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Abstract

Random time changed Lévy Processes are getting increased attention of late as they can account
for a variety of features in data. In this article we discuss α-Laplace Lévy Process and a
generalization of it. Both are random time changed α-stable Lévy Processes. We obtained a
characterization of α-Laplace Lévy Process and discuss the first passage time distribution of
a generalized α-Laplace Lévy Process. Interestingly, this first passage time follows a discrete
distribution.

Keywords: α-Laplace, characterization, first passage time, Laplace transform, Lévy Processes,
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1 Introduction

Brownian motion (BM) are Lévy Processes (see, theorems 1.1 and 1.2 below) where X(1) has
a normal distribution. There are situations where a Laplace model is preferred to a Gaussian
one. While [1] used it to model the pooled position errors in a large navigation system, [2] used
a stationary autoregressive model with Laplace marginals in communication engineering. Such
possibilities motivated the introduction of Laplace process in [3] as a possible alternative to BM. [4]
proposed the variance gamma (VG) processes (same as the Laplace process) to model long taildness
inherent in data. Typically, Laplace process accounts for distributions of increments that are more
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peaked at the mode with thick tails. See, [5] for a review of data driven models starting with BM
and resulting in a variety of Lévy Processes including fractional BM, fractional Laplace process and
fractional α-stable process and also [6] and [7].

A larger class of Lévy processes can be derived from an α-stable Lévy Process {X(t)} by randomizing
its time parameter t using a positive continuous random variable T . The advantage is, while certain
features of {X(t)} are retained, those of T can be augmented to alter some others to get new useful
processes. See, [8] and [9], for more on this. In proposition 3.1 a generalized α-Laplace law is
derived as an exponential mixture of α-stable laws. In terms of Lévy processes, this is equivalent
to randomising the time parameter of α-stable Lévy process by the unit exponential.

A characterization using stochastic integrals and the first passage time distribution of Laplace
process were obtained in [10] and [11], stated as corollaries 2.2 and 3.3 here. In this article we
generalise these results to α-Laplace process and a generalized α-Laplace processes. We now brief
the background needed.

Theorem 1.1. ([12], p.154) {X(t), t ≥ 0} is a Lévy process if (i) X(0) = 0 almost surely (ii)
X(t) has stationary and independent increments and (iii) X(t) is continuous in probability, that is,

Xs
P−−−→
s→t

Xt.

Theorem 1.2. ([13], p.303, [12], p.159) {X(t), t ≥ 0} is a Lévy process iff the distribution of X(1)
is infinitely divisible.

Theorem 1.3. ([12], p.160) Any Lévy process can be decomposed as X(t) = σB(t) + S(t); σ > 0,
where B(t) is a Brownian motion (BM) with drift and S(t) is a pure jump process.

Theorem 1.4. ([13], p.588) A random variable X or its distribution is in class-L (or self-decomposable)
if its characteristic function (CF) ω(s) has the property that ω(s)/ω(cs) is a CF ωc(s) for each c ∈
(0, 1). Similar definition in terms of moment generating functions (MGF) and Laplace Transforms
(LT) holds.

Theorem 1.5. ([14]) A random variable X or its distribution is geometrically infinitely divisible
(geometrically α-stable) iff its CF ω(s) has the property that ω(s) = 1

1+ψ(s)
such that e−ψ(s) is

infinitely divisible (α-stable). Similar definition in terms of MGFs and LTs holds.

α-Laplace laws are defined by their CF 1
1+c|s|α , 0 < α ≤ 2, c > 0. They are mixtures of

symmetric α-stable laws, where the mixing distribution is exponential. They are self-decomposable,
geometrically infinitely divisible ([15]) and hence infinitely divisible ([16]). Hence one can define the
corresponding α-Laplace Lévy processes (αLLP). For α = 2 the α-Laplace law is Laplace and the
corresponding Lévy process is Laplace process. Laplace Process was introduced and discussed in
[3] and [5] as a possible alternative to BM and was compared and contrasted with BM. It is known
that 1

2
-stable law is the first passage time distribution (FPT/FPTD) of BM with zero drift ([13],

p.174).

[17] introduced the MGF of α-stable laws. They call it extreme stable since the parameter β in the
stable model is set as β = 1. They have taken the location parameter also as zero. Here we refer
to them as α-stable laws. [18] used this to define and discuss α-stable Lévy processes.

Theorem 1.6. [17] The function exp{−b(1−α)sα}; 0 ≤ Re(s) <∞; 0 < α ≤ 2, α ̸= 1, b > 0 are
MGFs of α-stable laws.

