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1. Introduction

The success of modern healthcare services, such as automated diagnosis and person-
alized medicine, is eminently dependent on the availability of datasets. The dataset size
is considered a critical property in determining the performance of a machine learning
model. Typically, large datasets lead to better classification performance and small datasets
may trigger over-fitting [1–3]. In practice, however, collecting medical data faces many
challenges due to patients’ privacy, lack of cases due to rare conditions [4], as well as
organizational and legal challenges [5,6]. Moreover, in the case of available large datasets,
training a model using such data requires further time and computing resources, which
may not be available.

Despite the continuous debates and efforts, there is still no agreed definition of what
constitutes a small dataset. For instance, Shawe-Taylor et al. [7] proposed a measurement
called Probably Approximately Correct (PAC) for identifying the minimum number of
necessary samples to meet the desired accuracy. Some research [8] has defined small
datasets based on algorithmic information theory. The authors in [9] followed a different
approach by examining previous studies that are concerned with dealing with small
datasets and their sizes and accordingly defined a range for the size of small datasets.

Establishing a method to find the trend in small datasets is not only of scientific interest
but also of practical importance and requires a special care when developing machine
learning models. Unfortunately, classification algorithms may perform worse when trained
with limited size datasets [2]. This is because small datasets typically contain less details,
hence the classification model cannot generalize patterns in training data. In addition,
over-fitting becomes much harder to avoid as it sometimes goes beyond training data to
affect the validation set as well [3].

Classification is a challenging task by itself. It becomes more challenging when dealing
with small datasets. The central cause behind this challenge relates to the limited size of
training data, which leads to unreliable and biased classification model [3]. While previous
studies are focusing on increasing the accuracy of the classification algorithms on limited
size datasets, less effort was made to study the impact of the size property of the dataset
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on the performance of the classification algorithms, which makes it an open problem in the
area that needs more investigation.

Several studies have emerged recently that address the issue of small datasets from
different perspectives, including enhancing the performance of classification models on lim-
ited datasets [8–11] and proposing varying approaches to augment the training set [12–16].
For example, in the former category, authors in [8] proposed two methods for neural
network (NN) training on small datasets using Fuzzy ARTMAP neural networks [10].
In [11], a novel particle swarm optimization-based virtual sample generation (PSOVSG)
approach was proposed to iteratively produce the most suitable virtual samples in the
search space. The performance of PSOVSG is tested against other three methods and had
superior results.

In the latter category, Li et al. [12] proposed a non-parametric method for learning
trend similarities between attributes and then using them to predict the respective ranges in
which attribute values can be situated when other attribute values are provided. Another
study [13] generated data based on the Gaussian distribution by utilizing the smoothness
which states that, if two inputs are close to each other, their outputs will be close as well.
In [14], the authors learned the relationship between the dataset features to generate new
data attributes using the fuzzy rules. Other studies [15–17] have proposed the extending
attribute information (EAI) method to investigate the applicability of extracting features
from small datasets by applying the similarity-based algorithms using fuzzy membership
function on seven different data sets. Authors in [18] proposed the sample extending
attribute (SEA) method to extend a suitable quantity of attributes for improving the learning
performance of small datasets and preventing the data from becoming sparse.

Research on the subject has been mostly restricted on increasing the accuracy of
the classification algorithms on limited size datasets, little attention has been paid to
study the impact of the dataset size on the performance of the classification algorithms.
However, the proposed solutions suffer from multiple issues, such as data replicates [13],
unscalability [8,10], and noise [13,19]. Similar studies to our work exist in the literature,
where the main aim is to investigate the extent to which the size of the dataset can impact
the classification performance in different domains such as sentiment classification [2,20],
object detection [21], plant disease classification [22], and information retrieval [23]. Table 1
summarizes the most relevant related works.

Table 1. Comparison of related works.

Ref. Purpose/Goal No. of Datasets Dataset Size Range

[8] Enhance the performance of models on limited datasets 1 176

[11] Enhance the performance of models on limited datasets 2 NA

[12] Augment training set instances 2 (19–30)

[13] Augment training set instances 3 (66–90)

[14] Extend training set features 1 30

[15] Extend training set features 7 (18–768)

[17] Extend training set features 8 (18–768)

[18] Extend training set features 4 (19–1030)

[20] Study the impact of dataset size in sentiment classification domain 4 (4000–10,000)

[2] Study the impact of dataset size in sentiment classification domain 7 (1000–243,000)

[21] Study the impact of dataset size in object detection domain 2 (1218–81,075)

[22] Study the impact of dataset size in plant disease classification domain 1 1383

[23] Study the impact of dataset size in information retrieval domain 2 (857–8651)

This work Study the impact of dataset size in medical domain 20 (80–245,057)
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This work aims to investigate the impact of dataset size on the performance of six
widely-used supervised machine learning models in the medical domain. For this purpose,
we carried out extensive experiments on six classification models including support vector
machine (SVM), neural networks (NN), C4.5 decision tree (DT), random forest (RF), ad-
aboost (AB), and naïve Bayes (NB) using twenty medical UCI datasets [24]. We further
implemented three dataset size reduction scenarios on two large datasets, resulting in three
small subsets. We then analyzed the change in performance of the models as a response to
the reduction of dataset size with respect to accuracy, precision, recall, f-score, specificity,
and area under the ROC curve (AUC). Statistical tests are used to assess the statistical
significance of the differences in performances in different scenarios.

The rest of the paper is organized as follows. In Section 2, we describe the methodology,
including the datasets, the classification models, and performance evaluation. In Section 3,
we present and discuss the results. Finally, Section 4 concludes our work.

2. Methodology

As mentioned earlier, this study aims to investigate the impact of dataset’s size on
the classification performance and recommend the appropriate classifier(s) for limited-size
datasets. In order to achieve this goal, we followed an experimental methodology, where
we selected datasets of varying sizes and grouped them into two groups: small datasets
and large datasets. We extracted three small datasets randomly using sampling without
replacement from each large dataset. The partitioning protocol is described in Section 2.1
below. The goal is to examine the impact of reducing the size of the same dataset on the
classification performance. After preprocessing the datasets, a total of six widely-used
classification models were trained on all datasets. The performance of the classifiers is
evaluated with respect to accuracy, precision, recall, specificity, f-score, and AUC. In the
following subsections, we will discuss the dataset selection and partitioning algorithm, the
classification models, and the performance evaluation metrics.

