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Abstract: Timely and effective detection of potential incipient faults in satellites plays an important
role in improving their availability and extending their service life. In this paper, the problem of
detecting incipient faults using projection vector (PV) and Kullback-Leibler (KL) divergence is studied
in the context of detecting incipient faults in satellites. Under the assumption that the variables obey
a multidimensional Gaussian distribution and using KL divergence to detect incipient faults, this
paper models the optimum PV for detecting incipient faults as an optimization problem. It proves
that the PVs obtained by principal component analysis (PCA) are not necessarily the optimum PV
for detecting incipient faults. It then compares the on-line probability density function (PDF) with
the reference PDF for detecting incipient faults on the local optimum PV. A numerical example and a
real satellite fault case were used to assess the validity and superiority of the method proposed in
this paper over conventional methods. Since the method takes into account the characteristics of the
actual incipient faults, it is more adaptable to various possible incipient faults. Fault detection rates
of three simulated faults and the real satellite fault are 98%, 84%, 93% and 92%, respectively.

Keywords: Kullback-Leibler (KL) divergence; principal component analysis (PCA); optimum projec-
tion vector (PV); incipient fault; satellite

1. Introduction

Some faults may occur during the operation of satellites because of the uncertainties
of the space environment, the limitations on pre-launch testing, and the imperfect design
of satellites. It remains a challenge to detect and solve incipient faults and avoid further
complications [1,2]. At present, the detection of faults in satellites is done by comparing
the telemetry parameters with the preset thresholds [3,4]. However, this method is not
suitable for detecting incipient faults because they may not change significantly during
early manifestation of the fault. Compared to system signals, the amplitudes of incipient
faults are small, typically from 1 to 10% [5,6] and can easily be masked by the normal
variations in systems [7].

Model-based fault detection methods have the advantage of being highly intelligent
and interpretable. Examples of such systems include the Livingstone2 and the HyDE
fault diagnosis models developed by National Aeronautics and Space Administration
(NASA) [8] as well as the Testability Engineering and Maintenance System (TEAMS),
developed by Qualtech Systems Inc (QSI) [9]. All of these model-based fault detection
methods require manual fault modeling by experts in the field. In addition, the accuracy
of these models has a determining impact on their final performance at detecting faults.
However, due to the high cost yet low yield of components used in satellites, the lifetime
tests or the acquisition of actual fault samples required to build accurate models may often
be too costly. Moreover, model-based fault detection methods are only capable of detecting

Appl. Sci. 2021, 11, 797. https://doi.org/10.3390/app11020797 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7127-9940
https://doi.org/10.3390/app11020797
https://doi.org/10.3390/app11020797
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020797
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/797?type=check_update&version=2


Appl. Sci. 2021, 11, 797 2 of 19

a narrow range of faults. This means that there may be faults that occur outside of the
range detectable by the models and this may result in undetected incipient faults [10].

In recent years, data-driven fault detection methods have become a popular field
of research [11–13]. These methods effectively utilize the extensive ground test data and
operational data of satellites, with limited involvement of experts and do not require
accurate mathematical models. Iverson et al. [14] proposed a fault detection method
named the Inductive Monitoring System (IMS) and used it to detect faults in the Columbia
Space Shuttle, and the TacSat-3 satellite. Schwabacher et al. [15] compared four data-
driven fault detection methods containing IMS and One Class Support Vector Machine
(OS-SVM). Pang et al. [16] proposed a fault detection method based on Gaussian Process
Regression (GPR) and implemented it to detect faults in the periodic telemetry parameters
of satellites [16]. Hundman et al. [17] proposed a spacecraft fault detection method based
on Long Short-Term Memory (LSTM) networks and dynamic thresholds. Tariq et al. [18]
proposed a fault detection method using a combination of multivariate convolutional
LSTM and probabilistic principal component analysis (PCA) and applied it to the Korea
Multi-Purpose Satellite 2 (KOMPSAT-2). Among these data-driven fault detection methods,
distance-based fault detection methods such as IMS and OS-SVM are suitable for detecting
fault data that are significantly different from normal data. However, these methods are
less effective when the fault data and normal data mostly overlap. The fault detection
methods using GPR or LSTM are suitable for detecting faults in regular (e.g., periodic)
and time-continuous systems, but are ineffective when the telemetry parameters include
interruptions in time.

Among the data-driven fault detection methods, methods based on PCA rely on
the simplicity of the principle and on good real-time performance and have been used
extensively in detecting faults in equipment [19,20]. The Hotelling’s T2 and squared
prediction error (SPE) statistic are usually used to measure deviations in the principal
subspace, and to measure deviations in the residual subspace, respectively. However, the
conventional T2 and SPE statistics are not effective at detecting incipient faults that are
easily drowned out by noise [21]. Jinane et al. [21] proposed an incipient fault detection
method using Kullback-Leibler (KL) divergence and PCA. On the basis of Jinane et al.’s
research, Chen et al. [22] proposed an improved method. The proposed method monitors
the derivations in principal and residual subspace. Youssef et al. [23] investigated a method
of setting the threshold for fault detection using KL divergence for unknown distribution.

