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5-Hydroxymethylfurfural (HMF) has aroused considerable interest over the past

years as an important biomass-derived platform molecule, yielding various

value-added products. The conventional HMF conversion requires noble

metal catalysts and harsh operating conditions. On the other hand, the

electrocatalytic conversion of HMF has been considered as an

environmentally benign alternative. However, its practical application is

limited by low overall energy efficiency and incomplete conversion. Paired

electrolysis and highly efficient electrocatalysts are two viable strategies to

address these limitations. Herein, an overview of coupled electrocatalytic HMF

hydrogenation or hydrogen evolution reaction (HER) with HMF oxidation as well

as the associated electrocatalysts are reviewed and discussed. In this mini-

review, a brief introduction of electrocatalytic HMF upgrading is given, followed

by the recent advances and challenges of paired electrolysis with an emphasis

on the integration HMF electrohydrogenation with HMF electrooxidation.

Finally, a perspective for a future sustainable biomass upgrading community

based on electrocatalysis is proposed.
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Introduction

The rapid development of human civilization and growth of world population result in

fiercely global energy demands (Corma et al., 2007; Mika et al., 2018). Due to the declining

fossil fuel reserves and the increasing concerns about environmental impacts resulting from

fossil fuel combustion, more efforts have been devoted to exploring sustainable energy

sources and renewable carbons for organic chemical production (Bozell, 2010; Shi and

Zhang, 2016). As the most abundant natural carbon, biomass possesses a great promise in

developing carbon-neutral economy (Demirbas, 2001; Hu et al., 2012; Morais et al., 2015).

Recently, a biomass-derived chemical, 5-hydroxymethylfurfural (HMF), which is among the
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Department of Energy’s “Top 10 + 4” list, has been considered as a

versatile platform molecule (Bozell and Petersen, 2010; Adeogun

et al., 2019; Baga, 2020). Owing to the hydroxymethyl and formyl

functional groups attached to the furan ring, further upgrading

HMF can generate various high-valued chemicals via oxidation,

reduction, hydrogenation, esterification, hydrolysis, and cleavage

(Binder and Raines, 2009; Bozell and Petersen, 2010; Du et al.,

2011; Rosatella et al., 2011; Alamillo et al., 2012; Balakrishnan et al.,

2012; Gallo et al., 2013).

The oxidation of HMF yields valuable chemicals, such as 2,5-

diformylfuran (DFF), 5-formyl-furan carboxylic acid (FFCA), 5-

hydroxymethyl-2-furan carboxylic acid (HMFCA), and 2,5-

furan dicarboxylic acid (FDCA), as shown in Figure 1A

(Xiang et al., 2011; Vuyyuru and Strasser, 2012a; Antonyraj

et al., 2013). Due to the symmetric structure of functional

groups, both DFF and FDCA as monomers have tremendous

potentials for synthesizing biomass-derived drugs and antifungal

agents, furan-urea resins, and other important polymer materials

(Liu and Zhang, 2016; Lei et al., 2020). FDCA can serve as a

replacement for the petroleum-derived terephthalic acid,

producing polyethylene terephthalate and poly (ethylene 2,5-

furandicarbocylate) (Wang J. et al., 2017a). In addition, FDCA

has a large potential to take a place of terephthalate and

butyleneterephthalate, which are used widely in producing

various polyesters (Gandini et al., 2009; Kong et al., 2018).

Meanwhile, the reduction products of HMF include 2,5-

dimethylfuran (DMF), 2,5-dihydroxymethylfuran (BHMF),

2,5-bishydroxymethyl-tetrahydrofuran (DHMTHF), and 2,5-

hexanedione (HD) (Connolly et al., 2010; Kong et al., 2014;

Scholz et al., 2014; Roylance and Choi, 2016b; Elangovan et al.,

2016; Guo et al., 2016; Perret et al., 2016; Luo et al., 2017). Among

these reductive products, BHMF, which has two hydroxymethyl

groups fused with the furan ring, can also act as a precursor to

form polyesters and polyurethane foams (Lecomte et al., 1998;

Gandini, 2011; Delidovich et al., 2016; Hu et al., 2018). Moreover,

DMF and DHMTHF have been regarded as promising next-

generation biofuels (Goyal et al., 2016; Xia et al., 2018).

Specifically, DMF has higher energy density and better

miscibility than fuel ethanol, which can be used as a potential

high-quality liquid biofuel to replace gasoline derived from fossil

fuels (Goyal et al., 2016; Kwon et al., 2016). Furthermore, HD is

able to serve as the raw material for the production of paraxylene,

which is an important precursor to produce polyethylene

terephthalate (PET) as well (Roylance and Choi, 2016b).