2.1. Dataset

We selected twenty data sets from the UCI data repository [24]. The datasets were
selected from medical fields where limited data are common. Table 2 shows details about
the selected datasets, arranged by size, along with their number of attributes and data type.
There is no explicit definition for small datasets in the literature. Therefore, in order to
determine the size range for selecting small datasets in this work, we reviewed existing
works that study small datasets and kept track of the size of their datasets. As shown
in Table 1, the size of small datasets used in the existing works ranges from 18 to 1030
across studies [8,11–15,17,18]. Accordingly, the selected twenty datasets were categorized
as eighteen small datasets and two large datasets.

The small datasets (DS1-DS18) consist of eighteen medical datasets. The number
of instances in these small datasets ranges from 80–1040 instances, and the number of
features ranges between 3–49. All small datasets are numerical or numerical with text.
In the category of large datasets, there are two datasets; Skin Segmentation dataset (DS19
in Table 2) and Diabetes 130-US hospitals dataset (DS20 in Table 2). The former consists of
245,057 instances and four features of numeric datatype, while the latter has 9871 instances
and 55 features of mixed numeric and text datatypes.

To study the impact of dataset size on the performance of classifiers, we constructed
three small sub-datasets of increasing sizes from each large dataset using sampling without
replacement, as shown in Table 3. Figure 1 presents the dataset portioning algorithm.
As shown in the figure, the algorithm receives two large datasets S1 and S2 and returns
three small sub-datasets S1, S2, and S3 for each large dataset. It first defines the sizes
of the three small sub-datasets (980, 490, and 98). These were selected from the three
equal intervals (highest, middle, and lowest) of the size range of small datasets (18–1030),
respectively. Next, the algorithm iterates over the large datasets S1 and S2. For each dataset,
the algorithm creates a copy of the dataset (SL) to void modifying the original dataset.
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The algorithm then iterates over the array of small sizes in order to create the corresponding
small sub-dataset SSi, where X tuples are extracted randomly without replacement to avoid
overlapping between the sub-datasets. This is performed by removing the sub-dataset SSi
from the large dataset SL after extraction. The iterations continue until all three sub-datasets
are created for all large datasets. Data preprocessing was carried out for all datasets as
necessary to deal with missing values.

Table 2. Datasets description.

Dataset
Notation Dataset Name Size Attributes Data Type

DS1 Parkinson Speech Dataset with Multiple Types of Sound Recordings 1040 26 Numeric + Text

DS2 Mammographic Mass-severity 830 6 Numeric

DS3 Cervical cancer (Risk Factors)-Biopsy 668 36 Numeric

DS4 ILPD (Indian Liver Patient) 583 10 Numeric + Text

DS5 Thoracic Surgery 470 17 Numeric + Text

DS6 Ecoli Data Set 336 8 Numeric + Text

DS7 Haberman’s Survival 306 3 Numeric

DS8 (Autistic Spectrum Disorder Screening Data for Children) ASD Data
for Children 292 21 Numeric + Text

DS9 SPECTF Heart 267 44 Numeric

DS10 Breast Cancer Wisconsin (Prognostic) 198 32 Numeric

DS11 HCC Survival 155 49 Numeric

DS12 Breast Cancer Coimbra 116 10 Numeric

DS13 Breast Tissue-col2(class) 106 10 Numeric + Text

DS14 Autistic Spectrum Disorder Screening Data for Adolescent 104 21 Numeric + Text

DS15 Fertility 100 10 Numeric + Text

DS16 Immunotherapy 90 8 Numeric

DS17 Cryotherapy 90 7 Numeric

DS18 Caesarian Section Classification 80 5 Numeric

DS19 Skin Segmentation 245,057 4 Numeric

DS20 Diabetes 130-US hospitals 9871 55 Numeric + Text

Table 3. Large Datasets and their subsets.

Dataset Notation Dataset Name Size

DS19 Skin Segmentation 245,057

DS19.1 Skin Segmentation (Subset 1) 980

DS19.2 Skin Segmentation (Subset 2) 490

DS19.3 Skin Segmentation (Subset 3) 98

DS20 Diabetes 130-US hospitals 9871

DS20.1 Diabetes 130-US hospitals (Subset 1) 980

DS20.2 Diabetes 130-US hospitals (Subset 2) 490

DS20.3 Diabetes 130-US hospitals (Subset 3) 98
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Figure 1. Dataset partitioning algorithm.

2.2. Classification Models

We used six different widely-used classifiers, which include probabilistic classification
using naïve Bayes (NB), decision function classification using support vector machine (SVM),
neural network (NN), decision tree induction C4.5 (DT), tree ensemble random forest (RF),
and ensemble adaptive boosting (AB). Below, we shed light on these classification models:

• SVM: The objective of the SVM algorithm is to find the hyperplane in the data
that gives the largest separation margin between data instances and classifies them
into two classes. It can be explained based on four basic concepts, the separating
hyperplane, the maximum margin hyperplane, the soft margin, and finally the
kernel function [25,26].

• NB: It is a supervised learning method based on the Bayesian theorem. Therefore, it is
considered as a statistical method for classification. It works by calculating explicit
probabilities for hypotheses. NB models use the method of maximum likelihood
for parameter estimation. Literature showed that it often performs better in many
complex real world applications. One of the features of this method is that it is robust
to noise in data, and it can estimate the parameters using a small training set [25–27].

• DT: A Decision Tree is constructed as a binary classification tree, based on the training
data. In the tree structure, class labels are represented by leaf nodes, while the internal
nodes represent the conjunction of features that assess class. There are several DT
algorithms, Notable decision tree algorithms include: ID3 (Iterative Dichotomiser 3),
C4.5 (successor of ID3), and CART (Classification And Regression Tree) [25,26]. In this
study, the C4.5 algorithm for DT is selected for deploying the DT classification.