However, existing methods for detecting incipient faults based on PCA and KL
divergence depend entirely on the off-line normal data to obtain the principal components.
Each principal component is essentially a projection vector (PV). Once the normal data
have been determined, the PVs used to detect faults also remain fixed. Unfortunately, the
PVs obtained by PCA are not necessarily the optimum PV to detect the incipient fault
from the view of fault detection. Fixed PVs may result in lower fault detection rates for
some types of incipient faults [24,25]. To address the problem of detecting incipient faults
in satellites, this paper proposes a novel incipient fault detection method based on local
optimum PV (LOPV) and KL divergence. The main contributions of the present research
are summarized in the following three points:

1. This paper puts forward the argument that the PVs obtained by PCA are not neces-
sarily the optimum PV for using KL divergence to detect an incipient fault.

2. The problem of finding the optimum PV to detect the incipient fault is modeled as an
optimization problem, and the KL divergence is used to detect the incipient fault on
the LOPVs.

3. The application of the incipient fault detection method based on PCA and KL diver-
gence is extended to the satellites. The effectiveness of the proposed method is proven
in a real satellite fault.

This paragraph outlines the structure of this paper. Section 2 provides a brief introduc-
tion about PCA and KL divergence. In Section 3, the incipient fault detection method based
on LOPV and KL divergence is presented in detail. In Section 4, the proposed method is
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validated and analyzed by using a numerical example and a real satellite fault. Finally, the
conclusions are presented in Section 5.

2. Preliminary
2.1. PCA

Let n0, m be the numbers of samples and variables of a normal data matrix X ∈ Rn0×m,
with X = [x1, · · · , xk, · · · , xm]. In general, each column of the original normal data X is
standardized to eliminate the impact of different ranges of variables.

xk =
xk − E(xk)

σ(xk)
, k ∈ [1, m] (1)

E(xk) and σ(xk) in Equation (1) are the mean and standard deviation of the kth column
in the matrix X, respectively. The covariance matrix Σ ∈ Rm×m of the standardized normal
data matrix X is then extracted and the singular value decomposition (SVD) is performed.

Σ =
XTX

n0 − 1
= VΛVT =

[
P

^
P
][ Λpc 0

0 Λres

][
P

^
P
]T

(2)

The matrix V = [v1, · · · , vm] ∈ Rm×m in Equation (2) is a set of standard orthogonal
bases in Rm space. The space P = [v1, · · · , vl ] ∈ Rm×l consists of the first l column vectors

in the matrix V, is the principal component subspace, and the space
^
P = [vl+1, · · · , vm] ∈

Rm×(m−l) which consists of the last m− l column vectors is the residual subspace [26].
The PCA based fault detection method usually uses the two statistics T2 and SPE,

for fault detection. The calculations of the T2 statistic and the SPE statistic are shown in
Equations (3) and (4), respectively. A fault is considered to have occurred when either the
T2 or the SPE statistic has exceeded its corresponding detection threshold of δ2

T or δ2
SPE,

respectively [27].

T2 = ‖Λ−
1
2

pc PTXT‖
2
≤ δ2

T (3)

SPE = X
(

Im×m − PPT
)

XT ≤ δ2
SPE (4)

2.2. KL Divergence

KL divergence is often used to measure the difference between two probability dis-
tributions in the same event space and is widely used for optimization tasks in machine
learning [28,29]. The KL divergence between two continuous probability density functions
(PDFs) f1 and f2 is defined as follows [30]:

I( f1‖ f2) =
∫

f1(x) log
f1(x)
f2(x)

(5)

Since the above definition does not satisfy symmetry and may result in I( f1‖ f2) 6=
I( f2‖ f1), an improved form of KL divergence referred to as symmetric KL divergence is
presented as follows [21]:

KLD( f1‖ f2) = I( f1‖ f2) + I( f2‖ f1) (6)

Let n1, m be the numbers of samples and variables of on-line data matrix Y ∈ Rn1×m.
The main processes of the conventional incipient fault detection methods based on PCA
and KL divergence are as follows [21,22]:

1. The standardized normal data X are projected on each PV vj and the reference PDF
of the normal data is obtained after projection on vj as f j and the corresponding
detection threshold is ε j, vj ∈ V, j ∈ [1, m].
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2. Each column yk of the on-line data matrix Y is standardized with yk = yk−E(xk)
σ(xk)

,
k ∈ [1, m].

3. The standardized on-line data Y are projected on each PV vj to obtain the PDF gj of
the on-line data.

4. Equation (6) is used to calculate the KL divergence KLD
(

f j
∣∣∣∣gj
)

between the PDF gj
and the reference PDF f j for each PV vj.

5. Whether the KLD
(

f j
∣∣∣∣gj
)

is greater than the corresponding detection threshold ε j is
determined for each PV vj. It is considered to be faulty when at least one of the m
units of KLD

(
f j
∣∣∣∣gj
)

exceeds the corresponding detection threshold.{
H0 : ∀vj, vj ∈ V, KLD

(
f j
∣∣∣∣gj
)
≤ ε j, fault-free

H1 : ∃vj, vj ∈ V, KLD
(

f j
∣∣∣∣gj
)
> ε j, faulty

(7)

3. Incipient Fault Detection Method Based on LOPV and KL Divergence

For each PV vj, if the fault detection method could detect an incipient fault with a high
detection rate on the vj, then vj is considered sensitive to the incipient fault with a given
significance level α. The bigger the detection rate, the greater sensitivity to the incipient
fault. It can be seen from formula (7) that the incipient fault can be well detected if there is
one PV sensitive to the fault. From the perspective of fault detection, we hope to find an
optimum PV that is most sensitive to the incipient fault.