Apart from the above, HMF itself can also undergo hydroxyl-

aldehyde condensation with acetone to produce liquid fuel

intermediates (Su et al., 2020).

The conventional thermocatalytic valorization of HMF

always requires noble metal catalysts (Au, Pd, Pt, and Ru) and

harsh operational conditions, such as high temperatures and

pressures (Taarning et al., 2008; Casanova et al., 2009; Gorbanev

et al., 2009; Davis et al., 2011; Villa et al., 2013; Zhang and Deng,

2015). Additionally, HMF oxidation via conventional

approaches relies on using toxic oxidants or organic solvents

(CH2Cl2, C6H5CH3, CH3CN, etc.) (Amarasekara et al., 2008; Cao

et al., 2017). For instance, Gao et al. utilized toxic organic

reagents such as methylene chloride and acetonitrile in the

process of oxidizing HMF into FDCA (Gao et al., 2015). On

the other hand, the conventional methods for the reduction of

HMF usually perform at high H2 pressure and requires catalysts

containing precious metals as well (Alamillo et al., 2012; Wang T.

et al., 2017b). There are certain safety hazards when using H2 as

the proton source for HMF reduction (Bloor et al., 2016). Plus, it

is not cost-efficient because H2 is a valuable energy carrier.

Therefore, it is necessary to explore economical and

environmentally friendly strategies to upgrade HMF (Ohyama

et al., 2012; Ohyama et al., 2013; Kong et al., 2014; Yang et al.,

2017; Sajid et al., 2018). To date, the electrocatalytic HMF

FIGURE 1
(A) Reductive and oxidative products of HMF upgrading. (B) Paired electrolysis of HMF oxidation with HER.
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upgrading has attracted a great deal of attention (You et al.,

2016b; Zhang L. et al., 2019b; Zhang Y.-R. et al., 2019e; Taitt et al.,

2019; Kisszekelyi et al., 2020; Zhou et al., 2021). Electrocatalysis is

driven by electricity and can be conducted under aqueous and

ambient conditions, which is more environmentally benign.

Notably, H2O can be used as oxidant or proton source instead

of costly oxidizing agents and H2 gas. More to the point, the

reaction rate and product selectivity can be easily controlled by

the applied voltage and current (Nilges and Schroeder, 2013; Cha

and Choi, 2015; Roylance et al., 2016). In order to achieve higher

Faradic efficiency (FE) and overall conversion efficiency, the

valorization of HMF can also be paired with other half reactions.

From the last 5 years, the research on the paired electrolysis of

HMF is mainly focused on coupling the oxidation of HMF with

hydrogen evolution reaction (HER), while the combination of

HMF reduction with other reactions has received only a few

studies. In this mini-review, we summarized the recent advances

of paired electrolysis in HMF valorization, which is different

from previous reviews. Firstly, we introduce the electrocatalytic

oxidation of HMF integrated with HER. Then, the

electrochemical reduction strategy of HMF is briefly

introduced, followed by emphasizing the upgrading of HMF

on both cathode and anode simultaneously. Finally, we discuss

the challenges and future directions of paired electrolysis in HMF

valorization.

Paired HMF oxidation with HER

H2 is a pollution-free fuel with high energy density, which has

been considered as an alternative to fossil fuels (El-Emam and

Ozcan, 2019; Xia et al., 2020). Electrocatalytic water splitting to

produce clean H2 has gained increasing attention (Yu et al.,

2018). However, the anodic reaction, oxygen evolution reaction

(OER), is the bottleneck of water splitting, which results in the

low energy conversion efficiency because of its sluggish kinetics

(Zhang J.-Y. et al., 2019a; You et al., 2019). Besides, the product of

OER, O2, does not have a significantly commercial value.

Therefore, replacing OER with a thermodynamically more

favorable HMF oxidation reaction can not only solve the

safety hazard caused by hydrogen and oxygen mixing, but

also improve the overall energy conversion efficiency (Chen

et al., 2014; Jiao et al., 2015; Yang and Mu, 2021). As an

innovative strategy (Figure 1B), the electrocatalytic oxidation

of HMF coupled with HER can produce highly valuable products

on both anode and cathode simultaneously (You and Sun, 2018;

Dubale et al., 2020). Consequently, it is highly attractive to

develop efficient electrocatalysts, especially bifunctional

catalysts, to integrate HMF oxidation with HER in a single

electrolyzer.