Using this we define a generalised α-Laplace law and the corresponding Lévy process, viz. generalized
αLLP (GαLLP) and derive its FPTD. FPTD of processes are important as they give the distribution
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of the time taken for the process to reach/ cross a barrier/ threshold. If λ > 0 is the barrier, then
the random variable T (λ) = T = inf{t > 0 : X(t) ≥ λ} denote the FPT of X(t). Here t > 0, since
X(0) = 0 for a Lévy process.

[19] conceived a stochastic integral
∫ B
A
g(t) dX(t) corresponding to a Lévy process {X(t), t ∈ T}

in the sense of convergence in probability, where g(t) is continuous in [A,B] ⊂ T and proved the
following theorem.

Theorem 1.7. [19] Let {X(t), t ∈ T} be a Lévy process and g(t) a continuous function in [A,B] ⊂
T . Let f(u) be the CF of X(1) and h(u) that of the corresponding stochastic integral. Then

ln[h(u)] =
∫ B
A

ln[f(ug(t))] dt.

With this background we obtained a characterization of αLLP using the above theorem in the next
section. In section 3 we derive and discuss a generalization of α-Laplace law and its divisibility
properties such as self-decomposability, infinite divisibility etc.. Then we derive the FPTD of
the GαLLP. These processes are obtained from α-stable Lévy processes by randomising the time
parameter by the unit exponential law, see remark 3.1. Interestingly, the first passage time has a
discrete distribution.

2 A Characterization of αLLP

Theorem 2.1. A Lévy process {X(t), t ≥ 0} for which the distribution of X(1) is symmetric, is
αLLP if and only if, the CF h(u) of the stochastic integral

∫ 1

0
t1/α dX(t) is given by ln[h(u)] =

1− (1 + |u|−α) ln[1 + |u|α].

Proof. Let h(u) be the CF of the stochastic integral
∫ 1

0
t1/α dX(t) where X(t) is αLLP with CF

f(u) = 1
1+|u|α . Then by theorem 1.7, ln[h(u)] =

∫ 1

0
ln[f(ut1/α)] dt. Denoting |u|α by k in the

following integration, we have;

ln[h(u)] = −
∫ 1

0

ln(1 + |ut1/α|α) dt = −
∫ 1

0

ln(1 + kt) dt

= − [t ln(1 + kt)]10 +

∫ 1

0

kt

1 + kt
dt

= − ln(1 + k) + 1−
∫ 1

0

1

1 + kt
dt,

(
since

kt

1 + kt
= 1− 1

1 + kt

)
= − ln(1 + k) + 1− 1

k
ln(1 + k) = 1− (1 + k−1) ln(1 + k)

= 1− (1 + |u|−α) ln[1 + |u|α].

Conversely, let f(u) be the CF of X(1), ln[h(u)] = 1 − (1 + |u|−α) ln[1 + |u|α]. We need to find
f(u). Since X(1) is symmetric, f(u) is real and even and so we need to evaluate it for u > 0 only.
Putting ψ(u) = ln[f(u)],

1−
(
1 + u−α) ln(1 + uα) =

∫ 1

0

ln[f(ut1/α)] dt =

∫ 1

0

ψ(ut1/α) dt

=
α

uα

∫ u

0

ψ(z)zα−1 dz (z = ut1/α & dz =
z uα

α zα
dt).
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That is,
∫ u
0
ψ(z)zα−1 dz = uα

α

{
1− (1 + u−α) ln(1 + uα)

}
. Hence,

ψ(u)uα−1 =
d

du

[
uα

α

{
1− (1 +

1

uα
) ln(1 + uα)

}]
=
αuα−1

α
− d

du

[
uα

α

{(
uα + 1

uα

)
ln(1 + uα)

}]
= uα−1 − d

du

[(
1 + uα

α

)
ln(1 + uα)

]
= uα−1 − uα−1 ln(1 + uα)− 1 + uα

α

1

1 + uα
αuα−1

= −uα−1 ln(1 + uα)

That is, ψ(u) = ln[f(u)] = − ln(1 + uα) =⇒ f(u) =
1

1 + |u|α .

That completes the proof.

Corollary 2.2. With α = 2, theorem 2.1 characterizes Laplace Process.

3 FPTD of GαLLP

Theorem 3.1. The function M(s) = 1
1+b(1−α)sα ; 0 ≤ Re(s) < 1; 0 < α ≤ 2, α ̸= 1, b > 0 are

MGFs of probability laws.

Proof. By [20], p.213, if Ψ(s) is analytic in the strip 0 < Re(s) < a, continuous in 0 ≤ Re(s) < a
and Ψ(is) is the characteristic function (CF) of a probability law, then Ψ(s) is the MGF of that
probability law. Now, 1

1−s is analytic in the strip 0 < Re(s) < 1 and continuous in 0 ≤ Re(s) < 1.
Again, −b(1 − α)sα is analytic for Re(s) > 0 and continuous for Re(s) ≥ 0. Hence M(s) =

1
1+b(1−α)sα is analytic in the strip 0 < Re(s) < 1 and continuous in 0 ≤ Re(s) < 1. Since

exp{−b(1 − α)(is)α} is the CF of α-stable laws ([17]), M(is) is the CF of geometrically α-stable
laws ([14]), and hence M(s) is the MGF of a probability law.