3.1. Optimum PV for Incipient Fault Detection

We assume that there is an optimum PV that is more sensitive to the incipient fault than
the existing PVs v1, v2, · · · , vm and the optimum PV is w ∈ Rm. To find the optimum PV,
this paper assumes the m dimensional feature parameters to be monitored in their normal
state, obeying the m dimensional joint Gaussian distribution X ∈ Rn0×m ∼ N(µx, Σx).
Let the projection of X on w be F ∈ Rn0 . By the nature of the m dimensional joint Gaussian
distribution, F obeys the one-dimensional Gaussian distribution F ∼ N

(
µT

x w, wTΣxw
)

[26].

F = Xw = x1w1 + x2w2 + · · ·+ xmwm (8)

We assumed that after the incipient fault occurs, the on-line faulty data Y still obey
the m dimensional joint Gaussian distribution Y ∈ Rn1×m ∼ N

(
µy, Σy

)
. However, due to

the fault, the mean vector µy ∈ Rm and the covariance matrix Σy ∈ Rm×m of Y deviated
and that their deviations were ∆µ and ∆Σ, respectively.

µy = µx + ∆µ (9)

Σy = Σx + ∆Σ (10)

The projection of Y on w is G = Yw. Then, from the nature of the joint Gaussian
distribution, G obeys the one-dimensional Gaussian distribution G ∼ N

(
µT

y w, wTΣyw
)

.
Assume that there are two PDFs f and g for two Gaussian distribution signals F ∼
N
(
µ1, σ2

1
)

and G ∼ N
(
µ2, σ2

2
)
, respectively. The KL divergence of f and g can be expressed

as follows [21]:

KLD( f ||g) = 1
2

[
σ2

2
σ2

1
+

σ2
1

σ2
2
+ (µ1 − µ2)

2

(
1
σ2

1
+

1
σ2

2

)
− 2

]
(11)

The projections of the normal data matrix X and the faulty data matrix Y on w obey the
one-dimensional Gaussian distribution F∼ N

(
µT

x w, wTΣxw
)

and G ∼ N
(

µT
y w, wTΣyw

)
,



Appl. Sci. 2021, 11, 797 5 of 19

respectively. Consequently, the mean and variance of F and G can be brought into
Equation (11), respectively, obtaining:

KLD( f ||g) = 1
2

[
wTΣyw
wTΣxw + wTΣxw

wTΣyw +
(

µT
x w− µT

y w
)2( 1

wTΣxw + 1
wTΣyw

)
− 2
]

= 1
2

[
wTΣyw
wTΣxw + wTΣxw

wTΣyw +
(
∆µTw

)2
(

1
wTΣxw + 1

wTΣyw

)
− 2
] (12)

In Equation (12), the mean deviation vector ∆µ, normal data covariance matrix Σx,
and on-line faulty data sample covariance matrix Σy can be obtained through the on-line
faulty data matrix Y and normal data matrix X. Therefore, when historical normal data
X and the on-line faulty data Y to be verified are obtained, only the PV w is unknown
in Equation (12). In other words, KLD( f ||g) is a function h(w) on the PV w as shown in
Equation (13).

h(w) = KLD( f ||g) = 1
2

[
wTΣyw
wTΣxw

+
wTΣxw
wTΣyw

+
(

∆µTw
)2
(

1
wTΣxw

+
1

wTΣyw

)
− 2

]
(13)

Sliding windows with the length of n1 are used to divide the normal data matrix X
and submatrices of X can be obtained X1, · · · , Xi, · · · , Xr, Xi ∈ Rn1×m, i ∈ [1, r]. We project
all submatrices X1, · · · , Xi, · · · , Xr on w to obtain r PDFs PDFX1, · · · , PDFXi, · · · , PDFXr.
We assume that each PDFXi obeys a one-dimensional Gaussian distribution. The KL diver-
gence between PDFXi and f can be calculated by Equation (13). hXi(w) = KLD( f ||PDFXi),
i ∈ [1, r]. The process used to obtain vector hX(w) is shown in Figure 1.

hX(w) = [hX1(w), · · · , hXi(w), · · · , hXr(w)] (14)

J(w) =
h(w)− E(hX(w))

σ(hX(w))
(15)Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 20 
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Figure 1. The process of obtaining vector hX(w).

The relative deviation in KL divergence of the on-line faulty data matrix Y and normal
data matrix X on the PV w is defined as shown in Equation (15). E(hX(w)) and σ(hX(w))
in Equation (15) are the mean and standard deviation of the vector hX(w). E(hX(w)) and
σ(hX(w)) reflect the center and range of the interval of variation range of the KL divergence
for normal data after projection on w, respectively. Once the on-line faulty data matrix Y
and normal data matrix X are given, the KL relative deviation J(w) still remains as the
function about w.
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With the given significance level α, the matrix Y and the matrix X, The larger the value
of the J(w), the easier it is for that fault to be detected. On the contrary, if the value of the
J(w) is small, it is likely to be drowned out by the noise and this leads to poor performance
in detection of the fault. Thus, the problem of finding the optimum PV for fault detection
can be modeled as an optimization problem, as shown in Equation (16).{

minw − J(w)
s.t.wTw = 1; ∀wi,−1 ≤ wi ≤ 1, i ∈ [1, m]

(16)

If the PV w is directly optimized in Equation (16) so that h(w) is maximized, and
the optimum solution may continue to converge on the PV corresponding to the smallest
eigenvalue, thus making the optimization process meaningless. The above mentioned
problem arises because the variation ranges of the eigenvalues of the different PVs are
different. A small eigenvalue leads to small wTΣxw and wTΣyw in Equation (13), which
are exactly in the denominator position, and slight noise can cause large fluctuations in the
KL divergence on the corresponding PVs of the small eigenvalue. Therefore, it is necessary
to standardize h(w), and the optimization goal is to maximize the relative deviation of KL
divergence, J(w), rather than the absolute deviation of KL divergence, h(w).