• NN: It is one of the most widely-used classification models, as it is a good alternative
to several traditional classification methods. One of the main advantages of NN is
that it is a data-driven self-adaptive method, in that it is adjustable to the data without
the need for explicit specification of the underlying model. Another feature of NN is
that it represents a nonlinear model-free method [25–27].

• RF: As the name implies, the RF classifier consists of a number of individual decision
trees. Each of the individual decision trees in the forest is used for a majority voting
of the output class, the class that has the majority of votes becomes the model’s
predicted class [25].
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• AB: One of the most important “families” of ensemble methods is Boosting, and within
the boosting algorithms, the adaptive boosting (AB) algorithm is one of the most
important. The adaptiveness of AD comes in the form of successive weak learners and
fine-tuning them in favor of those instances misclassified by previous classifiers. Some
of the properties of AD is that it is sensitive to noisy data and outliers, but, in some
cases, it can be less susceptible to the overfitting than other learning algorithms [28].

2.3. Performance Evaluation

In contrast to most existing efforts in literature, which used accuracy as the perfor-
mance measure, we evaluate the performance of the classification models with respect to
six important metrics in the medical domain, namely, accuracy, precision, recall, F-score,
specificity, and AUC. Furthermore, the Mann–Whitney U test is applied to assess the
statistical significance between the performance of the models in different scenarios.

3. Results

In the following sections, the experimental results are presented for the classification
models with both small datasets and large datasets with their subsets. The experiments
were carried out on Waikato Environment for Knowledge Analysis (WEKA) version 3.8 [29]
on a Windows 10 personal computer with CPU 2.70 GHz, Core i7 processor and 8.0 GB
memory (RAM). For all classification models, we used WEKA default parameter values,
which are shown in Table 4. Each reported result is the average of 10-fold cross validation.

Table 4. Classification models parameter values.

Classification Model Parameter Values

AB

Batch size = 100
Classifier = decision stump

numIterations = 10
seed = 1

weight threshold = 100

NB Batch size = 100

SVM

Batch size = 100
Kernel = Polynomial

C = 1
Random seed = 1

Tolerance parameter =0.001

NN
Hidden layers = (attributes + classes)/2

Learning rate = 0.3
Seed = 0

DT

Batch size = 100
Binary split = false

Confidence factor = 0.25
MinNumObj = 2

Seed = 1

RF
Batch size = 100

numIterations = 100
seed = 1

3.1. Small Datasets

The performance of the six classification models, namely AB, RF, NN, DT, NB, and
SVM when trained on the eighteen small datasets is presented in Table 5 with respect to
accuracy. The performance of the classification models with respect to precision, recall,
specificity, f-score, and AUC are shown in Tables A1–A5 in the Appendix A.
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Table 5. Accuracy of classifiers trained on small datasets.

Classifiers

Datasets AB RF NN DT NB SVM Avg. Std. Dev.

DS1 99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 1.110 × 10−16

DS2 83.00% 79.00% 82.00% 83.00% 83.00% 79.00% 81.50% 0.018

DS3 95.00% 95.00% 95.00% 96.00% 89.00% 96.00% 94.33% 0.024

DS4 70.00% 69.00% 70.00% 66.00% 56.00% 71.00% 67.00% 0.052

DS5 85.00% 84.00% 81.00% 85.00% 79.00% 85.00% 83.17% 0.023

DS6 65.00% 66.00% 80.00% 84.00% 85.00% 86.00% 77.67% 0.088

DS7 73.00% 67.00% 73.00% 72.00% 75.00% 74.00% 72.33% 0.026

DS8 99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 1.110 × 10−16

DS9 83.00% 81.00% 78.00% 75.00% 67.00% 80.00% 77.33% 0.052

DS10 74.00% 81.00% 73.00% 74.00% 67.00% 77.00% 74.33% 0.042

DS11 63.00% 73.00% 67.00% 66.00% 68.00% 69.00% 67.67% 0.030

DS12 75.00% 74.00% 66.00% 69.00% 60.00% 66.00% 68.33% 0.051

DS13 41.00% 94.00% 96.00% 95.00% 94.00% 64.00% 80.67% 0.210

DS14 99.00% 99.00% 94.00% 99.00% 99.00% 91.00% 96.83% 0.032

DS15 88.00% 86.00% 90.00% 85.00% 88.00% 88.00% 87.50% 0.016

DS16 86.00% 86.00% 81.00% 82.00% 77.00% 79.00% 81.83% 0.033

DS17 90.00% 93.00% 88.00% 93.00% 83.00% 88.00% 89.17% 0.034

DS18 59.00% 58.00% 59.00% 68.00% 68.00% 60.00% 62.00% 0.043

Avg. 79.28% 82.39% 81.72% 82.78% 79.78% 80.61%

Std. Dev. 0.153 0.123 0.118 0.117 0.131 0.115

Several observations can be made from Table 5. First, we can observe that the average
accuracy of classifiers trained on the small datasets ranges from 62% on DS18 to 99% on DS1
and DS8. Second, it can be seen from the table that the average accuracy of classifiers across the
small datasets ranges from 79.28% achieved by AB to 82.78% accuracy by DT. Third, we can
also see that the standard deviations across classifiers (Std. Dev. For each dataset, last column)
are less than the standard deviations across datasets (Std. Dev. For each classifier, last row).

Similar trends are observed in the performance of classifiers with respect to precision,
recall, specificity, f-score, and AUC in Tables A1–A5 in the Appendix A. For instance, the
average precision of classifiers in Table A1 ranges from 62.43% on DS18 to 99% on DS1 and
DS8, and the average recall ranges from 61.68% on DS18 to 99.12% on DS8 (see Table A2).
In addition, the average precision of classifiers across the small datasets ranges from 78.07%
precision by AB to 82.21% achieved by NB. For recall, the average performance of classifiers
across the small datasets ranges from 79.22% by AB to 82.73% by DT. Furthermore, we can
see in Tables A1–A5, and, similar to accuracy in Table 5, that the standard deviations across
classifiers are less than the standard deviations across datasets.