Note. For α = 2 we get M(s) = 1
1−bs2 , the MGF of Laplace law. α-Laplace laws are exponential

mixtures of symmetric α-stable laws. By [17], the α-stable laws in theorem 1.6 are not symmetric.
Hence we call the MGF M(s) in the above theorem as that of a generalized α-Laplace (GαL) law.
For 1 < α ≤ 2 it has finite mean. One may prove theorem 3.1 with a more probabilistic flavour, as
follows.

Proposition 3.1. The function M(s) = 1
1+b(1−α)sα ; 0 ≤ Re(s) < 1; 0 < α ≤ 2, α ̸= 1, b > 0 are

MGFs of GαL laws.

Proof. Let the random variable X be α-stable with MGF exp{−b(1 − α)sα}. Then for c > 0, the
MGF of c1/αX is exp{−c b(1−α)sα}. Let c be a random variable having the unit exponential law.

Then the MGF of c1/αX is Ec
[
e−c b(1−α)s

α
]
= 1

1+b(1−α)sα .

We are finding the MGF of the scale mixture of α-stable laws where the mixing distribution is unit
exponential. If the MGF of the random variable Y is M(s) and E ∼ Exp(1), then Y = E1/αX is
the stochastic representation of Y .

Proposition 3.2. GαL laws are geometric(p)-sum of its own type for every p ∈ (0, 1). Hence they
are geometrically infinitely divisible, infinitely divisible and also self-decomposable.
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Proof. The probability generating function (PGF) of a geometric(p) law on {1, 2, 3, ...} is P (s) =
ps

1−(1−p)s . Hence the MGF of the geometric(p)-sum is; P (M(s)) = pM(s)
1−(1−p)M(s)

. Taking M(s) as
the MGF of GαL we have,

P (M(p1/αs)) =
p/[1 + b(1− α)(p1/αs)α]

1− (1− p)/[1 + b(1− α)(p1/αs)α]

=
p

p+ b(1− α)psα

=
1

1 + b(1− α)sα
.

Since 0 < p1/α < 1, and this is true for any p ∈ (0, 1), GαL laws are geometric(p)-sum of its own
type for every p ∈ (0, 1). Hence they are geometrically infinitely divisible and infinitely divisible,
[16]. Now, rewriting the third and first lines we have,

1

1 + b(1− α)sα
=

1

[1 + b(1− α)(p1/αs)α]
× p

1− (1− p)/[1 + b(1− α)(p1/αs)α]

That is, M(s) =M(p1/αs)× P1(M(p1/αs)),

where P1 is the PGF of the geometric law on {0, 1, 2, ...}. Since P1(M(p1/αs)) is also an MGF,
0 < p1/α < 1 and the above equation is true for any p ∈ (0, 1), GαL laws are self-decomposable.

Definition 3.1. Lévy processes {X(t); t ≥ 0} are generalized αLLP (GαLLP), if the distribution
of X(1) has MGF M(s) = 1

1+b(1−α)sα ; 0 ≤ Re(s) < 1; 0 < α ≤ 2, α ̸= 1, b > 0.

Remark 3.1. Now, in terms of Lévy processes, proposition 3.1 means that the GαLLP are obtained
by randomising the time parameter of α-stable Lévy process in [18] by the unit exponential law.
Similarly, by randomising the time parameter of symmetric α-stable Lévy process by the unit
exponential, αLLP are obtained.

Since the location parameter is zero for the generalized α-Laplace laws considered here, the GαLLP
has zero drift. We now derive the FPTD of GαLLP using standard arguments based on optional
sampling theorem applied to the following martingale of {X(t)}.

Proposition 3.3. For the GαLLP {X(v), v ≥ 0}, W (v) = exp{sX(v)− θv}, s > 0 a constant, is
a martingale, where θ = − ln[1 + b(1− α)sα].

Proof. Since, E
(
esX(v)

)
= eθv, E(|W (v)|) = E(W (v)) = e−θvE

(
esX(v)

)
= 1 < ∞. Since Lévy

processes have stationary and independent increments, for u ≤ v, X(v) − X(u) is independent of
Fu, the filtration up to time u. Now,

E (W (v)/Fu) = E (exp{sX(v)− θv/Fu})

= e−θvE
(
es[X(v)−X(u)]/Fu

)
E
(
esX(u)/Fu

)
= e−θvE

(
esX(v−u)

)
esX(u)

= e−θveθ(v−u)esX(u)

= esX(u)−θu =W (u).