The goal of PCA is to maximize the variance of the normal data X after it is projected on
the PV w and can be modeled as an optimization problem, as shown in Equation (17) [26].{

minw − wTΣxw
s.t.wTw = 1

(17)

We supposed that wp is the optimum solution of the optimization problem shown in
formula (16), wq is the optimum solution of the optimization problem shown in formula (17).
Since the objective functions of the two optimization problems are different, wTΣxw 6= J(w),
generally, wp is not equal to wq. However, solving formula (16) solves the optimization
problem, and wp is the optimum PV for using KL divergence to detect the fault. Because
wp 6= wq, wq is not the optimum PV for using KL divergence to detect a fault in general.
Therefore, the PVs obtained by PCA are not necessarily the optimum PV for using KL
divergence to detect the fault.

Equation (16) converts the problem of finding the maximum J(w) into a standard
constrained optimization problem by adding a negative sign and constrained conditions.
The search for the optimum PV w that maximizes J(w) is on the surface of a hypersphere
with a radius of 1. Equation (16) is a typical constrained optimization problem, which
can be solved using readily available tools for solving optimization problem, such as the
fmincon function built into MATLAB 2019b.

Since the objective function minw − J(w) in Equation (16) is a nonlinear function
about w, the solution obtained by the iterative method is not necessarily a global optimum
solution, but probably a local optimum solution [31,32]. However, considering that the
optimization problem shown in Equation (16) needs to be solved when each set of on-
line data arrives, finding the global optimum solution will undoubtedly increase the
computational cost. Considering the timeliness, the iteration can be stopped when the
optimization problem in Equation (16) converges to a local optimum solution that is better
than the existing fixed PVs.

It is necessary to ensure that the local optimum solution searched for by Equation (16)
is better than all the fixed PVs of v1, v2, · · · , vm obtained by PCA. To achieve this, when the
on-line data Y arrive, the on-line data Y are projected on each fixed PV v1, v2, · · · , vm and
the mean value drift vector4µ, respectively. The KL divergence relative deviations are
calculated according to Equations (13)–(15) in each PV and the vector of mean value drift.
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Then the vector vj that makes the largest KL divergence relative deviation is selected as the
initial iteration vector w0 of the optimization problem in Equation (16).{

w0 = vj

s.t.J
(
vj
)
= max

(
J(v1), J(v2), · · · , J(vm), J

(
vm+1 = ∆µ

‖∆µ‖

))
, j ∈ [1, m+1]

(18)

3.2. Detecting Incipient Faults Using LOPVs and Dynamic Thresholds

In this section, sliding windows with the length of n1 are used to extract and monitor
the on-line data in real time. The on-line data extracted by the kth sliding window are
Yk ∈ Rn1×m. This article intends to use the idea of hypothesis testing to detect incipient
faults for each Yk, as shown in Figure 2. Let us assume that Yk is faulty, then we test
this hypothesis holds. If the hypothesis held after testing, it is considered that a fault has
occurred in Yk. Otherwise, Yk is normal. The specific hypothesis testing steps are as follows:

1. Let Y = Yk, we assume that Yk is faulty. The method is used as described in Section 3.1
to find the local optimum PV wk for fault detection between the on-line data Yk and
the historical normal data X.

2. Let the projection of X and Yk on the local optimum PV wk be Xwk and Ykwk.
3. The KL divergence KLD(Xwk||Ykwk) of Xwk and Ykwk is calculated.
4. The threshold εk of the local optimum PV wk is set according to the given significance

level α.
5. If KLD(Xwk||Ykwk) > εk, then assuming that Yk is faulty is correct. Otherwise, Yk is

normal. Let k = k + 1, the next sliding window Yk+1 will be tested from steps 1 to 5.
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Figure 2. The idea of hypothesis testing to detect incipient faults for each Yk.

For each on-line datum Yk, the method proposed in this paper will find a local opti-
mum PV wk that is most sensitive to the fault. After wk is obtained, we can obtain vector
hX(wk). According to reference [22], KhX(wk) obeys the chi-square distribution with one
degree of freedom, KhX(wk) ∼ χ2(1), Where K is a large integer. Given the significance
level α, the method of setting the threshold εk is shown in Equation (19). In Equation (19), γ
is a constant. We suggest γ = E(hX(wk)), because there may be E(hX(wk)) 6= E(hX(wk+1)),
which leads to εk 6= εk+1. Generally, wk 6= wk+1, thus,εk 6= εk+1. Therefore, dynamic thresh-
olds are used to detect faults.

