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Abstract

The PUL-integral is a McShane type of definition in which the notion of a partition of unity is
of great importance. It was first introduced by Kurzweil and Jarnik. Recently, Boonpogkrong
revisited this definition and presented its, relatively, simplified approach. In this paper, a
Henstock-Kurzweil approach of this integral including its fundamental properties will be
presented.
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1 Introduction

The PU integral is defined is such a way that it utilizes the notion of a partition of unity which
is known to be applicable in defining an integral defined on a smooth manifold. The concept of
defining this integral in terms of its covering system, unlike the Henstock integral, equivalently the
generalized Riemann integral, is that the partitions of the domain of the integrand allows overlapping
of intervals in the collection [1],[2]. On the other hand, a McShane integral is an integration process
which is a Henstock type of definition in which the tag is not of Perron type. Another variant of
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this definition, in some sense, is the PUL-integral. Boonpogkrong [3] revisited the PUL integral
in its more simplified approach[4],[5]. There, he showed the application of the PUL integral in a
manifold setting [6],[7],[8],[9]. Flores and Benitez [10, 11] further defined a generalized version of this
definition in a Banach setting in its Stieltjes form and presented some its theorem on convergence.

In this section, the PU -integral will be revisited in its simplified approach and some of its simple
properties will be given. In what follows, with no confusion arises, we denote a closed and bounded
interval in Rn by

[a, b] =

k∏
i=1

[ai, bi],

and
µ([a, b]) = vol([a, b])

where ai, bi ∈ R and µ is the Lebesgue Measure of [a, b].
Given a funtion f : X → R, the support of f , written as supp f , is defined as the closure of the set
{x ∈ X : f(x) ̸= 0}.

2 Main Results

Definition 2.1 [3] A finite collection {φk}mk=1 of smooth functions on E is a partial partition of
unity if

(i) φk ≥ 0 on E for each k = 1, 2, · · · ,m; and

(ii)
m∑

k=1

φk ≤ 1 a.e. on E.

If

m∑
k=1

φk = 1 a.e. in E, then we say that {φk}mk=1 is called a partition of unity.

Definition 2.2 Let φ be a smooth function on E, I be a closed and bounded interval in Rn, δ be
a gauge on E, and ξ ∈ E. Then a triple (ξ, I, φ) is a δ-fine in a sense of PU if ξ ∈ I and

supp φ ⊆ I ⊆ B(ξ, δ(ξ)).

Definition 2.3 Let D = {(ξk, Ik, φk)}mk=1 be finite collection of triples. Then D is a δ-fine PU-
partial division of E if {φk}mk=1 is a partial partition of unity. If {φk}mk=1 is a partition of unity,
then we say that D is a δ-fine PU-division of E.

For a δ-fine division D = {ξ, I, φ}, I’s may be overlapping. Note that if φ : [a, b] → R is continuous,

then

∫
E

φ exists for any closed and bounded subinterval E of [a, b].

Definition 2.4 Let f : [a, b] → X and g : [a, b] → R. We define the PU-sum by

S(f,D) =

m∑
k=1

f(ξk) (R)

∫
Ik

φk

where D is a δ-fine PU -division of [a, b]. For convenience, we denote a δ-fine PU -division of [a, b]
by D = {(ξ, I, ψ)} and a PU -sum of f with respect to D by

S(f,D) =
∑
D

f(ξ)

∫
I

ψ = (D)
∑

f(ξ)

∫
I

ψ.
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Definition 2.5 Let f : E → R, where E is a compact set in Rn. Then f is said to be PU-integrable
to a real number A on E if for every ϵ > 0, there exists a gauge δ defined on E such that for any
δ-fine division D = {ξk, Ik, φk}mk=1 of E, we have

|S(f,D)−A| < ϵ.

We denote A by (P)

∫
E

f .

