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On Regular Black Holes at Finite Temperature
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The Thermo Field Dynamics (TFD) formalism is used to investigate the regular black holes at finite temperature. Using the
Teleparalelism Equivalent to General Relativity (TEGR), the gravitational Stefan-Boltzmann law and the gravitational Casimir
effect at zero and finite temperature are calculated. In addition, the first law of thermodynamics is considered. Then, the
gravitational entropy and the temperature of the event horizon of a class of regular black holes are determined.

1. Introduction

The existence of singularities in the theory of general relativ-
ity has been problematic since its inception, especially those
linked to black holes. The so-called fundamental singularities
do not allow the application of the laws of physics, which are
a type of difficult giving rise to some proposals to address the
problem. One of them is the well-known cosmic censorship
that was proposed by Penrose in the last century [1]. Another
more particular proposal came with the solution of regular
black holes whose first solution was obtained by Bardeen
[2]. It is interesting to note that solutions describing regular
black holes have an event horizon and therefore share many
features with singular black holes. So, if black holes are real
objects, there is a good chance that the regular ones are the
objects that will be experimentally perceived. In this way,
the theoretical study of such solutions becomes very relevant.
Particularly the analysis of the thermodynamics of regular
black holes can reveal substantial experimental implications.
For this, it is necessary to define how the temperature is
introduced and how from it the gravitational entropy is
obtained. In addition, other effects can be predicted by means

of this termalization, such as the gravitational Stefan-
Boltzmann law and Casimir effect. In this sense, we will work
with Thermo Field Dynamics (TFD) because it has proved to
be a very powerful tool to deal with the termalization of a
given field [3, 4]. This approach requires doubling the Fock
space which allows both time and temperature to be system
variables. This is an advantage over Matsubara’s approach
[5]. Thermo Field Dynamics also requires the characteriza-
tion of the field under analysis by means of the correspond-
ing Green function. Regarding the gravitational field, we
will use an alternative description that is known as Telepara-
lelism Equivalent to General Relativity (TEGR). When the
gravitational field is described in this alternative way, some
unique predictions are revealed.

Teleparalelism Equivalent to General Relativity is
described in terms of tetrads which has many advantages
over the metric formulation of gravitation as general relativ-
ity, since equivalence occurs only in relation to field equa-
tions. Among them, the most notorious is the existence of a
gravitational energy that is obtained naturally through the
Hamiltonian formulation of the TEGR [6]. Moreover, the
propagator of graviton obtained in general relativity does
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not coincide with that predicted by the TEGR [7]. This opens
up scope for the exploration of regular black holes via
Thermo Field Dynamics. In this paper, we will use TFD to
calculate the Stefan-Boltzmann law and the Casimir effect
through the TEGR.

This article is organized as follows. In Section 2, Thermo
Field Dynamics is introduced. In Section 3, the ideas of the
Teleparallelism Equivalent to General Relativity are briefly
recalled. In Section 4, the gravitational Stefan-Boltzmann
and entropy are calculated for regular black holes. In addi-
tion, we also calculate for the same gravitational system, the
Casimir effect, which is given at zero and finite temperature.
Finally in the last section, we present our conclusions. In this
article, we use the natural unities system, G = c = 1. We
denote the Lorentz symmetry by Latin indices, a = ð0Þ, ð1Þ,
ð2Þ, ð3Þ, while diffeomorphisms are denoted by greek indices,
μ = 0, 1, 2, 3.

2. Thermo Field Dynamics (TFD)

TFD is a thermal quantum field theory [3, 8–15]. This for-
malism is used when it is desirable to have explicit time
dependence in addition to the temperature. TFD is based
on two basic ingredients: (i) a doubling of the Hilbert space,
S, of the original field system, giving rise to ST = S ⊗ ~S, where
~S is the tilde (dual) space. This doubling is defined by the tilde
conjugation rules. (ii) The Bogoliubov transformation which
introduces thermal effects through a rotation between tilde (~S)
and nontilde (S) operators. These ingredients allow to inter-
pret the statistical average of an arbitrary operator A, as the
expectation value in a thermal vacuum. The thermal vacuum,
j0ðβÞi, describes the thermal equilibrium of the system, where
β = 1/kBT, T is the temperature, and kB is the Boltzmann
constant.