εk =
1
K

χ2
α(1) = γχ2

α(1) (19)

3.3. The Complete Incipient Fault Detection Process

The complete incipient fault detection method based on LOPV and KL divergence
consists of two parts: the preprocessing process and the monitoring process:
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The preprocessing process:
1. Z-score normalization is performed on the normal data matrix X to obtain X.
2. The reference mean vector µx and the reference covariance matrix Σx for the normal data

matrix X are calculated.
3. PCA is performed on the normal matrix X and the matrix V of all m PVs is retained.
4. Data matrices X1, · · · , Xi, · · · , Xr

(
Xi ∈ X, i ∈ [1, r]

)
are extracted from the normal matrix

X using sliding windows with the length of n1. The mean vectorµXi and the covariance
matrix ΣXi for each Xi are calculated and stored.

The monitoring process:
1. The on− line data matrix Yk is extracted using a sliding window with the length of n1.
2. Z− score normalization is performed on the on− line data matrix Yk to obtain Yk.
3. The mean vectorµYk and the covariance matrix ΣYk of the matrix Yk are calculated.
4. The vector of mean drift ∆µYk/‖∆µYk‖between YkandX iscalculated.
5. Equation (18) is used to find the initial vector of the iteration of the optimization

problem w0.
6. The optimization problem in Equation (16) is solved to obtain the local optimum

PV wk of the online data matrix Yk.
7. Equation (13) and Equation (14) are used to obtain the vector hX(wk).
8. The fault detection threshold εk is determined using Equation (19).
9. The KL divergence h(wk) ofX and Yk after being projected on the

local optimum PV wk is calculated by using Equation (13).
10. If h(wk) > εk was, then assuming that Yk is faulty is correct. Otherwise, Yk is

normal. Let k = k + 1, the next sliding window Yk+1 will be tested from steps 1 to 10.

It should be noted that the above incipient fault detection method based on LOPV and
KL divergence is suitable for systems with high requirements for incipient fault detection
and sufficient computational resources. When the system has insufficient computational
resources, the sliding window interval can be increased to reduce the frequency of solving
the optimization problem. For example, the optimization problem can be solved every
hour or daily. The LOPV obtained by solving the optimization problem can be added to
the matrix V which contains m PVs obtained by the PCA method, V = V ∪ LOPV. Then,
the new V that contains m + 1 PVs is used to detect incipient faults.

Another method to reduce the computational requirements is to set detection thresh-
olds lower for existing fault detection methods based on PCA and KL divergence, so that
the optimization problem is solved when a sliding window of on-line data exceeds the
detection threshold of one PV. Then, V = V ∪ LOPV, increase the detection thresholds and
use the new V to detect faults. Users can flexibly select the sliding window interval or
detection thresholds based on actual monitoring needs and resource constraints.

4. Results and Analysis
4.1. Numerical Example

The effectiveness of the proposed method is verified through a numerical example
which includes three incipient faults. The system is modeled by

x1 = s1 + s2 + e1
x2 = s2 − s3 + f1 + e2

x3 = s1 − (1 + f2)s4 + e3
x4 = (1 + f3)x1 + x3 + e4

(20)

In Equation (20), [s1, s2, s3, s4]
T and [e1, e2, e3, e4]

T are Gaussian-distributed source
signals and noises. All the source signals obey the standard normal distribution N(0, 1), and
f1, f2 and f3 are three incipient faults, respectively, and [x1, x2, x3, x4]

T are the four variables
that need be monitored [22]. Three incipient faults were simulated in this numerical
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experiment. Fault f1 is the offset fault, and fault f2 and fault f3 are the gain faults. The
three faults were inserted as follows:

f1 =

{
0 1st− 30000th
0.35 30001st− 60000th

f2 =

{
0 1st− 30000th
0.25 30001st− 60000th

f3 =

{
0 1st− 30000th
0.05 30001st− 60000th

(21)

The fault detection rate (FDR) and false alarm rate (FAR) are calculated as follows:

FDR = prob{h(wk) > εk|H1} (22)

FAR = prob{h(wk) > εk|H0} (23)

The other parameters of the numerical simulation experiment were set as follows. The
total number of samples were 120,000, of which 60,000 were historical normal samples
and 60,000 were online samples for testing. The sliding window length for both the
historical normal data and the on-line test data in the experiment was 300. After using
the sliding windows, a total of 200 windows of on-line data were obtained, of which the
first 100 windows are normal windows, and the last 100 windows are fault windows. The
default Signal-to-Noise Ratio (SNR) was 20 dB.

For the purpose of comparison with other PCA-based fault detection methods, the
proposed method was compared with the conventional T2 statistic [33] (PCA + T2), the SPE
statistic [33] (PCA + SPE), the method of using KL divergence to monitor the PVs in the
principal subspace [21] (PCA + KLD1), and the method of using KL divergence to monitor
the PVs both in the principal subspace and the residual subspace [22] (PCA + KLD2). The
principal subspace was selected with a cumulative variance contribution of more than 90%.
The confidence level for the T2 statistic and the SPE statistic were both set at 0.99. The
significance level for the PCA + KLD1 method and the PCA + KLD2 method were both set
at 0.05. The significance level for proposed method was set at 0.01.

The results of the T2 statistic and the SPE statistic for the incipient fault f1 are shown
in Figure 3. It can be seen from Figure 3 that the T2 statistic and SPE statistic did not change
significantly before and after insertion of the fault f1. After f1 occurred, most of the online
fault samples were still within the detection threshold. The T2 statistic and the SPE statistic
were equally ineffective in detecting the incipient faults f2 and f3.

