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ABSTRACT 
 

Background: Colorectal cancer (CRC) is a serious global epidemic, being the third most prevalent 
cancer worldwide, finding novel treatment alternatives for CRC is thus of the greatest importance. 
The atomic level interaction between a tiny molecule and a protein can be represented using 
molecular docking. Molecular docking is critical for visualizing ligand-protein interactions at the 
atomic level highlighting our knowledge of ligands behavior, which aids in the development of 
structure-based drugs. Methods: We used molecular docking to investigate the anticancer activity 
for two main ligands (reticuline and coclaurine) and four potential anticancer receptors (TNIK, 
VEGFR, EGFR and AKT2). Protein Data Bank provided the 3D structures of the receptor proteins, 
iGEMDOCK and AutoDock vina program were used for molecular docking. Results: Reticuline had 
the best docked postures and the highest interactive energy with CRC receptors: TNIK, VEGFR, 
EGFR and AKT2 with the following binding energy; -96.7, -117.8, -120.2, and -108.3 kcal/mol 
accordingly. Conclusion: According to this study, the investigated ligands were successfully docked 
onto reticuline and coclaurine ligands for drug interaction studies, the calculated binding energy 
demonstrate their importance as an anti-carcinogenic target. The current findings lay the 
groundwork for further research into reticuline and coclaurine as a potential CRC therapeutic 
option. 
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1. INTRODUCTION 
 
Colorectal cancer (CRC) is the third most 
frequent disease diagnosed and the second 
largest cause of cancer mortality globally, with 
over 1.9 million new cases and 935,000 fatalities 
expected in 2020 [1,2]. The prognosis of CRC is 
relatively dismal, with the patient's fate 
determined by the degree of local and metastatic 
tumor dispersion. Combined with advances in the 
detection and treatment of human CRC during 
the last decades, this disease remains one of the 
world's most difficult health issues [3]. Large 
comprehensive proteome and genomic studies of 
CRC have also been performed, resulting in the 
discovery of CRC subtypes, cancer antigens, 
therapeutic targets, and major signaling 
pathways linked to CRC development [4].  
 
TNIK (Nck-interacting kinase) belongs to the 
germinal center kinase family. TNIK was 
discovered to be a kinase that regulates 
cytoskeletal structure in several different kinds of 
cells, and it was latterly suggested as a new 
curative candidate in many kinds of human 
malignancies [4]. While earlier research indicates 
that TNIK has an important furcation in tumor cell 
survival and predicting treatment, its intervention 
in hematological tumor cell survival has not been 
explored [5]. VEGFR-2 is tyrosine kinase 
receptor expressed in endothelial cells. VEGFR-
2 is a main factor in anti-angiogenesis and a 
potent inhibitor of tumor cell growth and 
metastasis [6]. Angiogenesis inhibitors block the 
activities of vascular endothelial growth factor 
receptors (VEGFR-1, VEGFR-2, and VEGFR-3) 
in downstream signaling pathways [7]. 
Preventing VEGFR-2 in tumor cells was 
discovered to start and expedite apoptosis, which 
simultaneously enhances the anticancer impact 
[8]. The Epidermal Growth Factor Receptor 
(EGFR) is a tyrosine kinase receptor that 
becomes active following the acquisition of 
different driver mutations within the kinase 
domain, causing aberrant cell replication. EGFR 
is a key indicator for treatment strategies since it 
is one of the most important goals for kinase 
inhibition in non-small cell lung tumors [9]. Akt, or 
protein kinase B, a serine–threonine kinase, has 
been elucidated in several types of human 

tumors, involving gastrointestinal, pulmonary, 
breast, ovarian, head and neck, prostate and 
thyroid tumors and may be involved in 
carcinogenesis [10]. 
 
Alkaloids have long been identified as vital 
secondary metabolites belongs to 
phytoconstituents with a variety of biological 
characteristics [11]. The term "alkaloids," is 
derived from the Arabic name al-qali, which is 
linked to the plant from which soda was originally 
extracted [12]. Due to their wide range of 
physiological and pharmacological properties 
such as antibiotics and anticancer, as well as 
their potential exploitation as narcotics, poisons, 
and stimulants, alkaloids have had a huge effect 
on human history, with about 12,000 alkaloids 
are isolated from different genera of the plant 
kingdom [11,13]. 
 