By taking an arbitrary operator A and A in the Hilbert
space S and in tilde space S, respectively, the Bogoliubov
transformation is

A αð Þ
ξ~A

†
αð Þ

 !
=U αð Þ

A kð Þ
ξ~A

†
kð Þ

 !
, ð1Þ

where ξ = −1 for bosons and ξ = +1 for fermions. The Bogo-
liubov transformation, UðαÞ, is defined as

U αð Þ =
u αð Þ −w αð Þ
ξw αð Þ u αð Þ

 !
, ð2Þ

with u2ðαÞ + ξw2ðαÞ = 1. Here, the α parameter is the com-
pactification parameter defined by α = ðα0, α1,⋯αD−1Þ. The
temperature effect is described by the choice α0 ≡ β and α1,
⋯αD−1 = 0, where β = 1/kBT with kB being the Boltzmann
constant.

Any field in the TFD formalism can be written in terms of
the α-parameter. As an example, consider the scalar field.
Using the Bogoliubov transformation, the scalar field depen-
dent of α-parameter becomes

ϕ x ; αð Þ =U αð Þϕ xð ÞU−1 αð Þ,
~ϕ x ; αð Þ =U αð Þ~ϕ xð ÞU−1 αð Þ:

ð3Þ

Then, the propagator for the scalar field in terms of α
-parameter is written as

G ABð Þ
0 x − x′ ; α
� �

= i 0, ~0 τ ϕA x ; αð ÞϕB x′ ; α
� �h i��� ���0, ~0D E

= i
ð

d4k

2πð Þ4 e
−ik x−x ′ð ÞG ABð Þ

0 k ; αð Þ,

ð4Þ

where A and B represent the duplicate notation with A and
B = 1, 2 and τ is the time ordering operator. Here

G ABð Þ
0 k ; αð Þ =U−1 αð ÞG ABð Þ

0 kð ÞU αð Þ: ð5Þ

It is important to note that the physical quantities are
given by the nontilde variables. Using the Bogoliubov trans-
formation in equation (5), the Green function becomes

G 11ð Þ
0 k ; αð Þ =G0 k ; αð Þ =G0 kð Þ + v2 k ; αð Þ G0 kð Þ −G∗

0 kð Þ½ �,
ð6Þ

with

G0 kð Þ = 1
k2 −m2 + iε

, ð7Þ

and v2ðk ; αÞ being the generalized Bogoliubov transforma-
tion [16] which is given as

v2 k ; αð Þ = 〠
d

s=1
〠
σsf g

2s−1 〠
∞

lσ1 ,⋯,lσs=1
−ηð Þs+〠

s

r=1 lσr exp

� −〠
s

j=1
ασ j

lσ j
kσ j

" #
,

ð8Þ

where d is the number of compactified dimensions, η = 1ð−1Þ
for fermions (bosons), fσsg denotes the set of all combina-
tions with s elements, and k is the 4-momentum.

3. Teleparalellism Equivalent to General
Relativity (TEGR)

General relativity which is the standard approach for gravita-
tion is based on the Riemann geometry in which the field var-
iables are the components of the metric tensor. Such a
formulation does not lead to gravitational conserved quanti-
ties, partly because of the inclusion of the local Lorentz sym-
metry and partly due to the difficulty to formally establish a
reference frame. Those problems are solved by TEGR which
is formulated in terms of the tetrad field in a Weitzenböck
manifold. In the 1930 decade, Einstein tried to establish a
unified field theory using the concept of distant teleparalle-
lism [17] which led to the formulation of a New General
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Relativity by Hyashi and Shirafuji [18]. Then a Hamilto-
nian formulation was successfully established which yielded
conserved quantities such as the gravitational energy-
momentum tensor and angular momentum [6].

Let us consider a Weitzenböck manifold endowed with
the Cartan connection [19]

Γμλν = eaμ∂λeaν, ð9Þ

then the associated torsion tensor is

Ta
λν = ∂λe

a
ν − ∂νe

a
λ: ð10Þ

The Cartan connection is curvature free. On the other
hand, it is identically related to the Christoffel symbols 0

Γμλν, which exist in the realm of the Riemannian geometry,
by

Γμλν = 0Γμλν + Kμλν, ð11Þ

where Kμλν is the contortion tensor which is defined by

Kμλν =
1
2 Tλμν + Tνλμ + Tμλν

� �
, ð12Þ

with Tμλν = eaμT
a
λν:

In order to establish a Lagrangian density for TEGR, we
firstly note that the scalar curvature constructed out of the
Christoffel symbols is written in terms of the torsion tensor,
due to the identity in equation (12), as

eR eð Þ ≡ −e
1
4T

abcTabc +
1
2T

abcTbac − TaTa

� �
+ 2∂μ eTμð Þ:

ð13Þ

Then, getting rid of the total divergency which does not
alters the field equations, we have

L eaμ
� �

= −κ eΣabcTabc − LM , ð14Þ

where κ = 1/ð16πÞ, LM is the Lagrangian density of matter
fields, and Σabc is defined by

Σabc = 1
4 Tabc + Tbac − Tcab
� �

+ 1
2 ηacTb − ηabTc
� �

, ð15Þ

with Ta = eaμT
μ. If a derivative with respect to tetrad field is

performed in the Lagrangian density, it yields

∂ν eΣaλν
� �

= 1
4 κe e

a
μ tλμ + Tλμ
� �

, ð16Þ

where

tλμ = κ 4ΣbcλTbc
μ − gλμΣabcTabc

h i
, ð17Þ

is the gravitational energy-momentum tensor [20]. The sym-
metry of Σaλν leads to

∂λ∂ν eΣaλν
� �

≡ 0: ð18Þ

This allows one to define the total energy-momentum
vector. It reads

Pa =
ð
V
d3x e eaμ t0μ + T0μ� �

, ð19Þ

which may be written in the following form

Pa = 4κ
ð
V
d3x∂ν eΣa0ν� �

: ð20Þ

It is important to point out that the energy-momentum
verctor respects the Lorentz symmetry, and it is invariant
under coordinate transformation.

It is possible to use the Lagrangian density of TEGR
above to establish a two-point Green function considering
the tetrads as the observable fields on space-time. Thus, from

gμν = ημν + hμν, ð21Þ

and expression (14), the graviton propagator is [7]

ebλ, edγ
	 


= Δbdλγ =
ηbd

κqλqγ
: ð22Þ

Then, the Green function reads

G0 x, x′
� �

= −iΔbdλγ g
λγηbd: ð23Þ

Explicitly, it is

G0 x, x′
� �

= −
i64π
q2

, ð24Þ

with q = x − x′, where x and x′ are four vectors. With the
weak field approximation, the gravitational energy-
momentum tensor tλμ becomes

tλμ xð Þ = κ
h
gμα∂γebλ∂γebα − gμγ∂αebλ∂γebα

− gμα ∂λebγ∂γebα − ∂λebγ∂αebγ
� �

− 2gλμ∂γebα ∂γebα − ∂αebγ
� �i

:

ð25Þ

In order to avoid divergences, we adopt the usual proce-
dure to write the energy-momentum tensor at different
points in space-time and then taking the proper limit. Hence

tλμ xð Þ
D E

= 0 tλμ xð Þ
��� ���0D E

, = lim
xμ→x′μ

4iκ
�
−5gλμ∂′γ∂γ

+ 2gμα∂′λ∂α
�
G0 x − x′
� �

,
ð26Þ
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where hecλðxÞ, ebαðx′Þi = iηcb δ
λ
α G0ðx − x′Þ. In this sense, it is

possible to use the metric of a regular black hole to introduce
thermal effects via TFD as explained in the last section. It
worths to notice that in the weak field approximation, TEGR
becomes a usual field which is very different from the metric
formulation that cannot dissociate metric from space-time.

4. Gravitational Casimir Effect and Stefan-
Boltzmann Law at Finite Temperature for
Regular Black Holes

In this section, the framework of TFD is used to calculate the
mean value of gravitational energy-momentum (26) which is
obtained in the weak field approximation of TEGR. Thus, we
have

tλμ ABð Þ x ; αð Þ
D E

= lim
x→x′

4iκ
�
−5gλμ∂′γ∂γ

+ 2gμα∂′λ∂α
�
G ABð Þ
0 x − x′ ; α
� �

:

ð27Þ

If we use the Casimir prescription

Tλμ ABð Þ x ; αð Þ = tλμ ABð Þ x ; αð Þ
D E

− tλμ ABð Þ xð Þ
D E

, ð28Þ

then

Tλμ ABð Þ x ; αð Þ = lim
x→x′

4iκ
�
−5gλμ∂′γ∂γ

+ 2gμα∂′λ∂α
�
�G ABð Þ
0 x − x′ ; α
� �

,
ð29Þ

where

�G ABð Þ
0 x − x′ ; α
� �

=G ABð Þ
0 x − x′ ; α
� �

− G ABð Þ
0 x − x′
� �

: ð30Þ

It is possible to describe a class of regular black holes by
the following line element [21]

ds2 = −f rð Þdt2 + dr2

f rð Þ + r2 dθ2 + sin2θdϕ2
� �

, ð31Þ

with

f rð Þ = 1 − 2M0
r 1 + r0/rð Þq½ �p/q

, ð32Þ

where M0 is the the mass of the regular black hole; in fact, it
coincides with the ADM mass in the limit r⟶∞. The
parameter r0 can be seen as a fundamental length of the reg-
ular black hole. Such a line element reproduces known solu-
tions for a suitable choice of the parameters p and q which
has to be integers. For instance, the Bardeen solution is
achieved for p = 3 and q = 2, while the Hayward solution
for p = q = 3. Thus, it should be noted that the metric in equa-
tion (31) represents a class of solutions. Such regular black
holes arose in order to deal with an open problem in gravita-

tion, the existence of singularities. In fact, the Bardeen solu-
tion was the first class of regular black holes which can be
understood as a magnetic monopole coupled to the Einstein
equation [22]. It is important to point out that although the
metric in equation (31) has no singularity at r = 0, it does
have an event horizon given by the solution of f ðRHÞ = 0.
On the other hand, the stability of such solutions need to
be investigated.

4.1. Gravitational Stefan-Boltzmann Law. In order to analyze
the gravitational Stefan-Boltzmann law, we have to choose
α = ðβ, 0, 0, 0Þ in the TFD formalism. Then, the Bogoliubov
transformation is

v2 βð Þ = 〠
∞

j0=1
e−βk

0 j0 : ð33Þ

Hence, we have to use the following Green function:

�G 11ð Þ
0 x − x′ ; β
� �

= 2 〠
∞

j0=1
G 11ð Þ
0 x − x′ − iβj0n0
� �

, ð34Þ

where n0 = ð1, 0, 0, 0Þ. Thus, from (29), we can calculate the
energy with ðABÞ = ð11Þ which is the physical component
in the matrix obtained in TFD. It reads

T00 11ð Þ x ; αð Þ = ε r, Tð Þ = lim
x→x ′

〠
∞

j0=1
4κi

�
(
−3 1 + 4M0

r 1 + r0/rð Þq½ �p/q
" #

∂0′∂0 + 5∂1′∂1

+ 5
r2

1 + 2M0
r 1 + r0/rð Þq½ �p/q

" #�
∂2′∂2

+ 1
sin2θ ∂3

′∂3
�)

G 11ð Þ
0 x − x′ − iβj0n0
� �

:

ð35Þ

Once the Riemann zeta function is defined by ζð4Þ =
∑∞

j0=11/j
4
0 = π4/90, then the gravitational Stefan-Boltzmann

energy is

ε r, Tð Þ = 32π4

15 1 + 6M0
r 1 + r0/rð Þq½ �p/q

( )
T4: ð36Þ

Here, we have to notice that for the vanishing of the phys-
ical parameter of the regular black hole M0, the energy does
not goes to zero. Therefore, we need to regularize such an
expression by requiring Eðr, TÞ = εðr, TÞ − 32π4T4/15. That
leads to

E r, Tð Þ = 192π4 M0
15 r 1 + r0/rð Þq½ �p/q

( )
T4, ð37Þ

which is the regularized energy.
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The first law of thermodynamics states

E + P = T
∂P
∂T

� �
V

: ð38Þ

Then, if we use the regularized energy above, such
first-order differential equation has the solution P = E/3.
This is very interesting to note that it is equal to the photon
state equation. In terms of the temperature, the pressure
is explicitly

P r, Tð Þ = 192π4 M0
45 r 1 + r0/rð Þq½ �p/q

( )
T4: ð39Þ

In order to calculate the gravitational entropy, we
recall the definition P = −∂F/∂V , where F is the free energy
and S = −∂F/∂T . Therefore, from ð∂P/∂TÞV = ð∂S/∂VÞT ,
the entropy is

S = 3072M0π
5

45

� �
T3
ðR
0

r

1 + r0/rð Þq½ �p/q
( )

dr, ð40Þ

which for the Bardeen and Hayward solutions may be repre-
sented graphically by Figure 1.