The results of detecting the incipient fault f1 by using the PCA + KLD1 method and
the PCA + KLD2 method are shown in Figure 4. A comparison of Figure 4a–d shows
that the second and third PV were sensitive to the incipient fault f1. The remaining two
PVs were less effective at detecting f1. The detection result of the proposed method for
the incipient fault f1 is shown in Figure 5. It can be seen from Figure 5 that the proposed
method also has a good detection effect for the fault f1.

The results of detecting the incipient fault f2 by using the PCA + KLD1 method and
the PCA + KLD2 method are shown in Figure 6. Comparing Figure 6a–d shows that only
the third PV of the four PVs obtained by PCA was sensitive to f2. However, there are
still about 30% of the fault windows below the fault detection threshold. The result of
detecting the fault f2 by using the proposed method is shown in Figure 7. It can be seen
from Figure 7 that only about 12% of the fault windows were below the fault detection
threshold, which is better than the results of PVs obtained by PCA.
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Figure 3. Results of detecting fault f1 using the T2 and squared prediction error (SPE) statistics: (a) T2 statistic result for
all on-line samples; (b) the result for the T2 statistic at 1000 samples before and after insertion of the fault; (c) SPE statistic
result for all on-line samples; (d) the result for the SPE statistic at 1000 samples before and after insertion of the fault.
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Figure 4. The results of detecting the incipient fault f1 by using the principal component analysis (PCA) + Kullback-Leibler
divergence (KLD)1 method and the PCA + KLD2 method: (a) the result of first projection vector (PV) for the fault f1; (b) the
result of second PV for the fault f1; (c) the result of third PV for the fault f1; (d) the result of fourth PV for the fault f1.
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Figure 5. The detection result of the proposed method for the incipient fault f1.
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Figure 6. The results of detecting the incipient fault f2 by using the PCA + KLD1 method and the PCA + KLD2 method: (a)
the result of first PV for the fault f2; (b) the result of second PV for the fault f2; (c) the result of third PV for the fault f2; (d)
the result of fourth PV for the fault f2.
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Figure 7. The detection result of the proposed method for the incipient fault f2.

Figure 8 shows the results of detecting the incipient fault f3 by using the PCA + KLD1
method and the PCA + KLD2 method. Both the PCA + KLD1 method and the PCA + KLD2
method have poor detection results for f3. There are still about 60% of the fault windows
below the fault detection threshold. Although we could increase the detection rate by
decreasing the detection threshold, because the fault windows and the normal windows
are not clearly separated, the false alarm rate will also increase. It can be seen from Figure 9
that the proposed method has a very good detection effect on f3, and the fault detection
rate is 98% with similar false alarm rate as the PCA + KLD2 method.
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Figure 8. The results of detecting the incipient fault f3 by using the PCA + KLD1 method and the PCA + KLD2 method: (a)
the result of first PV for the fault f3; (b) the result of second PV for the fault f3; (c) the result of third PV for the fault f3; (d)
the result of fourth PV for the fault f3.
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Figure 9. The detection result of the proposed method for the incipient fault f3.

The three incipient faults were simulated randomly for a total of 100 times and then the
average values of the fault detection results were calculated and are summarized in Table 1.
In Table 1, the traditional fault detection methods using PCA and T2 or SPE statistics
were very poor at detecting the three incipient faults. The PCA + KLD1, and PCA + KLD2
methods using fixed PVs and KL divergence greatly improved the detection of the three
incipient faults compared to the T2 and SPE statistics. However, under the condition of
similar false alarm rate, the average fault detection rate of the proposed method in this
paper for the three faults was 60% and 30% higher than the PCA + KLD1, and PCA + KLD2
methods with fixed PVs, respectively.

Table 1. Comparison of the performance of five different methods at detecting the three faults.

Faults
PCA+T2 PCA + SPE PCA + KLD1 PCA + KLD2 Proposed Method

FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR

f1 1.09% 1.01% 1.20% 1.01% 79.63% 4.87% 98.04% 9.50% 98.11% 8.10%
f2 1.45% 0.98% 2.13% 1.02% 13.83% 4.63% 62.92% 9.01% 84.77% 7.48%
f3 1.04% 0.99% 1.02% 1.01% 4.38% 3.70% 35.17% 9.20% 98.33% 8.05%

Average value 1.19% 1.00% 1.45% 1.01% 32.61% 4.73% 65.38% 9.24% 93.74% 7.88%

In Table 1, the proposed method and the PCA + KLD2 method had similar effects for
the incipient fault f1, while the detection rate of the incipient fault f3 was improved by
up to 60%. After analysis, we found that the different improvements in the detection rate
of faults was related to the characteristics of the actual occurrence of the incipient faults.
When the occurrence of the incipient fault is in the detection sensitive region of a fixed PV
obtained by the PCA method, the method of PCA + KLD2 can obtain good results. For
example, the incipient fault f1 is both located in the sensitive region of the second and the
third PV. Consequently, the detection rate of the PCA + KLD2 method was more than 98%
for the incipient fault f1. However, when the incipient fault is located in regions where the
existing PVs are insensitive (e.g., the incipient fault f3), the detection rate of the proposed
method is improved by 60% compared with the traditional PCA + KLD2 method which
uses fixed PVs. Combining the results of detecting the above three incipient faults, with the
given significance level α, the PCA + KLD2 method is only sensitive to a part of the fault
space. In contrast, the method proposed in this paper covers more of the fault space by
finding the optimum PV for detecting incipient faults detection and is more adaptable to
various possible incipient faults than the fixed PV fault detection method because it takes
into account the characteristics of the actual incipient faults.
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4.2. Satellite Spread-Spectrum Transponder Fault Case
4.2.1. The Phenomena and Causes of the Fault