Nobel metal catalysts and their alloys have been extensively

studied for electrooxidation of HMF due to their high activity in

many chemical processes (Kokoh and Belgsir, 2002; Vuyyuru and

Strasser, 2012a; Xu et al., 2019; Du et al., 2020; Park et al., 2020).

In addition, noble metals such as Pt and Pd have excellent HER

performance. Therefore, noble metal catalysts have been applied

as bifunctional catalysts in paired electrocatalysis of HMF

oxidation and HER. Kim’s group found that the (AuPd)7 alloy

had remarkable catalytic performance for electrocatalytic

oxidation of HMF and HER in a coupled cell (Park et al.,

2020). Although it is hard to realize industrial applications

with noble metal catalysts because of their high price, they

have contributed a lot to the study of the mechanism of HMF

oxidation (Cha and Choi, 2015; Latsuzbaia et al., 2018; Heidary

and Kornienko, 2019).

Although noble metals have exhibited excellent catalytic

activity for HMF oxidation, they still suffer from high-cost

due to their scarcity. Thus, the development of earth-

abundant electrocatalysts with high efficiency has become a

focus for large scale HMF oxidation integrated with HER. To

date, various transition metals ranging fromNi, Co, Cu, Fe toMn

are used to design bifunctional catalysts for HMF oxidation and

H2 production (Jiang et al., 2016; You et al., 2017; Liu et al., 2018;

Nam et al., 2018; Li S. et al., 2019b). Ni (You et al., 2017) and its

nitrides (Zhang N. et al., 2019c), borides (Barwe et al., 2018;

Zhang P. et al., 2019d), phosphides (You et al., 2016a; Li M. et al.,

2019a), oxides (Choi et al., 2020; Gao et al., 2020; Lu et al., 2020),

and hydroxides (Latsuzbaia et al., 2018; Chen et al., 2019) have

been reported for the electrochemical oxidation of HMF. Among

these catalysts containing nickel, NiN3@C, Ni2P, hp-Ni (3D

hierarchically porous nickel-based catalyst), and NiSe@NiOx

core-shell nanowires had been used as bifunctional catalysts

for both HMF oxidation and HER with high FE (>95%) for

FDCA and H2, respectively. Moreover, all of these bifunctional

catalysts form high-valent nickel species during electrolysis of

HMF oxidation. On the other hand, the electrooxidation of HMF

can be paired with HER via different catalysts as well. For

instance, Deng et al. synthesized a “Nanoplatelet-on-

Nanoarray” nickel-cobalt hydroxide-based catalyst (t-NiCo-

MOF) by simple conversion of a bimetallic metal-organic

framework (MOF) nanoarray (Deng et al., 2020b). They used

t-NiCo-MOF as the anodic catalyst and MoNi4 as the cathodic

catalyst to co-generate FDCA and H2 at a low voltage of 1.392V

vs. RHE with a high current density of 100 mA/cm2, which was

~300 mV lower than overall water splitting.

As competent bifunctional electrocatalysts for overall water

splitting, Co-based catalysts have also been employed for coupled

electrolysis in HMF oxidation and HER (Jiang et al., 2016; Kang

et al., 2020). As early as 2016, Sun and co-workers (Jiang et al.,

2016) reported an electrodeposited Co-P as the bifunctional

electrocatalyst for integrated HMF oxidation and H2 evolution

in a membrane-divided electrolyzer, which achieved nearly unity

FE and selectivity for both H2 and FDCA production. Co3O4

nanowires have also been studied as bifunctional catalysts for

HMF oxidation coupled with HER (Zhou et al., 2019).

Surprisingly, the high concentration of HMF (100 mM) was
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realized by Co3O4 nanowires, which far surpassed the HMF

concentration previously reported. In 2018, Weidner et al.

investigated a series of cobalt-metalloid alloys (CoX; X = P, Si,

B, As, Te) as electrocatalysts for the oxidation of HMF (Weidner

et al., 2018). Among them, CoB showed the highest catalytic

performance, which not only had high selectivity for FDCA but

also suppressed the decomposition of HMF in alkaline

electrolyte.