We choose to analyze the dependency with respect to r0
for a constant R, instead of the temperature whose depen-
dence is quite simple. Thus, the role of black hole geometry
is better understood. It is interesting to note that there is a
discontinuity for the point around x = 0:5 for the Hayward
solution. Such a feature reflects a natural limit for the r0 scale;
after all, it is not expected that the geometric structure of the
regular black hole coincides with the integration surface

itself. The integration hyper-surface is a sphere of radius R.
Thus, the gravitational entropy exists on an arbitrary portion
of space which is a different approach from the usual black
hole thermodynamics. Usually, a black hole has a fixed
entropy written in terms of its event horizon area. Here, the
following principles are assumed: (i) the entropy is a function
of macroscopic parameters. If the “no hair” theorems are
valid [23], then the entropy is a function of mass, angular
momentum, and charge. (ii) The Penrose process leads to
an arbitrary manipulation of these parameters provided that
the event horizon area remains unchanged. That holds for
regular black holes [24]. It implies that the entropy has to
be a function of area. It should be noted that the metric of
the regular black hole tends to the Schwarzschild metric for
a position far from the event horizon. Therefore, the entropy
tends to be proportional to the event horizon area; hence, it is
reasonable to admit that SH = AH/4 for a regular black hole,
where AH = 4πR2

H , with RH being the solution of

2M0
RH 1 + r0/RHð Þq½ �p/q

= 1: ð41Þ

Therefore, the temperature of the event horizon of a class
of regular black holes defined by (31) is

TH = 90R2

3072M0π
4 Ð R

0 rdr/ 1 + r0/rð Þq½ �p/q
� �n o

2
4

3
5
1/3

: ð42Þ

Thus, for the Bardeen and Hayward solutions, the hori-
zon temperature assumes the form as that in Figure 2.

It should be noted that the same discontinuity of entropy
in Hayward solution also appears in the temperature. This
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Figure 1: Gravitational entropy. The y axis is 90 S/3072M0π
5R2T3

and x = r0/R.
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discontinuity can also be interpreted as an improbability of
the Hayward solution to be an experimental reality. On the
other hand, the marked difference between the solutions for
small r0 indicates an immediate choice when an experiment
to measure the temperature of the event horizon of a regular
black hole can be performed. Such an expression is a unique
prediction of TFD applied to TEGR.

4.2. Gravitational Casimir Effect. If the Casimir effect descrip-
tion is desired, then the choice α = ð0, i2d, 0, 0Þ has to bemade
which leads to the following Bogoliubov transformation

v2 dð Þ = 〠
∞

l1=1
e−i2dk

1l1 : ð43Þ

If the Green function is given by

�G 11ð Þ
0 x − x′ ; d
� �

= 2 〠
∞

l1=1
G 11ð Þ
0 x − x′ − 2dl1r
� �

, ð44Þ

then

T00 11ð Þ d, rð Þ = εc d, rð Þ = lim
x→x′

〠
∞

l1=1
4κi

�
(
−3 1 + 4M0

r 1 + r0/rð Þq½ �p/q
" #

∂′0∂0

+ 5∂′1∂1 +
5
r2

1 + 2M0
r 1 + r0/rð Þq½ �p/q

" #�
∂′2∂2

+ 1
sin2θ ∂

′3∂3
�)

G 11ð Þ
0 x − x′ − 2dl1n1
� �

,

ð45Þ

where n1 = ð0, 1, 0, 0Þ. Hence, the energy associated to the
gravitational Casimir effect for regular black holes is

εc d, rð Þ =〠
l1

−
4

d4l41

(
1 − 2M0

r 1 + r0/rð Þq½ �p/q

+ 2M0
r 1 + r0/rð Þq½ �p/q
" #

5dl1
r

� �)
,

ð46Þ

which for the approximation d≪ r becomes

εc d, rð Þ = −
2π4

45d4
1 − 2M0

r 1 + r0/rð Þq½ �p/q
( )

: ð47Þ

It should be noted that the vacuum contribution is nega-
tive and has a dependency of d−4. In order to take into
account only the regular black hole contribution, a regulariza-
tion procedure is necessary. Thus, subtracting the vacuum
energy, we have

Ec d, rð Þ = 4π4 M0
45d4 r 1 + r0/rð Þq½ �p/q

( )
, ð48Þ

where Ecðd, rÞ is the regularized Casimir energy. It is interest-
ing to note that on the event horizon, it is exactly minus the
vacuum energy.