Define f : [0, 1] → R by

f(x) =

{
1, if x ∈ ∩[0, 1]
0, otherwise

for all X ∈ [0, 1]. Let ϵ > 0. Note that is a countable set; thus, we write = {qn}∞n=1. Define δ on
[0, 1] by

δ(x) =

{ ϵ

2n+1
, if x ∈ ∩[0, 1]

1, otherwise

for all x ∈ [0, 1]. Here, δ is a gauge on [0, 1]. Let D = {(ξ, I, φ)}, a δ-fine PU -division of [0, 1].
Observe that∣∣∣∣∑

D

f(ξ)

∫
I

φ− 0

∣∣∣∣ = ∣∣∣∣∑
D

f(ξ)

∫
I

φ

∣∣∣∣ =
∣∣∣∣∣ ∑

D
ξ∈[0,1]∩

f(ξ)

∫
I

φ+
∑
D

ξ∈[0,1]r

f(ξ)

∫
I

φ

∣∣∣∣∣
=

∣∣∣∣∣ ∑
D

ξ∈[0,1]∩

f(ξ)

∫
I

φ

∣∣∣∣∣ =
∣∣∣∣∣ ∑

D
ξ∈[0,1]∩

∫
I

φ

∣∣∣∣∣ = ∑
D

ξ∈[0,1]∩

∣∣∣∣ ∫
I

φ

∣∣∣∣
≤

∑
D

ξ∈[0,1]∩

∫
I

|φ| ≤
∑
D

ξ∈[0,1]∩

∫
I

1 =
∑
D

ξ∈[0,1]∩

µ(I)

<
∑
D

ξ∈[0,1]∩

δ(ξ) <

∞∑
n=1

δ(ξ) =

∞∑
n=1

ϵ

2n+1

= ϵ,

where µ is the Lebesgue measure. This means that f , the Dirichlet function, also called as the
Weierstrass function, is PU -integrable to 0 on [0, 1].

Recall that the Dirichlet function fails to be Riemann integrable; hence the latter example portays
an important facet of the PU -integral.

Now, we will establish some of the elementary properties of the PU -integral.

Theorem 2.1 The PU-integral of f over [a, b] is unique.

Theorem 2.2 Assume that f : [a, b] → R and g : [a, b] → R are PU-integrable over [a, b]. If c ∈ R,
then cf and f + g are PU-integrable over [a, b]. Moreover,

(P)

∫
[a,b]

(cf) = c · (P)
∫
[a,b]

f

and

(P)

∫
[a,b]

(f + g) = (P)

∫
[a,b]

f + (P)

∫
[a,b]

g.
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Proof : Let a, b ∈ R. Fix ϵ > 0. Choose a gauge δ on [a, b] such that if D is any δ-fine PU -division
of [a, b], then ∣∣∣∣S(f,D)− (P)

∫
[a,b]

f

∣∣∣∣ < ϵ

1 + |c| .

Let D be a δ-fine PU -division of [a, b]. Then∣∣∣∣S(cf,D)− (P)

∫
[a,b]

cf

∣∣∣∣ = |c| ·
∣∣∣∣S(f,D)− (P)

∫
[a,b]

f

∣∣∣∣
< |c| · ϵ

1 + |c|
< ϵ.

This means that cf1 is PU -integrable over [a, b] and

(P)

∫
[a,b]

cf = c · (P)
∫
[a,b]

f.

Now, we will verify that f + g is PU -integrable over [a, b] and that

(P)

∫
[a,b]

(f + g) = (P)

∫
[a,b]

f + (P)

∫
[a,b]

g.

To this end, let ϵ > 0. Then choose a gauge δ1 on [a, b] such that if D is a δ1-fine PU -division of
[a, b], then ∣∣∣∣S(f,D)− (P)

∫
[a,b]

f

∣∣∣∣ < ϵ

2
.

In similar fashion, we choose a gauge δ2 on [a, b] such that if D′ is a δ2-fine PU -division of [a, b],
then ∣∣∣∣S(g,D′)− (P)

∫
[a,b]

g

∣∣∣∣ < ϵ

2
.

Let δ = min{δ1, δ2} on [a, b]. Here, δ is a gauge on [a, b]. Let D be a δ-fine PU -division of [a, b].
Then D is both δ1-fine PU -division and δ2-fine PU -division of [a, b]. Thus,∣∣∣∣S(f + g,D)−

[
(P)

∫
[a,b]

f + (P)

∫
[a,b]

g

]∣∣∣∣
=

∣∣∣∣[S(f,D)− (P)

∫
[a,b]

f

]
+

[
S(g,D)− (P)

∫
[a,b]

g

]∣∣∣∣
≤

∣∣∣∣S(f,D)− (P)

∫
[a,b]

f

∣∣∣∣+ ∣∣∣∣S(g,D)− (P)

∫
[a,b]

g

∣∣∣∣
<
ϵ

2
+
ϵ

2
= ϵ.

Therefore, f + g is PU -integrable over [a, b] and

(P)

∫
[a,b]

(f + g) = (P)

∫
[a,b]

f + (P)

∫
[a,b]

g. �

Define P = {f : [a, b] → R| f is PU -integrable on [a, b]}. Then P is linear over R.