3.2. Large Datasets

Figures 2 and 3 show the performance of the six classification models with respect to
accuracy, precision, recall, f-score, specificity, and AUC when trained on the large datasets,
namely diabetes and skin segmentation, respectively, across decreasing sizes of the training
set. The x-axis in the figures shows the size of the dataset, namely large dataset (LD), small
dataset of size 980 (SD980), small dataset of size 490 (SD490), and small dataset of size 98
(SD98). LD indicates that the full size of the large dataset, as shown in Table 3, is used for
training for both diabetes and skin segmentation datasets.
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In all figures, each line chart has three segments reflecting the result in three reduction
scenarios of datasets size. The first segment ranges from LD to SD980 and shows the
result in the first size reduction scenario, which we refer to as the LD-SD980 scenario. This
line segment presents a key result in the chart as it depicts the change in performance of
a classifier trained on a large dataset (LD) when trained on a small dataset of size 980 (SD980).
The second segment in the line charts stretches from SD980 to SD490. It illustrates the change
in performance of a classifier in the second size reduction scenario SD980-SD490, where
the size of the dataset reduces from 980 (SD980) to an even smaller dataset of size 490
(SD490). In a similar manner, the third segment in the line charts extends from SD490
to SD98. It shows the change in performance of a classifier when the size of the dataset
reduces from 490 (SD490) to a smaller dataset of size 98 (SD98), which we refer to as the
third scenario SD490-SD98.

Several observations can be made from these figures. First, most classifiers exhibit
relatively similar trend of performance over decreasing training set size with respect
to all six performance metrics. This can be seen by comparing the performance of one
classifier across performance metrics. Second, there is a clear general trend of decreasing
performance with respect to all metrics for almost all classifiers in all size reduction
scenarios on both datasets, although the classifiers showed varying reactions to the different
size reduction scenarios. The most striking observation is that the performance of the
AB model increases as the diabetes dataset size decreases. Third, the best performing
classifiers may vary across datasets. For instance, in the diabetes dataset (Figure 2), the best
performing classifiers are SVM and NN, while, in the skin segmentation dataset (Figure 3),
RF, DT, and NN perform the best. However, in both datasets, AB is the least performing
classifier with respect to most performance metrics.

4. Discussion
4.1. Small Datasets

The results presented in Section 3.1 are quite revealing in several ways. First, they
reveal that, depending on the problem domain, dataset size is not necessarily an obstacle
to a high preforming model since the average performance of classifiers reached 99% on
some small datasets. Second, since the standard deviations across classifiers are less than
the standard deviations across datasets, the results indicate that, given a small dataset,
classifiers perform relatively similarly, while each classifier has varying performance across
the small datasets. On assessing the statistical significance of the difference between the
two groups of standard deviations, we found that the difference is significant (p = 0.00076)
at p < 0.05. The null hypothesis for this test asserts that the median of the two groups
is identical. Taken together, these results reveal that constructing a dataset that is well
representative of the original distribution, despite the size, is more important than choosing
a classification model.

4.2. Large Datasets

Interestingly, the classifiers exhibited varying reactions to the different size reduction
scenarios. We used a Mann–Whitney U test at p < 0.05 in order to assess the statistical
significance of the differences in performances in different scenarios. In each test, we
compare two groups of values that represent the performance of one model on a dataset of
two sizes. Each group contains the performance of the model in ten folds. Tables A6–A11
in the Appendix A show the resulting p-value for all classification models in each reduction
scenario, which show whether the scenario caused a significant decrease in the model
performance with respect to size measures.

Statistical tests revealed that DT is the most sensitive model to the size of the dataset
since its performance decreases significantly in the majority of the scenarios (~70% of
scenarios in Table A8). RF and NN showed a relatively similar response to the decrease
of dataset size as they show significant performance degradation in 44% and 42% of the
scenarios in Tables A7 and A9, respectively. Tree-based models are trained by splitting
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the data based on predictor variables to find pure subsets (i.e., instances that belong to
the same class) that will be used to compute the conditional probabilities. Therefore, the
model’s predictions are based on considerably smaller data than the original dataset. For
NN, the model learns by adjusting a large number of weights using backpropagation.
Thus, more data allows further adjustment, and hence better performance. The next model
is SVM, where its performance decreases significantly in 36% of the scenarios in Table A6.
As is well known, the position of the SVM hyperplane is based only on the support vectors.
Consequently, the size of the dataset is irrelevant as long as the data include the support
vectors. AB and NB exhibited robust performance as they decrease significantly only in
13% and 19% of the scenarios in Tables A10 and A11, respectively. Since NB is a simple
algorithm that assumes conditional independence between variables, it needs less data to
train. This makes it a high-bias model, but immune to the most common issue of small
training set: overfitting.

Together, these results provide important insights into dataset size and classifiers
performance. First, in support to our previous observation, the overall performance of
classifiers depends on the extent to which the dataset represents the original distribution
rather than its size. Second, it is clear from our experiments and statistical tests that the
most robust model for small medical datasets appears to be AB and NB, followed by SVM,
and then NN and RF, while the least robust model is DT. Third, on comparing the classifiers
performance on small datasets (Tables 5 and A1, Table A2, Table A3, Table A4, Table A5)
and their performance in the three reduction scenarios of datasets size (Tables A6–A11 and
Figures 2 and 3), an interesting observation can be made: a robust machine learning model
to dataset size reduction does not necessary imply that it provides the best performance
compared to other models. This is evident by the observation that AB and NB were the
most robust models to dataset size reduction, but they had the least average accuracy on the
small datasets in Table 5, compared to other models. In addition, as explained in Section 3.2,
AB was the least performing classifier with respect to most performance metrics in both
large datasets.

5. Conclusions

Recent years have witnessed an increased interest in modern healthcare services,
such as automated diagnosis and personalized medicine. However, the success of such
services is eminently dependent on the availability of datasets. Collecting medical data may
face many challenges such as patients’ privacy and lack of data for rare conditions. This
work aims to investigate the impact of dataset size on the performance of six widely-used
supervised machine learning models in the medical domain. For this purpose, we carried
out extensive experiments on six classification models including SVM, NN, DT, RF, AB,
and NB using twenty medical UCI datasets [24]. We further implemented three dataset
size reduction scenarios on two large datasets, resulting in three small subsets. We then
analyzed the change in performance of the models as a response to the reduction of dataset
size with respect to accuracy, precision, recall, f-score, specificity, and AUC. Statistical
tests are used to assess the statistical significance of the differences in performances in
different scenarios.