Reticuline (Fig. 1.A) and coclaurine (Fig. 1.B) are 
alkaloid’s chemical compounds that occur 
naturally and extracted in a wide range of plants 
[14–19]. 
 
An in silico experiment is one that is carried out 
on a computer or through computer simulation in 
biology and other experimental sciences [21]. 
The term refers to silicon in computer chips and 
is pseudo-Latin meaning ‘in silicon’ (in Latin, it 
would be in silico). In 1987, it must have been 
developed as a play on the Latin terms in vivo, in 
vitro, and in situ, which are usually utilized in 
biology (especially systems biology) [22]. In silico 
medical research has the ability to accelerate the 
rate of innovation, minimizing the requirements 
for costly laboratory efforts and new treatments. 
One method to accomplish this is to increase the 
efficiency with which drug candidates are 
produced and screened [23]. Researchers 
discovered possible inhibitors to an enzyme 
related with malignancy activity in silico and used 
the protein docking method EA Dock [24].  
 
This approach varies from the use of delay and 
cost overrun screening (HTS) robotic labs that 
physically test hundreds of different compounds 
per day, with a predicted hit rate of 1% or fewer, 
and even lower projected to be genuine leads 
after additional examination (like  drug discovery) 
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Fig. 1. Chemical structure of (A) Reticuline and (B) Coclaurine [20] 
 
[25]. It has been attempted to develop computer 
models of cellular behavior. Researchers, for 
illustration, constructed an in silico model of 
tuberculosis to assist in medicinal development 
in 2007, with the major purpose of being better 
than meaningful predicted growth rates, 
providing phenomena of importance to be 
detected in minutes but instead of months [26]. 

 
The molecular docking methodology may be 
used to represent the atomic level interaction 
between a small molecule and a protein, allowing 
us to define novel molecular behavior in target 
protein binding sites as well as elucidate key 
biochemical pathways [27]. The lock-and-key 
theory proposed by Fischer [28], in which the 
ligand fits into the binding site like a lock and key, 
was the first explication of the ligand-receptor 
binding phenomenon. The initial docking 
approaches [29] were highlighted in this section, 
and the ligand and receptor were both 
considered as rigid entities. The “induced-fit” 
theory [30,31] proposed by Koshland extends the 
lock-and-key theory by claiming that as ligands 
engage with the protein, the active region of the 
protein is constantly altered by interactions with 
the ligands. Molecular docking has been utilized 
to identify potential inhibitors for numerous 
disease’s receptors and associated pathways, 
including but not limited to; inflammation, viral 
infection, Alzheimer's disease, cardiovascular 
disease [32–37] and various cancer types [38–
42]. 

 
In this research we used molecular docking 
approach to analyze and visualize ligand-protein 
interactions between (reticuline and coclaurine) 

and CRC receptors: TNIK, VEGFR, EGFR and 
AKT2.  
 

2. MATERIALS AND METHODS 
 

This study was carried out in the computer 
laboratories at king Abdulaziz University during 
2020-2021. 
 

2.1 Molecular Docking Analysis  
 

The docking procedure consists of two main 
steps: predicting the ligand structure including its 
location and orientation within certain sites 
(known as pose) and determining the binding 
affinity. Knowing where the binding site would be 
before starting this same docking process 
improves docking efficiency dramatically. 
Throughout many cases, the target protein is 
identified already when ligands are docked into it. 
Also, by comparing the target protein to a group 
of proteins with comparable functions or proteins 
co-crystallized with other ligands, one can learn 
more about the locations. 
 

Docking energy is utilized to pick the lowest-
energy pose(s) among a huge variety of 
conformations created for each molecule. While 
binding energy is released when a drug molecule 
binds to a target, decreasing the total energy of 
the complex, the higher the energy released 
when a ligand binds to a protein, the greater the 
tendency of the ligand to associate with that 
protein [43]. 
 