On 3 October 2018, the downlink telemetry fault of a satellite spread spectrum
transponder occurred. The ground telemetry, track and command (TT&C) station could
not accept the satellite’s downlink telemetry signal, and the satellite telemetry remote com-
munication returned to normal after enabling the backup spread spectrum transponder.
After the incident, the data transmitted about the spread spectrum transponder telemetry
showed that the spread spectrum transponder was in a shutdown state; the 5 V power
telemetry jumped to 0 V; the solid-state amplifier current jumped from 0.715 A to 0.13 A;
the solid-state amplifier power jumped from 11.19 w to 0.13 w; the temperature data
showed the occurrence of the fault in the high-temperature region; the 12 V power teleme-
try slightly decreased; and other telemetry parameters were in the normal range. The
spread spectrum transponder 5 V power telemetry performance before the jump to 0 is
illustrated in Figure 10a. A similar exponential increase in the 5 V voltage before the fault
and the eventual power failure is illustrated in Figure 10a.
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Figure 10. The phenomena of the spread-spectrum transponder fault: (a) the spread spectrum transponder telemetry
performance before failure; (b) the relationship of the 5 V voltage and the temperature.

The post-fault analysis located the fault as an anomaly in the DC–DC module of the
spread spectrum transponder power module. This module is responsible for converting
the voltage of the 42 V primary power supply to generate 5 V and 12 V power and then
supplying power to the spread spectrum receiver and the spread spectrum transmitter.
The analysis of the telemetry data of the occurrence of the fault shows that both the 5V
and 12 V voltage fluctuations of the spread spectrum transponder are correlated with the
temperature fluctuations of the spread spectrum transponder. As shown in Figure 10b,
periodic fluctuations in the spread spectrum transponder temperature occurred because
the satellite-Z surface where the stand-alone transmitter is located fluctuates periodically
due to the influence of an external heat source. The 5 V voltage telemetry also fluctuated
with the temperature before the fault. The 5 V voltage fluctuation to higher values mainly
occurred in the high temperature region, while the 5 V voltage fluctuation to lower values
mainly occurred in the low temperature region.

4.2.2. Results and Comparison of Detecting the Fault

We used a total of 5,215,000 samples of real telemetry data obtained from satellite
measurements and control systems from 0:0:0 on 1 July 2018 to 8:05:49 on 3 October
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2018. Each sample included three telemetry parameters: the spread-spectrum transponder
temperature; the 5 V voltage of the spread-spectrum transponder; and the 12 V voltage
of the spread-spectrum transponder, as shown in Figure 11. Due to the influence of
the variation of satellite-Z’s angle to the sun, the temperature of the spread spectrum
transponder drifts slowly with time. Consequently, in the experiment the temperature
telemetry data were de-drifted. The sampling rate of all data was 1 Hz, and the satellite
orbital period was 46,468 s. However, the data were discontinuous in time, which is due to
the influence of the visible arc segment of the satellite and the ground station measurement
and control resources. This resulted in telemetry data not being transmitted downward
during part of the time.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 20 
 

temperature fluctuations of the spread spectrum transponder. As shown in Figure 10b, 
periodic fluctuations in the spread spectrum transponder temperature occurred because 
the satellite-Z surface where the stand-alone transmitter is located fluctuates periodically 
due to the influence of an external heat source. The 5 V voltage telemetry also fluctuated 
with the temperature before the fault. The 5 V voltage fluctuation to higher values mainly 
occurred in the high temperature region, while the 5 V voltage fluctuation to lower values 
mainly occurred in the low temperature region. 

 
Figure 10. The phenomena of the spread-spectrum transponder fault: (a) the spread spectrum 
transponder telemetry performance before failure; (b) the relationship of the 5 V voltage and the 
temperature. 

4.2.2. Results and Comparison of Detecting the Fault 
We used a total of 5,215,000 samples of real telemetry data obtained from satellite 

measurements and control systems from 0:0:0 on 1 July 2018 to 8:05:49 on 3 October 2018. 
Each sample included three telemetry parameters: the spread-spectrum transponder tem-
perature; the 5 V voltage of the spread-spectrum transponder; and the 12 V voltage of the 
spread-spectrum transponder, as shown in Figure 11. Due to the influence of the variation 
of satellite-Z’s angle to the sun, the temperature of the spread spectrum transponder drifts 
slowly with time. Consequently, in the experiment the temperature telemetry data were 
de-drifted. The sampling rate of all data was 1 Hz, and the satellite orbital period was 
46,468 s. However, the data were discontinuous in time, which is due to the influence of 
the visible arc segment of the satellite and the ground station measurement and control 
resources. This resulted in telemetry data not being transmitted downward during part 
of the time. 

 
Figure 11. Raw telemetry data of the spread spectrum transponder. 