Several interesting conclusions can be made. First, the overall performance of classi-
fiers depends on the extent to which a dataset represents the original distribution rather
than its size. Second, the most robust model for limited medical data is AB and NB, fol-
lowed by SVM, and then RF and NN, while the least robust model is DT. Third, a robust
machine learning model to limited dataset does not necessarily imply that it provides the
best performance compared to other models. Our results are in agreement with previous
studies [2]. A natural progression of this research would be to investigate the minimum
dataset size that each classifier needs in order to maximize its performance.
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Appendix A

Table A1. Precision of classifiers trained on small datasets.

Classifiers

Datasets AB RF NN DT NB SVM Avg. Std. Dev.

DS1 99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 99.00% 0.000

DS2 83.10% 79.20% 82.40% 83.60% 82.80% 79.80% 81.82% 0.017

DS3 94.90% 94.30% 94.60% 96.40% 93.60% 96.80% 95.10% 0.011

DS4 61.10% 66.50% 67.20% 63.00% 79.60% 71.19% 68.10% 0.061

DS5 85.11% 75.50% 77.40% 75.50% 76.20% 72.40% 77.02% 0.039

DS6 67.00% 65.29% 94.00% 88.00% 86.30% 89.00% 81.60% 0.112

DS7 69.80% 64.90% 69.90% 69.00% 71.50% 65.30% 68.40% 0.025

DS8 99.00% 99.00% 99.00% 99.00% 99.70% 100.00% 99.28% 0.004

DS9 81.00% 77.80% 79.90% 73.30% 83.00% 78.00% 78.83% 0.030

DS10 68.50% 82.80% 71.50% 72.60% 71.60% 73.10% 73.35% 0.045

DS11 62.50% 72.80% 67.30% 65.00% 67.80% 68.70% 67.35% 0.032

DS12 75.00% 74.10% 65.50% 69.10% 66.20% 66.60% 69.42% 0.038

DS13 41.66% 94.40% 96.40% 95.30% 94.50% 63.10% 80.89% 0.211

DS14 99.00% 99.00% 94.30% 99.00% 99.10% 91.40% 96.97% 0.030

DS15 84.80% 82.60% 89.30% 77.10% 85.00% 85.00% 83.97% 0.037

DS16 84.90% 84.60% 79.50% 81.00% 72.50% 80.00% 80.42% 0.041

DS17 90.00% 93.70% 88.00% 93.70% 83.60% 88.00% 89.50% 0.035

DS18 58.90% 57.20% 61.20% 69.20% 67.80% 60.30% 62.43% 0.045

Avg. 78.07% 81.26% 82.02% 81.60% 82.21% 79.32%

Std. Dev. 0.157 0.128 0.124 0.125 0.111 0.123

https://archive.ics.uci.edu/ml/datasets.php
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Table A2. Recall of classifiers trained on small datasets.

Classifiers

Datasets AB RF NN DT NB SVM Avg. Std. Dev.

DS1 99.00% 99.00% 99.00% 99.00% 98.90% 99.00% 98.98% 0.000

DS2 83.10% 79.20% 82.20% 83.40% 82.50% 79.30% 81.62% 0.016

DS3 94.90% 94.80% 94.90% 96.10% 88.50% 96.00% 94.20% 0.024

DS4 70.30% 69.40% 69.80% 65.50% 55.70% 71.30% 67.00% 0.050

DS5 85.10% 83.80% 81.10% 84.50% 78.50% 84.90% 82.98% 0.022

DS6 64.50% 65.80% 79.50% 84.20% 85.40% 86.00% 77.57% 0.084

DS7 73.20% 67.30% 72.90% 71.90% 74.80% 73.50% 72.27% 0.022

DS8 99.00% 99.00% 99.00% 99.00% 99.70% 99.00% 99.12% 0.002

DS9 82.90% 80.70% 78.40% 74.70% 66.50% 79.60% 77.13% 0.050

DS10 73.70% 80.80% 73.20% 73.70% 67.20% 76.80% 74.23% 0.038

DS11 63.20% 72.90% 66.50% 65.80% 68.40% 69.00% 67.63% 0.028

DS12 75.00% 74.10% 65.50% 69.00% 60.30% 66.40% 68.38% 0.047

DS13 40.60% 94.30% 96.20% 95.30% 94.30% 64.20% 80.82% 0.197

DS14 99.00% 99.00% 94.20% 99.00% 99.00% 91.30% 96.92% 0.028

DS15 88.00% 86.00% 90.00% 85.00% 88.00% 88.00% 87.50% 0.015

DS16 85.60% 85.60% 81.10% 82.20% 76.70% 78.90% 81.68% 0.030

DS17 90.00% 93.30% 87.80% 93.30% 83.30% 87.80% 89.25% 0.032

DS18 58.80% 57.50% 58.80% 67.50% 67.50% 60.00% 61.68% 0.039

Avg. 79.22% 82.36% 81.67% 82.73% 79.73% 80.61%

Std. Dev. 0.154 0.123 0.120 0.118 0.132 0.115

Table A3. F-score of classifiers trained on small datasets.

Classifiers

Datasets AB RF NN DT NB SVM Avg. Std. Dev.