2.2 Selection of Receptors  
 

The receptors used in this investigation for 
performing In-silico studies, the receptors were 
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chosen based on their physiological roles and 
pathways. The receptors for the current research 
were chosen based on the published target 
locations of ligands (Table 1). These receptors 
three-dimensional structures were obtained from 
the PDB (Protein Database) [44]. These 
receptors pathways were investigated utilizing 
KEGG (Kyoto Encyclopaedia of Genes and 
Genomes) pathways [45].   
 
Four different types of receptors have been 
selected to perform this experiment, which 
mainly includes TNIK protein (Nck interacting 
kinase), VEGFR (Vascular endothelial growth 
factor), EGFR (Epidermal growth factor 
receptor), and AKT2 (Protein kinase B).  
 

2.3 Selection of Ligands 
 
For this study, ligands belong to alkaloid 
phytochemicals were screened with the specific 
anti-cancer receptor. Two alkaloids were 
selected for this study (reticuline and coclaurine) 
because of the highest binding energy exhibited 
by them. Chemspider database and PDB 
(Protein Database) [46] were used to obtain the 
structures of reticuline and coclaurine. The 
pKCSM (Prediction of small-molecule 
Pharmacokinetics and Toxicity) programme was 
used to screen the pharmacokinetic features of 
the various ligands. The absorption, distribution, 
metabolism, and excretion features of every 
substance are defined by its pharmacokinetics 
profile [47]. Many tools are accessible online for 
forecasting a compound’s pharmacokinetics and 
toxicological qualities depending on the chemical 
structure or composition, spanning from data-
based approaches as QSAR (Quantitative 
Structure-activity Relationship), identical                 
studies [48,49], and 3-dimensional QSAR [50-
54]. 
 

2.4 Multi-Receptor Docking  
 
The anticancer (colorectal tumour) capabilities of 
the selected reticuline and coclaurine were 
predicted using multi-receptor docking. 
iGEMDOCK and AutoDock vina software were 
used to conduct docking investigations [55]. The 
features of active sites, including as physical and 
chemical qualities, will allow the ligand to be 
recognized and bound. The parameters 
(population size 200, generations 70, and 
solutions 10) were used to produce different 
conformations of docked structures, and the best 
confirmation was chosen based on the lowest 
binding energy. 

3. RESULTS 
 

3.1 In silico Prediction of the Anti-Cancer 
Properties of Reticuline and 
Coclaurine 

 
The inhibitory activity of the ligands Reticuline 
and Coclaurine with various cancer receptors 
that are thought to be potential therapeutic 
targets was investigated using multi-receptor 
docking. The optimum docked pose of structure 
was chosen based on the lowest binding energy, 
interacting residues, and hydrogen bond number. 
Among the trsted alkaloids , reticuline had the 
best docked postures and the highest interactive 
energy. TNIK, VEGFR, EGFR and TNIK are the 
receptors that demonstrated the best binding 
relationships. -96.7, -117.8, -120.2, and -108.3 
kcal/mol (Fig. 2 and Fig. 3). On the other hand 
with respect to Coclaurine ligand the receptors 
showed less binding energy which were -87.8, -
102.3, -76.7, and -96.6 kcal/mol were discovered 
to represent the docked energies of receptor-
ligand complex-1, accordingly (Fig. 4 and Fig. 5).  
 

4. DISCUSSION 
 
Colorectal cancer (CRC) is among the most 
lethal and diagnosed malignancies in the world. 
Targeted treatment is a novel optional strategy 
that has effectively prolonged overall survival in 
CRC patients. The current work provides 
comprehensive information on the binding ability 
of certain alkaloids, such as reticuline and 
coclaurine ligands, to prospective cancer 
treatment targets. In this study anti CRC activity 
was investigated with two main ligands and four 
receptors. The ability of reticuline and coclaurine 
to bind to specific targets was investigated using 
molecular docking and In-silico studies. TNIK, 
VEGFR, EGFR and AKT2 were found to have 
high affinity for reticuline and coclaurine as an 
anticancer agent according to this research, 
indicating a promising approach to medication 
discovery for CRC receptors. TNIK antagonists 
have recently been demonstrated to decrease 
cancer cell proliferation in vitro and in vivo, as 
well as to diminish CRC cell survival [56]. As a 
result, identifying TNIK inhibitors might be 
beneficial in understanding the process of TNIK-
mediated cell cycle control and may have 
promising utility in cancer therapy. Breast cancer, 
colorectal cancer, and lung cancer all have TNIK 
protein [57]. Inhibiting VEGFR-2 in cancer cells 
was discovered to start and expedite apoptosis, 
which simultaneously enhances the anticancer 
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impact [8]. Another study found that the 
expression levels of TIPE and VEGFR2 are 
regulated in CRC angiogenesis [58]. In the 
treatment of metastatic CRC, EGFR inhibitors 
are promising therapeutics target [58]. The 
EGFR signal transduction pathway is often 
generally thought to have a significant role in 
tumor genesis and progression, and it is one of 
the most key targets for a variety of malignancies 
[59]. The AKT family, which consists of three 

