigated; with the use of
GTO, every required atomic orbital integral could
be computed and represented analytically by special
functions whose natures are well-studied. Since the
two-electron integrals would be computed efficiently
through recursive ways, such as the Obara-Saika
method and its extensions, it seems that there are
no theoretical limitations; the necessary steps are
to prepare the integrals of s-shells, to compute the
differentials of the formulas, and to do the symbolic
computations by recursive paths; if we meet some limit
in symbolic computations, it would be owing to the
computational resources.

Finally, we mention the possible direction of the
future study. It is related to the beyond Born-
Oppenheimer treatment. We have constructed the
polynomial function of the total energy E(x, y,R) that
shall undergo the minimization with respect to the
variables. We can re-quantize the model by mating the
variables with the corresponding partial differentiation
operators. For example, let us take the interatomic
distance R, and assume that R is not a fixed point,
but a distribution given by a probabilistic model of
quantum dynamics. The modified total energy shall
be represented as

〈ψ(R)

∣∣∣∣− 1

2µ

d2

dR2
+ E(R, x, y)

∣∣∣∣ψ(R)〉 (18)

with the wavefunction ψ(R) defined on R, to which
a virtual mass µ is assigned. One can minimize it in
various ways; if ψ(R) is given by a linear combination
of Gaussian functions, the modified total energy is
represented or approximated by a polynomial after
the integration along R, because the potential term
E(R, x.y) is a polynomial of R according to our scheme.
One can now apply the algebraic method for the
optimization of this new problem. R is no longer a
number as in classical dynamics; it is an operator in
the sense of quantum dynamics, and it is evaluated
by the expectation 〈ψ|R|ψ〉. This composition shall
allow us to set foot in the realm of the beyond Born-
Oppenheimer theory.
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APPENDIX

The supplementary materials (including the small programs used in the study and the result of the computations)
are available from our GitHub [26]:

http://github.com/kikuchiichio/AlgebraicQuantumChemistry

http://github.com/kikuchiichio/AlgebraicQuantumChemistry/supplement-HeH+-computation.tex

The small programs include the functions to compute the molecular integrals by Cartesian GTO basis

φα(r,A) = exp(−α|r −A|2) (19)

from which the following integrals are analytically derived:

Sab =

∫
dr φa(r,A)φ(r,B), (20)

Kab =

∫
dr φa(r, A)

Å
−1

2
∇2

ã
φb(r,B), (21)

(φa|1/rc|φb) =

∫
dr φa(r,A)

1

|r − C|φb(r,B), (22)

[φaφb|φcφd] =

∫
dr1

∫
dr2 φa(r1, A)φb(r1, B)

1

|r1 − r2|
φc(r1, D)φd(r1, D). (23)

In the above, the coordinates are given in the three-dimensional Cartesian system: r = (x, y, z). The capital
letters (A, B,...) represent the positions of the distinct atoms.

The above integrals belong to a subclass of analytic integrals which involve primitive Cartesian Gaussian
functions

φijkα (r, A) = (x−Ax)i(x−Ay)j(z −Az)k exp(−α|r −A|2). (24)

As Boys has commented, we can easily derive the formulae for the general cases by differentiation with respect
to the parameters in the integral formulae, followed by taking the appropriate linear combinations [2]. This
opinion might be a bit optimistic because symbolic differentiation would sometimes be a demanding task for
computers. However, if we meet difficulty in the symbolic differentiation to generate molecular integrals, we
could use recursive methods, such as Obara-Saika or so. We should keep in mind this point: in our method, we
utilize the polynomial approximation of molecular integrals, and, for this purpose, symbolic differentiation is an
indispensable tool. If the symbolic differentiation is not practicable on account of complexity, then the problem
we are challenging would be a hard one beyond the limitation of available computational resources; we should
restate the problem into an easier form.
————————————————————————————————————————————————————–
© 2022 Kikuchi and Kikuchi; This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribu-tion, and
reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:

https://www.sdiarticle5.com/review-history/96364

31

http://creativecommons.org/licenses/by/4.0

	GALLEY PROOF_2023_AJR2P_96364 - Copy.pdf (p.1)
	Kikuchi642023AJR2P96364.pdf (p.2-14)
	GALLEY PROOF_2023_AJR2P_96364.pdf (p.2-14)
	INTRODUCTION
	MODEL DESCRIPTION
	SYMBOLIC-NUMERIC COMPUTATION TO GET THE ELECTRONIC STRUCTURE
	HOW THE TRIANGULATION WORKS TO GET EIGENSTATES
	SOLUTION BY EIGENVALUE PROBLEM
	CONCLUDING REMARKS