Similarly, the Casimir pressure is

T33 11ð Þ d, rð Þ = ρc d, rð Þ = lim
x→x′

〠
∞

l1=1
4κi 1 − 2M0

r 1 + r0/rð Þq½ �p/q
" #

�
(
5 1 + 2M0

r 1 + r0/rð Þq½ �p/q
" #

∂′0∂0

− 3 1 − 2M0
r 1 + r0/rð Þq½ �p/q

" #
∂′1∂1

−
5
r2

∂′2∂2 +
1

sin2θ ∂
′3∂3

� �)
G 11ð Þ
0

� x − x′ − 2dl1n1
� �

:

ð49Þ

This yields

ρc d, rð Þ = −
4
d4

〠
l1

1
l41

(
3 − 18M0

r 1 + r0/rð Þq½ �p/q

−
6dl1 M0

r2 1 + r0/rð Þq½ �p/q
)
,

ð50Þ

which, after the limit d/r≪ 1 is taken, reads

ρc d, rð Þ = −
2π4

15d4
1 − 6M0

r 1 + r0/rð Þq½ �p/q
( )

: ð51Þ

Again, in order to consider the nonvacuum contribution,
a regularized pressure is necessary. Thus, the regularized
gravitational Casimir pressure is

Pc d, rð Þ = 12π4 M0
15d4 r 1 + r0/rð Þq½ �p/q

( )
: ð52Þ

It should be noted that both the regularized Casimir
energy and pressure are very small due to the weak field
approximation. We would like to point out that in this for-
malism, the vacuum itself has some gravitational features
which explain why a regularization is necessary.

4.3. Gravitational Casimir Effect at Finite Temperature. The
choice α = ðβ, i2d, 0, 0Þ is suitable to describe the Casimir
effect at finite temperature. As a consequence, following the
TFD prescription, the Bogoliubov transformation is given by
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v2 k0, k3 ; β, d
� �

= v2 k0 ; β
� �

+ v2 k1 ; d
� �

+ 2v2 k0 ; β
� �

v2 k1 ; d
� �

,

= 〠
∞

j0=1
e−βk

0 j0 + 〠
∞

l1=1
e−i2dk

1l1

+ 2 〠
∞

j0,l1=1
e−βk

0 j0−i2dk1l1 ,

ð53Þ

where the first term takes into account temperature effects,
the second term stands for the Casimir effect only, and the
last term the interaction between both. The Green function
is then

�G 11ð Þ
0 x − x′ ; β, d
� �

= 4 〠
∞

j0,l1=1
G 11ð Þ
0 x − x′ − iβj0n − 2dl1r
� �

:

ð54Þ

As before, the gravitational Casimir energy is obtained
from expression (29) which reads

εc β, dð Þ = lim
x→x′

〠
∞

j0,l1=1
4κi
(
−3 1 + 4M0

r 1 + r0/rð Þq½ �p/q
" #

∂′0∂0

+ 5∂′1∂1 +
5
r2

1 + 2M0
r 1 + r0/rð Þq½ �p/q

" #

� ∂′2∂2 +
1

sin2θ ∂
′3∂3

� �)
G 11ð Þ
0

� x − x′ − iβj0n − 2dl1r
� �

,

ð55Þ

where εcðβ, dÞ = T00ð11Þðβ ; dÞ. It worths to obtain the regu-
larized Casimir energy at finite temperature which is
achieved by subtracting the vacuum energy from εcðβ, dÞ;
explicitly, it is

where Ecðβ, dÞ is the regularized expression. Similarly, the
gravitational Casimir pressure, ρcðβ, dÞ, at finite temperature
is given by

ρc β, dð Þ = lim
x→x′

〠
∞

j0,l1=1
4κi 1 − 2M0

r 1 + r0/rð Þq½ �p/q
" #

�
(
5 1 + 2M0

r 1 + r0/rð Þq½ �p/q
" #

∂′0∂0

− 3 1 − 2M0
r 1 + r0/rð Þq½ �p/q

" #
∂′1∂1

−
5
r2

∂′2∂2 +
1

sin2θ ∂
′3∂3

� �)
G 11ð Þ
0

� x − x′ − iβj0n − 2dl1r
� �

,

ð57Þ

where ρcðβ, dÞ = T11ð11Þðβ ; dÞ. As the regularized energy, the
regularized Casimir pressure is