That completes the proof.

Theorem 3.2. The FPTD of GαLLP for 1 < α ≤ 2, is discrete 1
α
-stable.
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Proof. Let the random variable T (λ) = T denote the FPT for the GαLLP {X(t), t ≥ 0} to reach
or cross λ > 0. We saw that for {X(t)}, W (t) = exp{sX(t) − θt} is a martingale, where θ =
− ln[1 + b(1 − α)sα]. For a martingale {W (t)} and for the FPT T (which is a stopping time),
E{W (0)} = E{W (T ∧ t)}. As X(0) = 0, W (0) = 1 and hence E{W (T ∧ t)} = 1. That is,

E [exp{sX(T ∧ t)− θ(T ∧ t)}] = 1, (3.1)

Note that for α > 1; θ = − ln[1 + b(1− α)sα] > 0, and so 0 ≤W (T ∧ t) ≤ esλ.

Now assuming P{T < ∞} = 1 (we will justify this at the end of the proof) we may pass to the
limit as t→ ∞ under the expectation in (3.1) by the optional sampling theorem, yielding;

1 = lim
t→∞

E [exp{sX(T ∧ t)− θ(T ∧ t)}] = esλE
[
e−θT

]
=⇒ E

[
e−θT

]
= e−sλ.

Now θ = − ln[1+ b(1−α)sα] =⇒ s =
{
e−θ−1
b(1−α)

}1/α

=
{

1−e−θ

b(α−1)

}1/α

, and we get the LT of the FPT
as,

E
[
e−θT

]
= exp

[
−λ(1− e−θ)1/α

[b(α− 1)]1/α

]
= exp

[
−β(1− e−θ)1/α

]
,

which is that of discrete 1
α
-stable law, see [21].

Finally, since P{T < ∞} = limθ↓0E
[
e−θT

]
= 1, T has a proper distribution, justifying our

assumption P{T <∞} = 1.

Remark 3.2. E
[
e−θT

]
= e−β(1−e

−θ)1/α is the LT of a probability distribution only when 0 < 1/α <

1 =⇒ α > 1 ([22], [13], p.448) and by the one-to-one correspondence P (e−θ) = L(θ); θ ≥ 0,
between the probability generating function P and the LT L of a discrete distribution. Also, in
the proof here we need θ > 0 =⇒ α > 1. These are the reasons for restricting the range of α to
1 < α ≤ 2 in the above theorem.

Corollary 3.3. When α = 2, we have the Laplace process and the LT of T is E
[
e−θT

]
=

e

[
−λ√

b

]
(1−eθ)1/2

which is that of discrete 1
2
-stable. Recall that the FPTD of BM is 1

2
-stable.

Remark 3.3. That the FPTD of Laplace process is discrete 1
2
-stable has intrigued the author for

long, because it is the distribution of time, that is continuous for the process. If one defines an
exponential Lévy process on the same lines and find its FPTD as in theorem 3.2, it is Poisson.
This is not entirely surprising, knowing the close relation between exponential and Poisson laws in
the context of renewal processes. But here, we need an interpretation for this conclusion. Note
that the increase in an exponential Lévy process is in jumps and hence T represents the number
of jumps, which is discrete, to reach or cross the barrier λ. Thus one possible reason is that the
change (increase/ decrease as Laplace law is the difference of identical exponential laws) in Laplace
process is in jumps. This intuition is substantiated by theorem 1.3 quoted in the introduction,
which implies that among Lévy processes only BM has almost sure continuity of paths. Thus the
changes in the αLLP are also in jumps and so what T , the FPT, represents here is the number of
jumps required to reach or cross the barrier. One may also note that the structure of the martingale
W (t) here is comparable with that of the corresponding Wald’s martingale, see [23], p.243.

Remark 3.4. We saw that the FPTD of exponential Lévy process is Poisson. Along with the
discussion in [23], p.321, this is a martingale proof of the inter-arrival time characterization of
Poisson process.
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4 Summary

In this paper a characterization of αLLP using a method based on stochastic integrals, is obtained.
GαL law is introduced and some of its divisibility properties are proved. Consequently the GαLLP
is defined and its FPTD is derived.
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subordinator. Communications in Statistics - Theory and Methods. 2018;48:1-18.

[10] Satheesh S, Pillai RN. Laplace process, Unpublished manuscript, Department of Statistics,
University of Kerala, India; 1988.

[11] Satheesh S. Laplace process-II, Unpublished manuscript, Department of Statistics, University
of Kerala, India; 1990b.

[12] Capasso V, Bakstein D. An Introduction to Continuous-Time Stochastic Processes. 2nd
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