DS1 99.00% 99.00% 99.00% 99.00% 98.90% 99.00% 98.98% 0.000

DS2 83.10% 79.20% 82.20% 83.30% 82.50% 79.20% 81.58% 0.017

DS3 94.90% 94.50% 94.70% 96.20% 90.40% 96.30% 94.50% 0.020

DS4 60.90% 67.30% 68.00% 64.00% 55.80% 83.00% 66.50% 0.084

DS5 91.00% 78.30% 78.90% 78.30% 77.20% 78.20% 80.32% 0.048

DS6 79.70% 79.00% 92.00% 87.00% 85.40% 87.00% 85.02% 0.045

DS7 70.40% 65.90% 70.50% 69.80% 70.30% 71.00% 69.65% 0.017

DS8 99.00% 99.00% 99.00% 99.00% 99.70% 99.00% 99.12% 0.003

DS9 81.00% 78.00% 79.10% 74.00% 69.80% 80.00% 76.98% 0.039

DS10 69.80% 75.90% 72.20% 73.10% 68.80% 68.80% 71.43% 0.026

DS11 62.60% 72.80% 66.70% 65.70% 67.20% 68.80% 67.30% 0.031

DS12 75.00% 74.00% 65.50% 69.00% 58.70% 66.40% 68.10% 0.055

DS13 58.00% 94.30% 96.20% 95.30% 94.30% 58.40% 82.75% 0.174

DS14 99.00% 99.00% 94.30% 99.00% 99.00% 91.40% 96.95% 0.030
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Table A3. Cont.

Classifiers

Datasets AB RF NN DT NB SVM Avg. Std. Dev.

DS15 85.30% 83.90% 89.60% 80.90% 91.00% 91.00% 86.95% 0.038

DS16 85.10% 84.30% 80.00% 81.40% 73.70% 83.00% 81.25% 0.038

DS17 90.00% 93.30% 87.80% 93.30% 83.20% 87.80% 89.23% 0.035

DS18 58.80% 57.30% 58.80% 67.70% 67.60% 60.10% 61.72% 0.043

Avg. 80.14% 81.94% 81.92% 82.00% 79.64% 80.47%

Std. Dev. 0.138 0.121 0.124 0.122 0.136 0.124

Table A4. Specificity of classifiers trained on small datasets.

Classifiers

Datasets AB RF NN DT NB SVM Avg. Std. Dev.

DS1 99.00% 99.00% 99.00% 99.00% 98.90% 99.00% 98.98% 0.000

DS2 83.00% 79.10% 82.30% 83.10% 82.70% 79.60% 81.63% 0.016

DS3 64.60% 54.30% 58.40% 79.10% 74.40% 89.40% 70.03% 0.122

DS4 30.70% 45.80% 47.40% 43.20% 79.70% 28.70% 45.92% 0.167

DS5 14.90% 17.00% 27.20% 16.00% 26.70% 14.90% 19.45% 0.054

DS6 79.30% 79.80% 95.70% 96.00% 96.60% 95.70% 90.52% 0.078

DS7 43.70% 41.60% 45.20% 44.80% 40.40% 26.50% 40.37% 0.064

DS8 99.00% 99.00% 99.00% 99.00% 99.70% 99.00% 99.12% 0.003

DS9 48.30% 41.00% 62.00% 42.20% 81.90% 20.40% 49.30% 0.191

DS10 34.70% 39.80% 46.20% 49.30% 56.10% 28.30% 42.40% 0.093

DS11 57.70% 70.10% 65.80% 62.20% 61.20% 65.40% 63.73% 0.039

DS12 74.30% 72.90% 64.80% 68.70% 64.90% 66.20% 68.63% 0.038

DS13 84.90% 98.80% 99.20% 99.10% 98.90% 92.60% 95.58% 0.053

DS14 99.00% 99.00% 94.50% 99.00% 98.50% 91.00% 96.83% 0.031

DS15 26.40% 26.10% 55.50% 11.60% 12.00% 12.00% 23.93% 0.155

DS16 65.30% 57.60% 52.50% 56.70% 35.90% 21.10% 48.18% 0.150

DS17 89.80% 93.90% 88.10% 93.90% 82.40% 88.10% 89.37% 0.039

DS18 57.20% 54.80% 61.10% 69.10% 66.80% 58.90% 61.32% 0.051

Avg. 63.99% 64.98% 69.11% 67.33% 69.87% 59.82%

Std. Dev. 0.258 0.260 0.219 0.278 0.261 0.325

Table A5. AUC of classifiers trained on small datasets.

Classifiers

Datasets AB RF NN DT NB SVM Avg. Std. Dev.

DS1 99.00% 99.00% 99.00% 99.00% 99.90% 99.00% 99.15% 0.00

DS2 89.50% 86.70% 88.30% 86.90% 90.00% 79.40% 86.80% 0.04

DS3 92.20% 96.30% 91.20% 81.70% 85.60% 92.70% 89.95% 0.05

DS4 67.70% 73.80% 72.70% 58.50% 72.70% 50.00% 65.90% 0.09

DS5 49.00% 66.40% 56.00% 50.20% 64.20% 49.90% 55.95% 0.07
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Table A5. Cont.

Classifiers

Datasets AB RF NN DT NB SVM Avg. Std. Dev.

DS6 76.00% 95.40% 94.50% 92.00% 95.90% 94.70% 91.42% 0.07

DS7 66.50% 67.30% 65.80% 60.90% 64.90% 50.00% 62.57% 0.06

DS8 100.00% 99.00% 99.00% 99.00% 99.00% 99.00% 99.17% 0.00

DS9 83.30% 84.80% 81.50% 59.20% 84.90% 50.00% 73.95% 0.14

DS10 69.50% 66.30% 68.40% 52.80% 64.20% 52.50% 62.28% 0.07

DS11 70.20% 77.90% 68.70% 64.60% 74.30% 67.20% 70.48% 0.04

DS12 79.60% 81.60% 74.90% 70.10% 73.50% 66.30% 74.33% 0.05

DS13 76.80% 99.90% 99.70% 97.20% 98.80% 93.50% 94.32% 0.08

DS14 99.00% 99.00% 99.10% 99.00% 99.90% 91.20% 97.87% 0.03

DS15 69.00% 69.20% 65.80% 43.40% 49.70% 50.00% 57.85% 0.10

DS16 80.90% 77.60% 75.20% 66.20% 70.10% 50.00% 70.00% 0.10

DS17 96.50% 97.60% 92.60% 92.30% 93.50% 87.90% 93.40% 0.03

DS18 61.50% 60.20% 54.80% 59.40% 72.70% 59.50% 61.35% 0.05

Avg. 79.23% 83.22% 80.40% 74.02% 80.77% 71.27%

Std. Dev. 0.14 0.13 0.15 0.19 0.15 0.20

Table A6. p-values for different size reduction scenarios using the SVM model; bold values are significant.