Ec β, dð Þ = −64 〠
∞

j0,l1=1

1
4d2l21 1 + 2M0/r 1 + r0/rð Þq½ �p/q

� �� �
+ j20 1 − 2M0/r 1 + r0/rð Þq½ �p/q
� �

β2

2
4

3
5
3(

4d2l21

"
1

+ 12 M0
r 1 + r0/rð Þq½ �p/q

 !2

+ 2M0
r 1 + r0/rð Þq½ �p/q
" #

1 + 5dl1
r

� �#
1 + 2M0

r 1 + r0/rð Þq½ �p/q
 !

− j20

"
3 − 72 M0

r 1 + r0/rð Þq½ �p/q
 !3

+ 30dl1
M0

r2 1 + r0/rð Þq½ �p/q
 !

+ 4 M0
r 1 + r0/rð Þq½ �p/q

 !2

6 + 5dl1
r

� �
�β2
)

+ 64 〠
∞

j0,l1=1

4d2l21 − 3j20β2

4d2l21 + j20β
2� �3 ,

ð56Þ

Pc β, dð Þ = −64 〠
∞

j0,l1=1

1
4d2l21 1 + 2M0/r 1 + r0/rð Þq½ �p/q

� �� �
+ j20 1 − 2M0/r 1 + r0/rð Þq½ �p/q
� �

β2

2
4

3
5
3

�
(
4d2l21 3 + 8 M0

r 1 + r0/rð Þq½ �
� �2

− 6dl1
M0

r2 1 + r0/rð Þq½ �
� �

1 − 2M0
r 1 + r0/rð Þq½ �
� �� �" #

1 − 2M0
r 1 + r0/rð Þq½ �
� �2

" #

+ j20 24 M
r

� �2
+ 6dl1

2M
r2

� �
3 + 2M

r

� �� �
− 1

" #
1 − 2M

r

� �� �2
β2
)

+ 64 〠
∞

j0,l1=1

4d2l21 − j20β
2

4d2l21 + j20β
2� �3 ,

ð58Þ
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where Pcðβ, dÞ = ρcðβ, dÞ + 64∑∞
j0,l1=14d

2l21 − j20β
2/ð4d2l21 +

j20β
2Þ3: The regularized expressions take into account only

the contributions of the regular black holes. They are small
corrections to the vacuum quantities which have the known
limits for β⟶∞. It should be noted that the gravitational
Casimir effect is a very controversial idea due to the energy
problem in general relativity. As a matter of fact, the lack of
a gravitational energy-momentum tensor in this approach
prevents one from analyzing such effect. On the other hand
in the framework of TEGR, the gravitational Casimir effect
can be explored.

5. Conclusion

The regular black holes are studied at finite temperature. The
temperature effects are introduced using the TFD formalism.
TFD is a tool that allows to analyze temperature effects in
addition to the time dependence. Using the Teleparalelism
Equivalent to General Relativity, the gravitational thermody-
namics to the regular black holes is investigated. This gravita-
tional theory has a well defined energy-momentum tensor
that allows to calculated the gravitational Stefan-Boltzmann
law and Casimir effect associated to the regular black holes.
A regularized gravitational Stefan-Boltzmann law for the reg-
ular black hole is obtained. Using the first law of thermody-
namics, the gravitational pressure and the gravitational
entropy are determined. The relation between gravitational
energy and pressure is equal the relation that describes the
photon. The gravitational entropy obtained here exists on
an arbitrary portion of space. Then, it is a different approach
from the usual black hole thermodynamics, since the usual
black hole has a fixed entropy given in terms of its event hori-
zon area. In addition, the temperature of the event horizon
for regular black holes has been calculated. Furthermore,
the gravitational Casimir energy and Casimir pressure at zero
and finite temperature for this class of regular black holes are
determined. It is interesting to note that such results can be
experimentally verified; once confirmed, it suggests that the
torsion tensor is the true quantity responsible by gravitation
instead of curvature as the mainstream approach for the
gravitational field.
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