3 Cauchy Criterion

We give a characterization of the PU -integral using Cauchy criterion.

108



Ambasa and Flores; ARJOM, 18(10): 105-114, 2022; Article no.ARJOM.87707

Theorem 3.1 (Cauchy Criterion) A function f : [a, b] → R is PU-integrable over [a, b] if and
only if for any ϵ > 0, there exists a gauge δ on [a, b] such that for any pair of δ-fine PU-divisions
D1 and D2 of [a, b], we have

|S (f,D1)− S (f,D2) | < ϵ.

Proof : (⇒) Let ϵ > 0. Then choose a gauge δ on [a, b] such that if D is a δ-fine PU -division of
[a, b], we have ∣∣∣∣S(f,D)− (P)

∫
[a,b]

f

∣∣∣∣ < ϵ

2
.

Fix D1 and D2, δ-fine PU -divisions of [a, b]. Then∣∣∣∣S(f,D1)− S(f,D2)

∣∣∣∣
≤

∣∣∣∣S (f,D1)− (P)

∫
[a,b]

f

∣∣∣∣+ ∣∣∣∣(P) ∫
[a,b]

f − S (f,D2)

∣∣∣∣
<
ϵ

2
+
ϵ

2
= ϵ.

(⇐) By hypothesis, for each n ∈, choose a gauge δn on [a, b] such that if Dn and D′
n are any two

δn-fine PU -divisions of [a, b], we have

|S(f,Dn)− S(f,D′
n)| <

1

n
. (3.1)

Without loss of generality, we assume that δn ≥ δn+1 on [a, b] for all n ∈. For every n ∈, let Dn be
a fixed δn-fine division of [a, b] and consider its corresponding PU -sum sn = S(f,Dn). Here, the
sequence ⟨sn⟩+∞

n=1 is Cauchy, and so ⟨sn⟩+∞
n=1 converges in X, say, lim

n→∞
sn = A.

We now show that f is a PU -integrable over [a, b] and

(P)

∫
[a,b]

f = A.

Let ϵ > 0. Since lim
n→∞

sn = A, we may choose N1 ∈ such that for all n ≥ N1

|S(f,Dn)−A| = |sn −A| < ϵ

2
. (3.2)

Now, choose N2 ∈ such that 1
N2

< ϵ
2
. Take N = N1 ∨N2 and put δ = δN on [a, b]. Let D be any

δ-fine division of [a, b]. Then D is δN -fine division of [a, b]. Since N ≥ N2, by (3.1) we have

|S(f,D)− S(f,DN )| < 1

N
≤ 1

N2
<
ϵ

2
. (3.3)

Also, since N ≥ N1, inequality (3.2) for n = N ; i.e.

|S(f,DN )−A| < ϵ

2
. (3.4)

Hence, by (3.3) and (3.4) we have

|S(f,D)−A| ≤ |S(f,D)− S(f,DN )

+ |S(f,DN )−A| < ϵ

2
+
ϵ

2
= ϵ.

This means that f is a PU -integrable over [a, b] and

(P)

∫
[a,b]

f = A. �

In what follows, let In([a, b]) be the set of all compact subintervals of [a, b] ⊆ Rn .
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Corollary 3.2 If f : [a, b] → X is PU -integrable over [a, b] and I ∈ In([a, b]), then f is PU -
integrable over I and

(P)

∫
I

f = (P)

∫
[a,b]

f · χI

Corollary 3.3 Let f be any real-valued funtion on [a, b]. Suppose that f is PU-integrable on the
subintervals F1, F2 ∈ Im([a, b]) with F1 and F2 is a partition of [a, b]. Then f is PU-integrable over
F1

∪
F2 and

(P)

∫
F1

∪
F2

f = (P)

∫
F1

f + (P)

∫
F2

f.

Theorem 3.4 Suppose that f and g are PU-integrable over [a.b]. If f ≤ g on [a, b], then

(P)

∫
[a,b]

f ≤ (P)

∫
[a,b]

g.

Proof : Fix ϵ > 0. Since f and g are PU -integrable over [a, b], we may choose the smallest possible
gauge δ on [a, b] such that if D is a δ-fine PU -division of [a, b], then∣∣∣∣S(f,D)− (P)

∫
[a,b]

f

∣∣∣∣ < ϵ

2
;

and ∣∣∣∣S(g,D)− (P)

∫
[a,b]

g

∣∣∣∣ < ϵ

2
.