highly associated isoforms, AKT1, AKT2, and 
AKT3, has been linked to cell proliferation, 
survival, and apoptosis [60]. Overexpressed 
AKT2 promoted metastasis in CRC [61]. AKT2 is 
the driving force behind a variety of cellular 
activities such as DNA replication and DNA 
repair, and its overexpression has been linked to 
oncogenesis [62,63]. AKT2 knockdown was 
reported to inhibit tumor cells proliferation              
[64]. 

 
Table 1. Potential therapeutic targets from a variety of CRC receptors for structure-based drug 

screening* 
 

Gene name  Receptor name PDB id 

TNIK  Nck Interacting kinase 5AX9 
VEGFR  Vascular endothelial growth factor 3VHK 
EGFR  Epidermal growth factor receptor 1XKK 
AKT2  Protein kinase B 1MRV 

*Source: PDB (Protein Database) 

 

 
 

Fig. 2. Molecular docking studies of reticulum ligand with CRC drug targets showing negative 
binding energy 

 

 
 

Fig. 3. Molecular docking studies of coclaurine ligand with CRC drug targets showing negative 
binding energy 
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Fig. 4. Binding interaction of specific receptor target with reticuline (A): TNIK, (B): VEGFR, (C): 
EGFR), (D): AKT2 

 

 
 

Fig. 5. Binding interaction of specific receptor target with coclaurine (A): TNIK, (B): VEGFR, 
(C): EGFR), (D): AKT2 

 
The inhibitory activity of the ligands reticuline and 
coclaurine with these anti-cancer receptors are 
thought to be potential therapeutic targets was 
investigated before using multi-receptor docking 
and for In-silico studies [65]. The optimum 
docked pose of structure was chosen based on 
the lowest binding energy interacting residues, 
and hydrogen bond number [66]. Among the 
alkaloids, reticuline had the best docked postures 
and the highest interactive energy [67]. Alkaloids 
have a wide range of inhibitory actions against a 
variety of cancer receptors making them ideal 
therapeutic medication for a number of cancers 
due to their high inhibitory efficacy and superior 
pharmacokinetic properties [68]. 

As a result of this research, it documented those 
alkaloids have an optimal binding feature with the 
selected cancer receptors.  
 
To the best of our knowledge, this is one of the 
studies showing alkaloids' therapeutic potential 
against cancer's key targets. The present 
research improves our knowledge of how to 
select and test lead compounds as possible 
chemotherapeutic drugs in the future. Because of 
their effectiveness as an inhibitor, reticuline                  
and coclaurine should be considered in in vitro 
and in vivo studies for a variety of cancer cell 
lines. 
 

 

A B 

C D 
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5. CONCLUSION 

 
Alkaloids are vital chemical substances that may 
be exploited to find new drugs. Various alkaloids 
isolated from medicinal plants and herbs were 
shown to have antiproliferative and anticancer 
effects on a broad range of malignancies in vitro 
and in vivo. By using computer-assisted virtual 
screening, the inhibitory effects of alkaloids 
against numerous cancer treatment targets were 
discovered. 
 
According to this study, reticuline and coclaurine 
inhibited CRC pathogenic gene products of 
TNIK, VEGFR, EGFR and AKT2 better than their 
native ligands. These receptors were 
successfully docked onto reticuline and 
coclaurine ligands for drug interaction studies, 
with the best binding energy. Demonstrating its 
importance as an anti-carcinogenic target by 
alkaloids. The current findings lay the 
groundwork for further research into alkaloids as 
a potential CRC therapeutic option. 
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