SVM

Size Reduction Scenarios

LD-SD980 SD980-SD490 SD490-SD98

Diabetes Skin
Segmentation Diabetes Skin

Segmentation Diabetes Skin
Segmentation

Performance
Metric

Accuracy 0.01426 0.31207 0.07215 0.18943 0.05821 0.46414

Precision 0.07215 0.46812 0.10565 0.04648 0.04746 0.5

Recall 0.01831 0.31207 0.2327 0.14917 0.04746 0.46414

Specificity 0.01831 0.02275 0.33724 0.05592 0.07215 0.44828

F score 0.01072 0.48405 0.33724 0.02872 0.04746 0.3707

AUC 0.01831 0.0951 0.26435 0.01539 0.04746 0.4721

Table A7. p-values for different size reduction scenarios using the NN model; bold values are significant.

NN

Size Reduction Scenarios

LD-SD980 SD980-SD490 SD490-SD98

Diabetes Skin
Segmentation Diabetes Skin

Segmentation Diabetes Skin
Segmentation

Performance
Metric

Accuracy 0.04648 0.00135 0.20045 0.46017 0.05821 0.46017

Precision 0.00169 0.00135 0.11702 0.41683 0.04746 0.26435

Recall 0.00289 0.00135 0.41683 0.46017 0.03754 0.37828

Specificity 0.0009 0.3336 0.18141 0.33724 0.05821 0.10565

F score 0.00169 0.00135 0.18141 0.33724 0.05821 0.26435

AUC 0.00069 0.00842 0.13567 0.39743 0.03362 0.04363
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Table A8. p-values for different size reduction scenarios using the DT model; bold values are significant.

DT

Size Reduction Scenarios

LD-SD980 SD980-SD490 SD490-SD98

Diabetes Skin
Segmentation Diabetes Skin

Segmentation Diabetes Skin
Segmentation

Performance
Metric

Accuracy 0.00107 0.04182 0.015 0.30153 0.07215 0.05821

Precision 0.00122 0.00014 0.0044 0.42858 0.04947 0.01618

Recall 0.00169 0.00169 0.015 0.37828 0.07215 0.05821

Specificity 0.00122 0.00014 0.0057 0.45224 0.04947 0.03144

F score 0.00122 0.00014 0.0044 0.42858 0.04947 0.01618

AUC 0.00064 0.00009 0.01659 0.42465 0.05592 0.00494

Table A9. p-values for different size reduction scenarios using the RF model; bold values are significant.

RF

Size Reduction Scenarios

LD-SD980 SD980-SD490 SD490-SD98

Diabetes Skin
Segmentation Diabetes Skin

Segmentation Diabetes Skin
Segmentation

Performance
Metric

Accuracy 0.00047 0.04648 0.18673 0.46017 0.12302 0.05821

Precision 0.00031 0.00069 0.04746 0.26109 0.20897 0.07215

Recall 0.00047 0.00219 0.18673 0.46017 0.12302 0.05821

Specificity 0.00031 0.00069 0.07636 0.5 0.12714 0.03362

F score 0.00031 0.00069 0.04746 0.31561 0.15151 0.0505

AUC 0.00009 0.00069 0.07078 0.07215 0.02222 0.10565

Table A10. p-values for different size reduction scenarios using the AB model; bold values are significant.

AB

Size Reduction Scenarios

LD-SD980 SD980-SD490 SD490-SD98

Diabetes Skin
Segmentation Diabetes Skin

Segmentation Diabetes Skin
Segmentation

Performance
Metric

Accuracy 0.02275 0.32997 0.35569 0.4721 0.44433 0.04182

Precision 0.0024 0.40905 0.36393 0.26109 0.45224 0.01951

Recall 0.02275 0.32997 0.35569 0.4721 0.44433 0.06057

Specificity 0.119 0.08076 0.20611 0.4562 0.44828 0.02275

F score 0.119 0.26109 0.26435 0.42465 0.32276 0.06671

AUC 0.07078 0.33724 0.17361 0.4562 0.31207 0.08379
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Table A11. p-values for different size reduction scenarios using the NB model; bold values are significant.

NB

Size Reduction Scenarios

LD-SD980 SD980-SD490 SD490-SD98

Diabetes Skin
Segmentation Diabetes Skin

Segmentation Diabetes Skin
Segmentation

Performance
Metric

Accuracy 0.01101 0.07078 0.38591 0.28434 0.15151 0.22759

Precision 0.00695 0.05735 0.33724 0.34759 0.31207 0.09496

Recall 0.01101 0.07246 0.38591 0.30239 0.15151 0.15418

Specificity 0.00139 0.05855 0.36393 0.23349 0.27425 0.01985

F score 0.00289 0.15100 0.31207 0.18995 0.12714 0.08590

AUC 0.01287 0.09835 0.21476 0.05155 0.15151 0.09496
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5. Wieczorek, G.; Antoniuk, I.; Kurek, J.; Świderski, B.; Kruk, M.; Pach, J.; Orłowski, A. BCT Boost Segmentation with U-net in
TensorFlow. Mach. Graph. Vis. 2019, 28, 25–34.

6. Floca, R. Challenges of Open Data in Medical Research. In Opening Science; Bartling, S., Friesike, S., Eds.; Springer: Cham,
Switzerland, 2014. [CrossRef]

7. Shawe-Taylor, J.; Anthony, M.; Biggs, N.L. Bounding sample size with the Vapnik-Chervonenkis dimension. Discret. Appl. Math.
1993, 42, 65–73. [CrossRef]

8. Andonie, R. Extreme data mining: Inference from small datasets. Int. J. Comput. Commun. Control 2010, 5, 280–291. [CrossRef]
9. Dris, A.B.; Alzakari, N.; Kurdi, H. A Systematic Approach to Identify an Appropriate Classifier for Limited-Sized Data Sets.

In Proceedings of the 2019 International Symposium on Networks, Computers and Communications (ISNCC), Istanbul, Turkey,
18–20 June 2019; pp. 1–6.