22:00:00 23:00:00 00:00:00 01:00:00
time

5.15

5.2

5.25

5.3

5.35

5.4

5.45

5.5

(a)

5V voltage
temperature

33

33.5

34

34.5

35

35.5

36

36.5

18:00:00 00:00:00 06:00:00 12:00:00 18:00:00
time

5.07

5.08

5.09

5.1

5.11

5.12

5.13

(b)

5V voltage
temperature

24

26

28

30

32

34

36

Figure 11. Raw telemetry data of the spread spectrum transponder.

In this article, the satellite orbital period was used as the length of the sliding window.
The sliding window interval was 10,000 s, and a total of 539 sliding windows were retained
with more than 20,000 samples within each sliding window. The first 380 sliding windows
were selected as normal windows, and the last 159 sliding windows were used as on-line test
windows. The first 64 windows in the on-line test windows were the normal windows, and
the windows after that were the fault windows. The significance level of the PCA + KLD1
method and PCA + KLD2 method participating in the comparison were set to 0.05, 0.025 and
0.01, respectively, and significance level of the proposed method was set to 0.01.

Figure 12a–c shows the results of the spread spectrum transponder fault detection
on the three PVs obtained from the PCA method. It can be seen from Figure 12 that only
the second PV was sensitive to the fault. With a significance level of 0.01, there were still
23% of the fault windows located below the detection threshold. With a significance level
of 0.025, 15% of the fault windows were still located below the detection threshold and a
normal window was considered to be a fault window.

In comparison, Figure 13 shows the results of the proposed method for the spread-
spectrum transponder fault. It is evident that the detection results on the local optimum
PVs were better than those on the fixed PVs. Most of the fault windows were located above
the detection threshold, with a high fault detection rate of 92.63% and a false alarm rate of
0%. With the significance level of 0.01, the PCA + KLD2 method can also obtain a 92.63%
fault detection rate. However, 23.44% of the normal windows were considered to be fault
windows. The fault detection results were calculated and are summarized in Table 2. This
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real case of detecting the fault in a satellite’s spread spectrum transponder further verifies
the effectiveness and superiority of the method proposed in this paper.
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Table 2. Comparison of the performance of three different methods at detecting the spread-spectrum transponder fault.

Methods PCA + KLD1 PCA + KLD2 Proposed Method

Significance Level 0.05 0.025 0.01 0.05 0.025 0.01 0.01

FDR 76.84% 84.21% 92.63% 76.84% 84.21% 92.63% 92.63%
FAR 0% 3.13% 23.44% 0% 3.13% 23.44% 0%

5. Conclusions

The efficient detection and solving of incipient faults will effectively reduce the losses
and the hazards they cause. Under the assumption that the variables obey a multidimen-
sional Gaussian distribution, this paper models the optimum PV for detecting incipient
faults as an optimization problem. Then, the validity of the proposed method is assessed
using a numerical simulation example and an actual satellite fault case. Two different
mitigation schemes are proposed to address the computational problem of the proposed
method, in which the user can flexibly choose the sliding window interval or the alarm
threshold according to the actual monitoring requirements and resource constraints. The
method only has been proved in three faults. If the system was non-Gaussian or nonlinear,
the detection effect of the proposed method might decrease. The future works related with
improvement of the method can come from time efficiency and expansion to nonlinear sys-
tems. Although the proposed method is based on detecting incipient faults in satellites, it is
not specific to this application of detecting faults in satellites and can be extended to other
applications where multivariate statistical analysis can be used to detect incipient faults.
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Abbreviations

FAR false alarm rate
FDR fault detection rate
GPR Gaussian Process Regression
IMS Inductive Monitoring System
KL Kullback–Leibler
KLD KL divergence
LOPV local optimum PV
LSTM Long Short-Term Memory
OS-SVM One Class Support Vector Machine
PCA principal component analysis
PDF probability density function
PV projection vector
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Mathematical Notations

Symbol Size Description
X n0 ×m Normal data matrix.
n0 1× 1 Number of normal samples
m 1× 1 Number of variables of a system
X n0 ×m Normal data matrix after standardized.
Σ m×m Covariance matrix of X
V m×m Eigenvector matrix of X, each column of the matrix V is a projection vector
n1 1× 1 Number of on-line samples
Y n1 ×m On-line data matrix.
vj m× 1 jth column of the matrix V
ε j 1× 1 Detection threshold of the PV vj
α Significance level
µx m× 1 Mean vector of the joint Gaussian distribution that the normal data obeyed
Σx m×m Covariance matrix of the joint Gaussian distribution that the normal data obeyed
w m× 1 Optimum PV
µy m× 1 Mean vector of the joint Gaussian distribution that the on-line data obeyed
Σy m×m Covariance matrix of the joint Gaussian distribution that the on-line data obeyed
∆µ m× 1 Mean deviation vector of µx and µy
h(w) 1× 1 KL divergence of the projections of the normal data matrix X and the on-line data matrix Y on w
hX(w) r× 1 Vector of the KL divergences of the projections between all submatrices and the normal data matrix X on w
J(w) 1× 1 Relative KL divergence of the projection of the normal data matrix X and the on-line data matrix Y on w
w0 m× 1 Initial iteration vector
Yk n1 ×m On-line data extracted by the kth sliding window.
wk m× 1 Local optimum PV of the on-line data Yk and the normal data X
εk 1× 1 Detection threshold of the local optimal PV wk
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