In addition to Ni- and Co-based catalysts, other transition

metals, such as Mn-, Fe-, and Cu-based catalysts have also been

reported as competitive catalysts for HMF oxidation. Choi and

Kubota used MnOx as an anodic catalyst to achieve the

conversion of HMF to FDCA in H2SO4 solution (pH = 1),

showing the possibility of FDCA production in acidic media,

which is beneficial to integrate with HER and solve the problem

of incompatible electrolyte (Kubota and Choi, 2018). Only a few

Fe containing catalysts display high catalytic activity for HMF

oxidation. NiFe layered double hydroxide (LDH) was utilized for

HMF oxidation, achieving 99.4% FE for HMF conversion (Liu

et al., 2018). Meanwhile, they used the benchmark HER catalyst,

Pt, as the cathode to produce H2. Cu has excellent conductivity

and is relatively inactive to water oxidation, which may achieve

HMF oxidation with higher efficiency when acted as

electrocatalysts (Nam et al., 2018). A typical example is that

CuxS@NiCo-LDH core-shell nanoarrays, which approached a

current density of 10 mA/cm2 at a voltage of 1.34V vs. RHE,

yielding nearly unity FE towards both FDCA and H2 (Deng et al.,

2020a).

Paired HMF reduction with HMF
oxidation

The reduction of HMF is mainly producing biofuels (DMF

and DHMTHF), polymer precursors (BHMF and HD), and

various organic solvents (Roylance and Choi, 2016b; Goyal

et al., 2016; Hu et al., 2018; Xia et al., 2018). The diversity of

the products of HMF reduction have obtained extensive research

interest due to their wide application prospects (Roylance and

Choi, 2016a; Zhang L. et al., 2019b; Zhang Y.-R. et al., 2019e).

However, compared with the electrocatalytic oxidation of HMF,

the electrochemical reduction of HMF is still at its early stage. In

2013, the electrocatalytic reduction of HMF was first studied by

Koper’s group using a series of pure metal electrodes under

neutral conditions (Kwon et al., 2013). Subsequently, they

investigated the catalytic effects of these metals in acidic

solutions and found that the overpotentials for HMF

hydrogenation in acidic electrolyte were much lower than that

in neutral solutions (Kwon et al., 2015). Among those pure metal

electrodes, Ag electrode showed the highest selectivity and

conversion for the formation of BHMF. Later, Chio and co-

workers modified the silver electrode through galvanic

displacement method (Aggd) for electrocatalytic HMF

reduction (Roylance et al., 2016). The resulting Aggd
approached high yield (99%) and FE (99%) for BHMF at

-1.3 V vs. Ag/AgCl in a slightly alkaline solution. However,

electrochemical reduction of HMF is typically paired with

OER, which has sluggish kinetics and the unvalued product

(Han et al., 2020). Therefore, coupling HMF reduction with

HMF oxidation is able to obtain two value-added products and

avoid the slow kinetics of OER.

Although replacing OER with HMF oxidation is a feasible

strategy, there are still several challenges which need to overcome

to develop paired electrolysis. For instance, the optimal potentials

and current densities of the two half-reactions in paired

electrocatalysis are unmatched. The well-developed redox

mediators are suitable solutions for mismatched problems in

paired electrolysis. It was reported that TEMPO (2,2,6,6-

tetramethylpiperidine-1-oxyl) and its derivatives (like ACT, 4-

acetamido-TEMPO) can work as redox mediators for the

electrocatalytic HMF oxidation in mildly alkaline electrolytes due

to their rapid redox kinetics, high solubility in water, remarkable

stability, and suitable redox potentials (Cha and Choi, 2015; Cardiel

et al., 2019). As aforementioned, Ag-based electrode demonstrated

excellent catalytic capacity for electrohydrogenation of HMF to

BHMF in the same electrolyte (Roylance et al., 2016). Therefore,

Li’s group utilized Ag nanoparticles immobilized on carbon black

(Ag/C) as the catalyst for electrocatalytic reduction of HMF to

BHMF under cathodic conditions. On the other hand, ACT acted as

the redox mediator for HMF oxidation (the mechanism is shown in

Figure 2A) on carbon felt electrode (Chadderdon et al., 2019). Thus,

the ACT-mediated indirect electrooxidation ofHMF is insensitive to

the anode potentials. With the precise control of the cathode

potentials, it was feasible to couple the electrohydrogenation of

HMF to BHMF with the oxidation of HMF to FDCA in a single

divided cell. The paired electrolysis of HMF achieved 85% yield for

BHMF and 98% yield for FDCA, respectively, as well as a combined

electron efficiency of 187%, which is the highest electron efficiency

for HMF conversion (Figures 2B,C).