10. Andonie, R.; Sasu, L. Fuzzy artmap with input relevances. IEEE Trans. Neural Netw. 2006, 17, 929–941. [CrossRef] [PubMed]
11. Chen, Z.S.; Zhu, B.; He, Y.L.; Yu, L.A. A PSO based virtual sample generation method for small sample sets: Applications to

regression datasets. Eng. Appl. Artif. Intell. 2017, 59, 236–243. [CrossRef]
12. Li, D.-C.; Lin, W.-K.; Lin, L.-S.; Chen, C.-C.; Huang, W.-T. The attribute-trend similarity method to improve learning performance

for small datasets. Int. J. Prod. Res. 2017, 55, 1898–1913. [CrossRef]
13. Yang, J.; Yu, X.; Xie, Z.-Q.; Zhang, J.-P. A novel virtual sample generation method based on gaussian distribution. Knowl. Based

Syst. 2011, 24, 740–748. [CrossRef]
14. Chen, H.-Y.; Li, D.-C.; Lin, L.-S. Extending sample information for small data set prediction. In Proceedings of the 2016 5th IIAI

International Congress on Advanced Applied Informatics (IIAI-AAI), Kumamoto, Japan, 10–14 July 2016; pp. 710–714.
15. Li, D.-C.; Liu, C.-W. Extending attribute information for small data set classification. IEEE Trans. Knowl. Data Eng. 2012, 24,

452–464. [CrossRef]
16. Mao, R.; Zhu, H.; Zhang, L.; Chen, A. A new method to assist small data set neural network learning. In Proceedings of the Sixth

International Conference on Intelligent Systems Design and Applications, Jinan, China, 16–18 October 2006; pp. 17–22.
17. Patil, R.S.; Kshirsagar, D.B. Dataset Classification by Extending Attribute Information for Improving Classification Accuracy.

Int. J. Innov. Trends Eng. Res. 2017, 2, 1–7.
18. Lin, L.S.; Li, D.C.; Chen, H.Y.; Chiang, Y.C. An attribute extending method to improve learning performance for small datasets.

Neurocomput 2018, 286, 75–87. [CrossRef]
19. Coqueret, G. Approximate NORTA simulations for virtual sample generation. Expert Syst. Appl. 2017, 73, 69–81. [CrossRef]
20. Choi, Y.; Lee, H. Data properties and the performance of sentiment classification for electronic commerce applications.

Inf. Syst. Front. 2017, 19, 993–1012. [CrossRef]
21. Zhu, X.; Vondrick, C.; Fowlkes, C.C.; Ramanan, D. Do we need more training data? Int. J. Comput. Vis. 2016, 119, 76–92. [CrossRef]

http://doi.org/10.1186/s12874-017-0313-9
http://www.ncbi.nlm.nih.gov/pubmed/28231767
http://doi.org/10.1198/jasa.2005.s61
http://doi.org/10.1007/978-3-319-00026-8_22
http://doi.org/10.1016/0166-218X(93)90179-R
http://doi.org/10.15837/ijccc.2010.3.2481
http://doi.org/10.1109/TNN.2006.875988
http://www.ncbi.nlm.nih.gov/pubmed/16856656
http://doi.org/10.1016/j.engappai.2016.12.024
http://doi.org/10.1080/00207543.2016.1213447
http://doi.org/10.1016/j.knosys.2010.12.010
http://doi.org/10.1109/TKDE.2010.254
http://doi.org/10.1016/j.neucom.2018.01.071
http://doi.org/10.1016/j.eswa.2016.12.027
http://doi.org/10.1007/s10796-017-9741-7
http://doi.org/10.1007/s11263-015-0812-2


Appl. Sci. 2021, 11, 796 18 of 18

22. Barbedo, J.G. Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease
classification. Comput. Electron. Agric. 2018, 153, 46–53. [CrossRef]

23. Linjordet, T.; Balog, K. Impact of Training Dataset Size on Neural Answer Selection Models. In Lecture Notes in Computer Science,
Proceedings of the European Conference on Information Retrieval, Cologne, Germany, 14 April 2019; Springer: Cham, Switzerland, 2019;
pp. 828–835.

24. Blake, C.L.; Merz, C.J. UCI Repository of Machine Learning Databases; Department of Information and Computer Science, University
of California: Irvine, CA, USA, 1998; Volume 55, Available online: https://archive.ics.uci.edu/ml/datasets.php (accessed on
17 January 2020).

25. Kusonmano, K.; Netzer, M.; Pfeifer, B.; Baumgartner, C.; Liedl, K.R.; Graber, A. Evaluation of the impact of dataset characteristics
for classification problems in biological applications. In Proceedings of the International Conference on Bioinformatics and
Biomedicine, Venice, Italy, 26 October 2009; Volume 3, pp. 966–990.

26. Ruparel, N.H.; Shahane, N.M.; Bhamare, D.P. Learning from Small Data Set to Build Classification Model: A Survey. Proc. IJCA
Int. Conf. Recent Trends Eng. Technol. 2013, 4, 23–26.

27. Zhang, G.P. Neural networks for classification: A survey. IEEE Trans. Syst. Man Cybern. Part C 2000, 30, 451–462. [CrossRef]
28. Zhang, Y.; Xin, Y.; Li, Q.; Ma, J.; Li, S.; Lv, X.; Lv, W. Empirical study of seven data mining algorithms on different characteristics

of datasets for biomedical classification applications. BioMed. Eng. OnLine 2017, 16, 125. [CrossRef] [PubMed]
29. Eibe, F.; Hall, M.; Witten, I.; Pal, J. The weka workbench. In Online Appendix for Data Mining: Practical Machine Learning Tools

and Techniques; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2016.

http://doi.org/10.1016/j.compag.2018.08.013
https://archive.ics.uci.edu/ml/datasets.php
http://doi.org/10.1109/5326.897072
http://doi.org/10.1186/s12938-017-0416-x
http://www.ncbi.nlm.nih.gov/pubmed/29096638

	Introduction 
	Methodology 
	Dataset 
	Classification Models 
	Performance Evaluation 

	Results 
	Small Datasets 
	Large Datasets 

	Discussion 
	Small Datasets 
	Large Datasets 

	Conclusions 
	
	References