Notice that

(P)

∫
[a,b]

f − S(f,D) ≤
∣∣∣∣S(f,D)− (P)

∫
[a,b]

f

∣∣∣∣ < ϵ

2

and

S(f,D)− (P)

∫
[a,b]

g ≤
∣∣∣∣S(g,D)− (P)

∫
[a,b]

g

∣∣∣∣ < ϵ

2

implies

(P)

∫
[a,b]

f − ϵ

2
< S(f,D)

and

S(g,D) < (P)

∫
[a,b]

g +
ϵ

2
.

But S(f, g) ≤ S(g,D). Hence, we now have

(P)

∫
[a,b]

f − ϵ

2
< S(f,D) ≤ S(g,D) < (P)

∫
[a,b]

g +
ϵ

2
,

that is,

(P)

∫
[a,b]

f < (P)

∫
[a,b]

g + ϵ.

The arbitrariness of ϵ implies

(P)

∫
[a,b]

f ≤ (P)

∫
[a,b]

g. �
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4 Some Existence and Convergence Theorem

The following theorem exhibits a real-valued function on Rn which is a PU - integrable function.

Theorem 4.1 Let f : [a, b] → X be continuous on [a, b] . Then f is PU-integrable over [a, b].

Proof : Let ϵ > 0. Note that the Riemann integral
∫
[a,b]

φ exists, whenever φ is a partition of unity

on [a, b]. Since f is continuous on [a, b], then f is uniformly continuous on [a, b]. Hence, there exists
a δ > 0 such that for any x, y ∈ [a, b] with ∥x− y∥ < δ(x), we have

|f(x)− f(y)| < ϵ

2[vol([a, b]) + 1]
.

Let D1 = {(ξ, I, φ)} and D2 = {(ζ, J, ψ)} be any two δ-fine divisions of [a, b]. Let D3 = {γ,K, σ}
be a δ-fine division of [a, b], where K = I ∩ J with I ∈ D1 and J ∈ D2. for any interval I. Observe
that

S(f,D1) =
∑
I∈D1

f(ξ)

∫
I

φ =
∑
I∈D1

f(ξ)

[ ∑
J∈D2

∫
I∩J

φ

]
=

∑
K∈D3

f(ξ)

∫
K

σ

and

S(f,D2) =
∑

J∈D2

f(ζ)

∫
J

ψ =
∑

J∈D2

f(ζ)

[ ∑
I∈D1

∫
J∩I

ψ

]
=

∑
K∈D3

f(ζ)

∫
K

σ.

Then ∣∣S(f,D1)− S(f,D2)
∣∣

≤
∣∣S(f,D1)− S(f,D3)

∣∣+ ∣∣S(f,D3)− S(f,D2)
∣∣

=

∣∣∣∣ ∑
K∈D3

f(ξ)

∫
K

σ −
∑

K∈D3

f(γ)

∫
K

σ

∣∣∣∣
+

∣∣∣∣ ∑
K∈D3

f(γ)

∫
K

σ −
∑

K∈D3

f(ζ)

∫
K

σ

∣∣∣∣
≤

∑
K∈D3

[∥∥f(ξ)− f(γ)
∥∥
Rn ·

∣∣∣∣ ∫
K

σ

∣∣∣∣
]
+

∑
K∈D3

[∥∥f(γ)− f(ζ)
∥∥ ·

∣∣∣∣ ∫
K

σ

∣∣∣∣
]

<
∑

K∈D3

[
ϵ

2[vol([a, b]) + 1]
·
∣∣∣∣ ∫

K

σ

∣∣∣∣
]
+

∑
K∈D3

[
ϵ

2[vol([a, b]) + 1]
·
∣∣∣∣ ∫

K

σ

∣∣∣∣
]

=
ϵ

2[vol([a, b]) + 1]
·
( ∑

K∈D3

∣∣∣∣ ∫
K

σ

∣∣∣∣+ ∑
K∈D3

∣∣∣∣ ∫
K

σ

∣∣∣∣)
=

ϵ

2[vol([a, b]) + 1]
·
(
2 vol([a, b])

)
< ϵ.

Therefore, f is PU -integrable over [a, b]. �
We now establish the Uniform convergence theorem for this integral.