In the same year, Wang and co-workers successfully

fabricated 3D vanadium nitride (VN) and Pd/VN hollow

nanospheres (Figure 2D) as the anode and cathode,

respectively, to electrocatalytically upgrade HMF into FDCA

and DHMTHF in a bipolar membrane-divided electrolyzer (Li

S. et al., 2019b). After electrolysis at 100 mA for 3 h, the

conversion of HMF oxidation and reduction was 92% and

87%, respectively, with a high combined FE of ≥170%. For the

unpaired HMF oxidation catalyzed by 3DVN, high conversion of

HMF (≥98%) was obtained with the high selectivity (≥96%) and

FE (≥84%) for FDCA after eight cycles. Compared to other

vanadium-based catalysts, such as V2O5 and VOOH, the high

performance of VN can be assigned to its low d-band center

(Figure 2E), which facilitate the chemisorption and activation of

HMF on VN surface (Figures 2F,G). For the unpaired

electrocatalytic hydrogenation of HMF, the high selectivity

(≥88%) and FE (≥86%) for DHMTHF were achieved with the
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help of 3D hollow Pd/VN. Notably, the Pd/VN catalyzed

hydrogenation product is DHMTHF, which is different from

the previously reported results. Additionally, the 3D hollow

structure of electrocatalyst favors the diffusion and transport

of substrates.

Summary and perspective

Recently, paired electrolysis has been widely investigated.

In this mini-review, we have overviewed and focused on the

recent progress of electrocatalytic oxidation of HMF paired

FIGURE 2
(A) Schematic diagram of the ACT-mediated electrocatalytic oxidation of HMF. (B) The yields of BHMF and FDCA in unpaired and paired cells.
(C) The electron efficiencies of BHMF and FDCA in unpaired and paired cells. Adapted with permission from Chadderdon et al. (2019). Copyright
2019 Royal Society of Chemistry. (D) Electrocatalytic hydrogenation (left) and electrocatalytic oxidation (right) of HMF over Pd/VN and VN
electrocatalysts, respectively. (E) Density of states plots of VN and V2O5. (F,G)Optimized structure (up) and charge density difference (bottom)
of HMF on VN and V2O5, respectively. Adapted with permission from Li et al. (2019). Copyright 2019 John Wiley & Sons, Inc.
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with HER or HMF reduction. In paired cells, value-added

products can be obtained on both anode and cathode

simultaneously via electrocatalytic oxidation and

hydrogenation, achieving a combined efficiency greater

than 100%. Ideally, utilization of bifunctional

electrocatalysts in paired electrolysis is more attractive due

to its low cost and facile cell design. Mediated paired

electrolysis is another strategy to solve the potential

mismatch issues. In general, HMF can be oxidatively

converted into DFF and FDCA over monometallic and

bimetallic electrocatalysts, including noble metals and

transition metals. The intrinsic nature of electrode has a

great effect on the pathway of HMF oxidation. With the

respect to the reductive upgrading of HMF, Ag exhibits

remarkable selectivity to BHMF in slightly alkaline

solutions. Overall, optimizing the performance of

electrocatalysts to enhance their selectivity, catalytic

activity, and stability, is still the main challenge. Although

different electrodes have a strong influence on product

selectivity and reaction pathway, other reaction conditions,

such as mismatched potential and incompatibilities of

electrolytes for the two half-reactions, product separation,

and crossover issues will also limit large-scale applications for

paired electrolysis. More efforts have been devoted to solve the

aforementioned problems for industrial application.

Additionally, theoretical simulations and in-situ/ex-situ

characterization need to be performed to reveal the

reaction mechanisms which are beneficial to design

advanced catalysts.

Besides HER and HMF reduction reaction, the oxidation

of HMF can also be coupled with CO2 reduction reactions

(CO2RR), N2 reduction reactions (N2RR), and other organic

reduction reactions (Zhang P. et al., 2019d; Xu et al., 2019;

Choi et al., 2020). However, these pair-wise electrolysis studies

are limited, and more electro-reductive coupling reactions

(such as NO3
−, NO reduction, etc.) for HMF should be

considered. In addition, photoelectrolysis and

bioelectrocatalysis have been also considered as promising

alternatives for biomass upgrading (Roylance et al., 2016;

Ozcan et al., 2017; Ma et al., 2018; Chen et al., 2020; Meng

and Li, 2021; Meng et al., 2022). Moreover, the combination of

electrocatalysis and biocatalysis for biomass upgrading can

provide yields and selectivity that chemical catalysis cannot

achieve (Schmitz et al., 2019).
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