Lemma 4.2 Let f : [a, b] → R be a PU-integrable function over [a, b]. If f is bounded by M on
[a, b], then ∣∣∣∣(P) ∫

[a,b]

f

∣∣∣∣ ≤M · vol([a, b]).
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Proof : By assumption, −M ≤ f(x) ≤M . Thus,

−M · vol ≤ (P)

∫
[a,b]

f(x) ≤M · vol([a, b]).

This means that ∣∣∣∣(P) ∫
[a,b]

f

∣∣∣∣ ≤M · vol([a, b]).

Theorem 4.3 (The Uniform Convergence Theorem)

Assume that ⟨fn⟩∞n=1 is a sequence of bounded and integrable functions over [a, b]. If fn → f
uniformly on [a, b], then f is PU-integrable on [a, b] and

lim
n→∞

(P)

∫
[a,b]

fn = (P)

∫
[a,b]

f.

Proof : Let ϵ > 0. Since fn converges uniformly on [a, b], we choose N1 ∈ N such that if n ≥ N1 and
x ∈ [a, b], we have

|fn(x)− f(x)| < ϵ

3 · [vol([a, b]) + 1]
. (4.1)

If m,n ≥ N1 and x ∈ [a, b], then by Equation 4.1

|fn(x)− fm(x)| = |[fn(x)− f(x)] + [f(x)− fm(x)]|
≤ |[fn(x)− f(x)]|+ |[f(x)− fm(x)]|

<
ϵ

3 · [vol([a, b]) + 1]
+

ϵ

3 · [vol([a, b]) + 1]

=
2 · ϵ

3[vol([a, b]) + 1]
.

By Lemma 4.2 and by linearity, for each n,m ≥ N1,∣∣∣∣(P) ∫
[a,b]

fm − (P)

∫
[a,b]

fn

∣∣∣∣ = ∣∣∣∣ ∫
[a,b]

(fm − fn)

∣∣∣∣
≤ 2 · ϵ

3[vol([a, b]) + 1]
· vol([a, b])

<
2 · ϵ

3[vol([a, b]) + 1]
· vol([a, b]) + 1

<
2

3
· ϵ.

for all m,n ≥ N1. This shows that

⟨
(P)

∫
[a,b]

fn

⟩
is cauchy, and so (P)

∫
[a,b]

fn converges to, say,

A. So, choose an N2 ∈ N such that for all n ≥ N2,∣∣∣∣(P) ∫
[a,b]

fn −A

∣∣∣∣ < ϵ

3
. (4.2)

Take N = max{N1, N2}. Since fN is PU -integrable on [a, b], we may choose a gauge δ on [a, b] such
that if D is a δ-fine PU -division of [a, b], then∣∣∣∣S(fN , D)− (P)

∫
[a,b]

fN

∣∣∣∣ < ϵ

3
. (4.3)
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Observe that from Equation 4.1,

|S(f,D)− S(fN , D)| =
∣∣∣∣(D)

∑
f(ξ)

∫
I

φ− (D)
∑

fN (ξ)

∫
I

φ

∣∣∣∣
=

∣∣∣∣(D)
∑

(f(ξ)− fN (ξ))

∫
I

φ

∣∣∣∣
≤ (D)

∑
|f(ξ)− fN (ξ)| ·

∣∣∣∣ ∫
I

φ

∣∣∣∣
<

ϵ

3 · [vol([a, b]) + 1]
· (D)

∑∫
I

φ

≤ ϵ

3 · [vol([a, b]) + 1]
· vol([a, b])

=
ϵ

3
.

Therefore,

|S(f,D)−A|

=

∣∣∣∣S(f,D)− S(fN , D) + S(fN , D)

− (P)

∫
[a,b]

fN + (P)

∫
[a,b]

fN −A

∣∣∣∣
≤ |S(f,D)− S(fN , D)|+

∣∣∣∣S(fN , D)− (P)

∫
[a,b]

fN

∣∣∣∣
+

∣∣∣∣(P) ∫
[a,b]

fN −A

∣∣∣∣
<
ϵ

3
+
ϵ

3
+
ϵ

3

= ϵ.

This shows the integrablity of f over [a, b]. Hence,

lim
n→∞

(P)

∫
[a,b]

fn = A = (P)

∫
[a,b]

f.

5 Conclusion and Recommendation

Results obtain in the literature are pretty much standard and, apparently, the fundamental concepts
such as the Cauchy Criterion and the Uniform Convergence Theorem hold for this integral. As a
recommendation, further convegence theorems and the Saks-Henstock Lemma and its corollary
results are yet to be established.
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